

SPECIFICATION FOR APPROVAL

Customer :				
Customer P/N:				
Drawing No:				
Quantity :	0	Pcs.	Date :	2021/7/15
Chilisin P/N:		_	ACTH Series	

Chilisin Electronics CorpChilisin Electronics (Dongguan) Co., Ltd.No. 29, Alley 301, Tehhsin Rd., Hukou, HsinchuChilisin Electronics (Dongguan) Co., Ltd.303, TaiwanChilisin Electronics (Dongguan) Co., Ltd.303, TaiwanChilisin Electronics (Dongguan) Co., Ltd.TEL : +886-3-599-2646TEL : +86-769-8773-0251~3FAX : +886-3-599-9176FAX : +86-769-8773-0232E-mail : sales@chilisin.comE-mail : cect@chilisin.comhttp : //www.chilisin.comFAX : +86-769-8773-0232Fo力新電子(越南廠)有限公司HuNan Chilisin Electronics Technology Co., LtdNo. 143 - 145, Road No 10, VSIP Hai Phong, Lap Le Commune, Thuy Nguyen Dist,An for active Huan City, Huan Province 419601, ChinaTcl : 967 ZF 862Fay 2			or			
Chilisin Electronics CorpChilisin Electronics (Dongguan) Co., Ltd.No. 29, Alley 301, Tehhsin Rd., Hukou,HsinchuNo. 78, Puxing Rd., Yuliangwei Administration Area, Qingxi Town, Dongguan City, Guangdong,China303, TaiwanTEL : +886-3- 599-2646TEL : +886-3- 599-9176FAX : +86-769-8773-0251~3FAX : +886-3- 599-9176FAX : +86-769-8773-0232E-mail : sales@chilisin.comE-mail : cect@chilisin.comhttp : //www.chilisin.com 奇力新電子(越南廠)有限公司 Chilisin Electronics (Vietnam) LimitedHuNan Chilisin Electronics Technology Co., LtdNo. 143 - 145, Road No 10, VSIP Hai Phong, Lap Le Commune, Thuy Nguyen Dist, 内 . Munan Province 419601, China	RoHS Compliant REACH Compliant Lead Free Solders					
Chilisin Electronics (Vietnam) LimitedHuNan Chilisin Electronics Technology Co., LtdNo 143 - 145, Road No 10, VSIP Hai Phong, Lap Le Commune, Thuy Nguyen Dist,HuNan Chilisin Electronics Technology Co., LtdNo. 8, Shaziao Liangshuijing Town, Yuanling County, Huaihua City, Hunan Province 419601, China Tel + 867 745 867 7682	hilisin Electronics Corp Io. 29, Alley 301, Tehhsin Rd., Hukou,Hsinchu 03, Taiwan EL:+886-3-599-2646 AX:+886-3-599-9176 -mail:sales@chilisin.com	Chilisin Electronics (Dor No. 78, Puxing Rd., Yulia Qingxi Town, Dongguar TEL:+86-769-8773-02 FAX:+86-769-8773-02	ngguan) Co., Ltd. angwei Administration Area, I City, Guangdong,China 51~3 232			
	hilisin Electronics (Vietnam) Limited Io 143 - 145, Road No 10, VSIP Hai Phong, ap Le Commune, Thuy Nguyen Dist,	HuNan Chilisin Electron No. 8, Shaziao Liangshu Huaihua City, Hunan Pr	ics Technology Co., Ltd ijing Town, Yuanling County,			

ACTH Series Specification

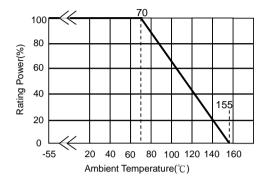
1 Scope:

- 1-1 This specification is applicable to lead free and halogen free of ROHS directive for ACTH series high power thick film chip resistors.
- 1-2 This product is for automotive electronic application.
- 1-3 AEC-Q200 qualified , grade 0.

2 Part Numbering:

АСТН	0 0	1 2 0 6	-	4 R 7 x	l	ТР
Series	Internal Code	Dimension (inch)		Resistance Value	Tolerance	Taping Code
ACTH:		0402		J Tol 3 digit + X:	B = ± 0.1%	TH 10,000pcs/reel: 0402
High Power Thick Film		0603		Ex. 10Ω = 100	D = ± 0.5%	TP 5,000pcs/reel: 0603, 0805, 1206,1210
Chip Resistors		0805		4.7Ω=4R7	F = ± 1%	TE 4,000pcs/reel: 2010, 2512
		1206		F /D Tol 4 digit:	J = ± 5%	
		1210		10.2Ω=10R2		_
		2010		10ΚΩ=1002		
		2512		0.10Ω=R100		
		-		0.33Ω=R330		
				0.56Ω=R560		

3 SPECIFICATIONS:

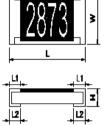

Rated Max. Max. T.C.R Resistance Range								
Туре	Power	Working	Overload	(ppm/℃)	B(±0.1%)	D(±0.5%)	F(±1%)	J(±5%)
	at 70℃	Voltage	Voltage	(ppin/ C)	E-24 ` E-96	E-24 ` E-96	E-24 ` E-96	E-24
0402	1/10W	75V	100V	±100	$100\Omega\!\leq\!R\!\leq\!1M\Omega$	$10\Omega \leq R \leq 1M\Omega$	10Ω≦R<10MΩ	$10\Omega \leq R \leq 20M\Omega$
0402	1/1000	750	1001	±200		1Ω≦R<10Ω	1Ω≦R<10Ω	1Ω≦R<10Ω
0603	1/4W	75V	150V	±150	$100\Omega\!\leq\!R\!\leq\!1M\Omega$	$10\Omega \leq R \leq 1M\Omega$	10Ω≦R<10MΩ	$10\Omega \leq R \leq 20M\Omega$
0005	1/400	750	1507	±200			1Ω≦R<10Ω	1Ω≦R<10Ω
	0805 2/5W	150V	300V	±100	$100\Omega\!\leq\!R\!\leq\!1M\Omega$	$10\Omega \leq R \leq 1M\Omega$	$10\Omega \! \leq \! R \! < \! 10M\Omega$	$10\Omega \! \leq \! R \! < \! 20 M\Omega$
0805		1300	3000	±200			$1\Omega \! \leq \! R \! < \! 10\Omega$	$1\Omega \! \leq \! R \! < \! 10\Omega$
	1/2W	150V	400V	±100	$10\Omega\!\leq\!R\!\leq\!1M\Omega$	$10\Omega \!\leq\! R \!<\! 1M\Omega$	10Ω≦R<10MΩ	$10\Omega \leq R \leq 20M\Omega$
1206	1/200	1300	4000	±200	$3\Omega\!\leq\!R\!<\!10\Omega$		1Ω≦R<10Ω	1Ω≦R<10Ω
	3/4W	N 200V	200V 400V	±100	$100\Omega\!\leq\!R\!\leq\!1M\Omega$	$10\Omega \!\leq\! R \!<\! 1M\Omega$	10Ω≦R<10MΩ	10Ω≦R<20MΩ
1210	5/410			±200			1Ω≦R<10Ω	1Ω≦R<10Ω
2010	1W	2001/	200V 400V	±100	$100\Omega\!\leq\!R\!\leq\!1M\Omega$	$10\Omega \!\leq\! R \!<\! 1M\Omega$	10Ω≦R<10MΩ	10Ω≦R<10MΩ
2010	100	2000		±200			1Ω≦R<10Ω	1Ω≦R<10Ω
2512	2W	200V	400V	±100	$100\Omega\!\leq\!R\!\leq\!1M\Omega$	$10\Omega \!\leq\! R \!<\! 1M\Omega$	10Ω≦R<10MΩ	10Ω≦R<10MΩ
2312	2.00	2000	4000	±200			1Ω≦R<10Ω	1Ω≦R<10Ω
Ор	erating Ter	nperature R	ange			−55°C ~ +155	C	

ACTH Series Specification

3.2 Power Derating Curve:

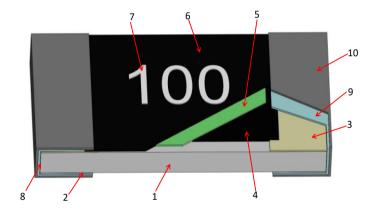
Temperature Range: -55° C ~ $+155^{\circ}$ C If the ambient temperature exceeds 70 degrees centigrade to 155 degrees centigrade, the power can be modified by the curve as below

3.4 Voltage Rating:


Rated Voltage: DC voltage or AC voltage (rms) based on the rated power The voltage can be calculated by the following formula. If the calculated value exceeds the Max. voltage specified in the Table 3, the Max. voltage rating is set as the voltage rating.

 $E = \sqrt{R \times P}$

P= Power rating (w) R= Nominal resistance(Ω)

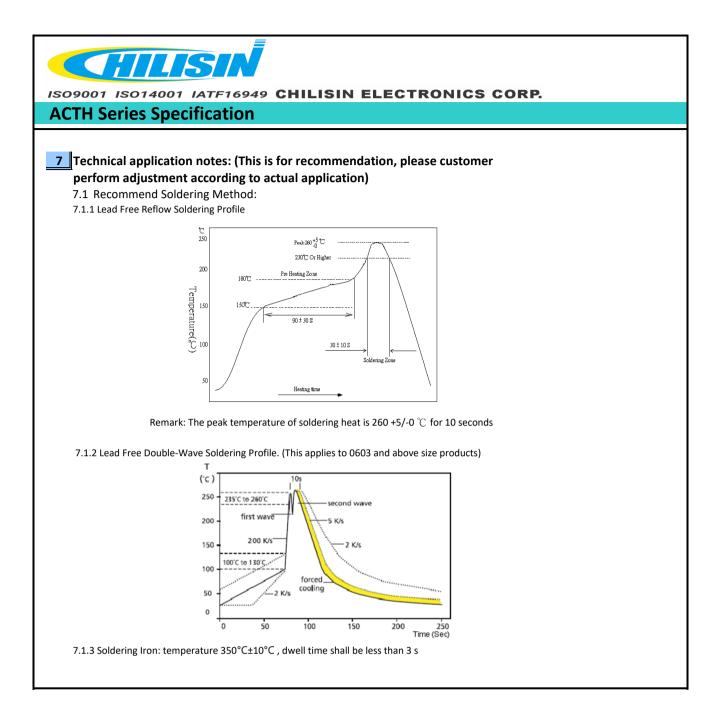

E= Rated voltage (v)

ACTH Series Specification

DIM	L	W	Н	L1	L2
0402	1.00±0.10	0.50±0.05	0.30±0.05	0.20±0.10	0.25±0.10
0603	1.55±0.10	0.80±0.10	0.45±0.10	0.30±0.15	0.30±0.15
0805	2.00±0.10	1.25±0.10	0.50±0.10	0.35±0.20	0.35±0.20
1206	3.05±0.10	1.55±0.10	0.50±0.10	0.45±0.20	0.35±0.20
1210	3.05±0.10	2.55±0.10	0.55±0.10	0.50±0.20	0.50±0.20
2010	4.95±0.20	2.45±0.10	0.70±0.10	0.65±0.20	0.60±0.20
2512	6.40±0.20	3.20±0.20	0.70±0.10	0.60±0.20	1.25±0.20

5 Structure Graph:

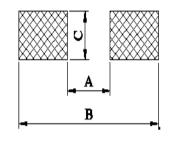
1	Ceramic substrate	6	2nd Protective coating
2	Bottom inner electrode	7	Marking
3	Top inner electrode	8	Terminal inner electrode
4	Resistive layer	9	Ni plating
5	1st Protective coating	10	Sn plating



No	Item	Conditions	Specifications Resistors
1-1	High Temperature Exposure	Put the specimens in the chamber with temperature of	Resistors 0.5%, 1% ∶ △R%=±1.0%
	(Storage)	$155 \pm 3^\circ\!\mathrm{C}$ for 1000 hours. Then take them out to stabilize	5% : ́_R%=±2.0%
		in room temperature for 24±2hr or more, and measure of	
		its resistance variance rate.	
		Experiment evidence: AEC-Q200	
1-2	Temperature Cycling	Put the specimens in the High & low temperature test	0.5%, 1%:△R%=±1.0%
		chamber with temperature varies from -55 $^\circ\!\mathrm{C}$ to 125 $^\circ\!\mathrm{C}$	5%:△R%=±2.0%
		for 15 minutes and total 1000 cycles. Then take them out	
		to stabilize in room temperature for 24±2hr or more, and	
		measure of its resistance variance rate.	
		Experiment evidence: AEC-Q200	
1-3	Short Time Overload	Applied 2.5 times rated voltage for 5 seconds and release the	0.5%, 1%: △R%=±1.0%
		load for about 30 minutes, then measure its resistance variance	5%:△R%=±2.0%
		rate. (Rated voltage refer to item 3. general specifications)	
		Refer to JIS-C5201-1 4.13	
	Discoul Doublette		
1-4	Biased Humidity	Solder the specimens on the test PCB and put them into the constant temperature humidity chamber with $85+2^{\circ}$ C	$0.5\%, 1\% : \triangle R\% = \pm 2.0\%$ $5\% : \triangle R\% = \pm 3.0\%$
		the constant temperature humidity chamber with $85\pm2^{\circ}C$ and $85\pm5\%$ RH. Then apply the test voltage that	J/0・ ムロ/0-1 3.070
		calculates based on the 10% of rated power for 1000hrs.	
		Then take them out to stabilize in room temperature for	
		24±2hr or more, and measure of its resistance variance	
		rate.	
		Experiment evidence: AEC-Q200	
1-5	Operational Life	Solder the specimens on the test PCB and Put them in	0.5%, 1% : △R%= ± 2.0%
		the chamber with temperature of 125±3°C and load the	5% : △R%=± 3.0%
		rated voltage for 1000 hours. Then take them out to	
		stabilize in room temperature for 24±4hr or more, and	
		measure of its resistance variance rate.	
		Experiment evidence: AEC-Q200	
1-6	Resistance to Soldering Heat	The specimens are fully immersed into the Pb-free	0.5%, 1%:△R%=±1.0%
		solder pot, then take them out to stabilize for 1 hour or	5% : △R%=± 3.0%
		more and measure of its resistance variance rate.	
		Temp of solder pot: 260±5°C	
		Soldering duration : 10±1sec.	
		Experiment evidence AEC-Q200	
1-7	ESD	Put the specimens on the test fixture and two	△R%=±3.0%
		(2) discharges (2KVDC) shall be applied to each PUT,	
		one (1) with a positive polarity and one (1) with a	
		negative polarity. Afterwards, the specimens stabilize for	
		30min or more and measure of its resistance variance	
		rate. The test is performed with direct contact and	
		regular discharge mode. The resistor and capacitor used on the spearhead is 2000Ω and $150pF$ respectively.	
		Experiment evidence AEC-Q200	

ACTH Series Specification

No	Item	Conditions	Specifications
			Resistors
1-8	Solderability	Test method:	
		Test item 1 (solder pot test): Method B	1.Soldering coverage over 95%
		Precondition:	2.At the edge of terminal, the object underneath (e.g. white
		The specimens are subjected to 155 $^\circ\!\mathrm{C}$ dry bake for 4hrs±15min.	ceramic) shall not expose.
		The specimens are immersed into the flux first, then fully	
		immersed into the solder pot, at a temperature of 235± 5 $^\circ\!\mathrm{C}$	
		for 5+0/-0.5 sec. Then rinse with water and observe the	
		soldering coverage under the microscope.	
		Test item 2 (Leaching test): Method D	
		The specimens are immersed into the flux first, then fully	
		immersed into the solder pot, at a temperature of	
		260 \pm 5 $^{\circ}$ C for 30+0/-0.5 sec. Then rinse with water and	
		observe the soldering coverage under the microscope.	
		Experiment evidence AEC-Q200	
1-9	Electrical Characterization	TCR (ppm / °C) = $\frac{(R2-R1)}{R1(T2-T1)\times 10^6}$	
		R1: Resistance at room temperature (Ω)	Refer to item 3. general
		R2: Resistance at -55°Cor +125°C(Ω)	specifications
		T1: Room temperature (°C)	
		T2: Temperature -55°Cor +125°C	
		Experiment evidence: AEC-Q200	
1-10	Board Flex	Solder the specimens on the test PCB and put the PCBA	0.5%, 1%:△R%=±1.0%
	(Bending Test)	onto the Bending Tester. Add force at the central part of	5%:△R%=±2.0%
		PCB, and the duration of the applied forces shall be 60 (+ 5)	
		Sec. Measure of its resistance variance rate in load.	
		Bending depth	
		(D) 0402 \ 0603, 0805=5mm	
		1206 • 1210=3mm	
		2010 \ 2512= 2mm	No mechanical damage, peel-off of side end or chip crack.
		Experiment evidence: AEC-Q200	- · · ·


CHILISIN

ISO9001 ISO14001 IATF16949 CHILISIN ELECTRONICS CORP.

ACTH Series Specification

8 Recommend Land Pattern Design (For Reflow Soldering)

When a component is soldered, the resistance after soldering changes slightly depending on the size of the soldering area and the amount of soldering. When designing a circuit, it is necessary to consider the effect of a decrease or increase in its resistance.

DIM	А	В	С
0402	0.5	1.5	0.6
0603	0.8	2.1	0.9
0805	1.2	3	1.3
1206	2.2	4.2	1.6
1210	2.2	4.2	2.8
2010	3.5	6.1	2.8
2512	3.8	8	3.5

8.2 Automobile Electronic Application:

This specification is for automobile electronic use. CHILISIN will take no responsibility if any damage, cost or loss occurs when the product has been used in any special circumstances.

- (a) Information $\$ entertainment $\$ navigation $\$ audio control units.
- (b) Comfortable door, window, seat control unit.
- (c) Internal lighting control unit.

8.3 Environment Precautions:

If consumer intends to use our company product in special environment or condition (including but not limited to those mentioned below), then will need to make individual recognition of product features and reliability accordingly.

- (a) Used in high temperature and humidity environment
- (b) Exposed to sea breeze or other corrosive gas, such as Cl2 $\,\times$ H2S $\,\times$ NH3 $\,\times$ SO2 and NO2.
- (c) Used in non-verified liquids including water, oil, chemical and organic solvents.
- (d) Using non-verified resin or other coating material to seal or coat our Company product.
- (e) After soldering, it is necessary to use water-soluble detergents to clean residual solder

ACTH Series Specification

8.4 Momentary Overload Precautions:

The product might be out of function when momentary overloaded. Please make sure to avoid momentary overloading while using and preserving

8.6 Operation and Processing Precautions:

(a) Avoid damage to the edge of resistor and protective layer caused by mechanical stress.

(b) Handle with care when printing circuit board (PCB) is divided or fixed on support body,

because bending of printing circuit board (PCB) mounting will make mechanical stress for resistors.

(c) Make sure the power rating is under the limit when using the resistor.

When power rating is over the limit, the resister will be overloaded.

There might be machinery damage due to the climbing temperature

(d) If the resister will be exposed under massive impact load (shock wave)

in a short period of time, the working environment must be set up well before use.

(e) Please make evaluation and confirmation when the product is well used in your

company and have a through consideration of its fail-safe design to ensure the system safety.

9 Storage and transportation requirement:

1.1 The temperature condition must be controlled at 25±5°C, the R.H. must be controlled at 60±15%. The stock can maintain quality level in two years. 1.2 Please avoid the mentioned harsh environment below when storing to ensure product performance and its' weldability. Places exposed to sea breeze or other corrosive gas, such as Cl2 \times H2S \times NH3 \times SO2 and NO2.

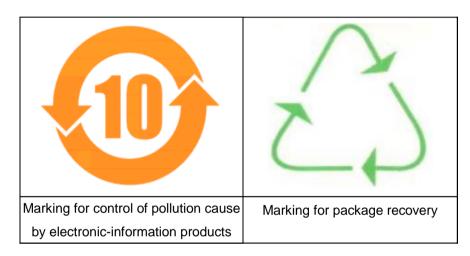
1.3 When the product is moved and stored, please ensure the correct orientation of the box. Do not drop or squeeze the box. Otherwise, the electrode or the body of the product may be damaged.

10 Plating Thickness:

9.1 Ni: $\geq 2\mu m$ 9.2 Sn(Tin): $\geq 3\mu m$ 9.3 Sn(Tin):Matte Sn

11 Measurement Point:

Bottom electrode	Unit : mm		
A	DIM Size	А	В
	0402	0.80±0.05	0.24±0.05
	0603	1.35±0.05	0.35±0.05
	0805	1.80±0.05	0.35±0.05
	1206	2.90±0.05	0.35±0.05
• Current Terminal	1210	2.90±0.05	0.35±0.05
Voltage Terminal	2010	4.50±0.05	1.15±0.05
	2512	5.90±0.05	1.60±0.05



ACTH Series Specification

11 Stock period:

The temperature condition must be controlled at $25\pm5^{\circ}$, the R.H. must be controlled at $60\pm15\%$. The stock can maintain quality level in two years.

12 The carton for electronic-information products is made by the symbol as follows: (For china)

ACTH Series Specification

a)

Legal disclaimer

CHILISIN, its distributors and agents (collectively, "CHILISIN"), hereby disclaims any and all liabilities for any errors, inaccuracies or incompleteness contained in any product related information, including but not limited to product specifications, datasheets, pictures and/or graphics. CHILISIN may make changes, modifications and/or improvements to product related information at any time and without notice.

CHILISIN makes no representation, warranty, and/or guarantee about the fitness of its products for any particular purpose or the continuing production of any of its products. To the maximum extent permitted by law, CHILISIN disclaims (i) any and all liability arising out of the application or use of any CHILISIN product, (ii) any and all liability, including without limitation special, consequential or incidental damages, and (iii) any and all implied warranties, including warranties of fitness for a particular purpose, non-infringement and merchantability.⁴⁴

CHILISIN defined this product is for general electrical use , not design for any application for automotive electrical ,life-saving or life support equipment, or any application which may inflict casualties if CHILISIN product failure occurred. When consumer is using or selling products of CHILISIN without having discussion with the sales representatives and specifically stated the applicability mentioned above in a written form, then the client need to take a full responsibility and agree to protect CHILISIN from punishment and damage.

Information provided here is intended to indicate product specifications only. CHILISIN reserves all the rights for revising this content without further notification, as long as products are unchanged. Any product change will be announced by ECN.⁴