

Schottky Barrier Rectifiers

Using the Schottky Barrier principle with a Refractory metal capable of high temperature operation metal. The proprietary barrier technology allows for reliable operation up to 175°C junction temperature. Typical application are in switching Mode Power Supplies such as adaptors, DC/DC converters, freewheeling and polarity protection diodes.

Features.

- *Low Forward Voltage.
- *Low Switching noise.
- *High Current Capacity
- * Guarantee Reverse Avalanche.
- * Guard-Ring for Stress Protection.
- *Low Power Loss & High efficiency.
- *175℃ Operating Junction Temperature
- *Low Stored Charge Majority Carrier Conduction.
- *Plastic Material used Carries Underwriters Laboratory

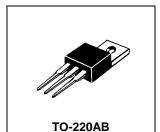
Flammability Classification 94V-O

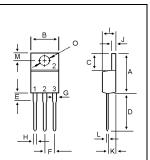
* In compliance with EU RoHs 2002/95/EC directives

MAXIMUM RATINGS

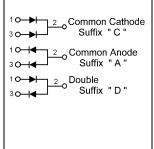
Characteristic	Symbol	MBR20100CK	Unit
Peak Repetitive Reverse Voltage Working Peak Reverse Voltage DC Blocking Voltage	V _{RRM} V _{RWM} V _R	100	٧
RMS Reverse Voltage	V _{R(RMS)}	70	V
Average Rectifier Forward Current (per diode) Total Device (Rated V_R), T_C =125 $^{\circ}$ C	I _{F(AV)}	10 20	Α
Peak Repetitive Forward Current (Rate V _R , Square Wave, 20kHz)	I _{FM}	20	Α
Non-Repetitive Peak Surge Current (Surge applied at rate load conditions halfware, single phase, 60Hz)	I _{FSM}	150	Α
Operating and Storage Junction Temperature Range	T_J , T_stg	-65 to +175	$^{\circ}$

THERMAL RESISTANCES

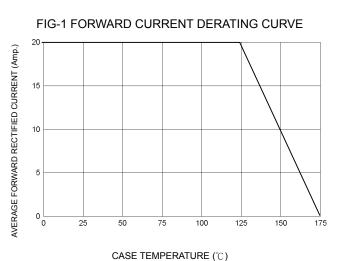

Typical Thermal Resistance junction to case	R _{θjc}	3.4	°C/w
---	------------------	-----	------

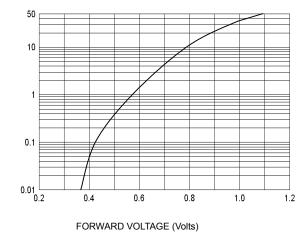

ELECTRIAL CHARACTERISTICS

ELECTRIAL CHARACTERIOTICS				
Characteristic	Symbol	MBR20100CK	Unit	
$\label{eq:maximum Instantaneous Forward Voltage} \begin{tabular}{ll} Maximum Instantaneous Forward Voltage & (per diode) & (I_F = 10 Amp T_C = 25 ^{\circ}C) & (I_F = 10 Amp T_C = 125 ^{\circ}C$	V _F	0.85 0.75	V	
Maximum Instantaneous Reverse Current (Rated DC Voltage, $T_C = 25^{\circ}C$) (Rated DC Voltage, $T_C = 125^{\circ}C$)	I _R	0.01 10	mA	

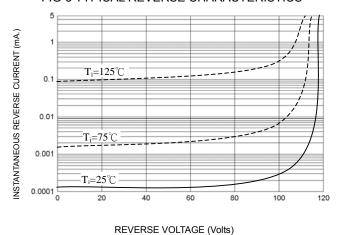

SCHOTTKY BARRIER RECTIFIERS

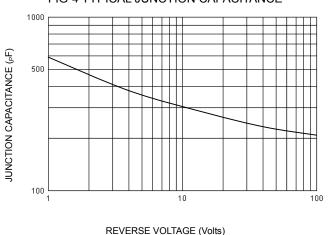
20 AMPERES 100 VOLTS




DIM	MILLIMETERS		
DIIVI	MIN	MAX	
Α	14.68	15.32	
В	9.78	10.42	
С	5.02	6.52	
D	13.06	14.62	
E	3.57	4.07	
F	2.42	2.66	
G	1.12	1.36	
Н	0.72	0.96	
- 1	4.22	4.98	
J	1.14	1.38	
K	2.20	2.98	
L	0.33	0.55	
M	2.48	2.98	
0	3.70	3.90	

MBR20100CK





NSTANTANEOUS FORWARD CURRENT (Amp.)

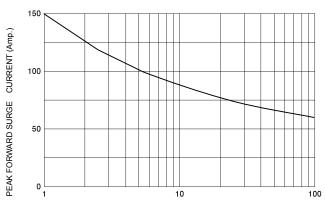

FIG-3 TYPICAL REVERSE CHARACTERISTICS

FIG-4 TYPICAL JUNCTION CAPACITANCE

FIG-5 PEAK FORWARD SURGE CURRENT

NUMBER OF CYCLES AT 60 Hz