

Bias Resistor Transistors

NPN Silicon Surface Mount Transistors with Monolithic Bias Resistor Network

This new series of digital transistors is designed to replace a single device and its external resistor bias network. The BRT (Bias Resistor Transistor) contains a single transistor with a monolithic bias network consisting of two resistors; a series base resistor and a base-emitter resistor. The BRT eliminates these individual components by integrating them into a single device. The use of a BRT can reduce both system cost and board space. The device is housed in the SC-89 package which is designed for low power surface mount applications.

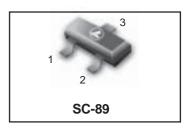
- Simplifies Circuit Design
- Reduces Board Space
- Reduces Component Count
- The SC-89 package can be soldered using wave or reflow. The modified gull-winged leads absorb thermal stress during soldering eliminating the possibility of damage to the die.
- Pb-Free Package is Available.

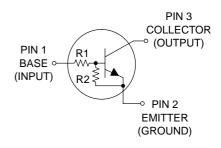
MAXIMUM RATINGS (T_A = 25°C unless otherwise noted)

Rating	Symbol	Value	Unit
Collector-Base Voltage	V _{CBO}	50	Vdc
Collector-Emitter Voltage	V _{CEO}	50	Vdc
Collector Current	Ι _C	100	mAdc

THERMAL CHARACTERISTICS

Characteristic	Symbol	Max	Unit
Total Device Dissipation, FR–4 Board (Note 1.) @ T _A = 25°C Derate above 25°C	PD	200 1.6	mW mW/°C
Thermal Resistance, Junction to Ambient (Note 1.)	R _{θJA}	600	°C/W
Total Device Dissipation, FR–4 Board (Note 2.) @ T _A = 25°C Derate above 25°C	PD	300 2.4	mW mW/°C
Thermal Resistance, Junction to Ambient (Note 2.)	R _{0JA}	400	°C/W
Junction and Storage Temperature Range	T _J , T _{stg}	-55 to +150	°C


1. FR-4 @ Minimum Pad


2. FR-4 @ 1.0 × 1.0 Inch Pad

DEVICE MARKING AND ORDERING INFORMATION

Device	Marking	Shipping
LDTC143EET1	8J	3000/Tape&Reel
LDTC143EET1G	8J (Pb-Free)	3000/Tape&Reel

LDTC143EET1

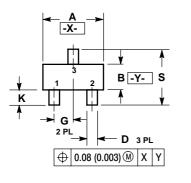
Characteristic	Symbol	Min	Тур	Max	Unit
OFF CHARACTERISTICS					
Collector-Base Cutoff Current ($V_{CB} = 50 \text{ V}, I_E = 0$)	I _{CBO}	-	_	100	nAdc
Collector-Emitter Cutoff Current ($V_{CE} = 50 \text{ V}, I_B = 0$)	I _{CEO}	-	-	500	nAdc
Emitter-Base Cutoff Current (V _{BE} = 6.0 V)	I _{EBO}	_	-	1.5	mAdc
Collector-Base Breakdown Voltage ($I_C = 10 \ \mu A$, $I_E = 0$)	V _{(BR)CBO}	50	-	-	Vdc
Collector-Emitter Breakdown Voltage (Note 3) $(I_C = 2.0 \text{ mA}, I_B = 0)$	V _{(BR)CEO}	50	-	-	Vdc
ON CHARACTERISTICS (Note 3)					
DC Current Gain (V_{CE} = 10 V, I _C = 5.0 mA)	h _{FE}	15	30	_	
Collector-Emitter Saturation Voltage ($I_C = 10 \text{ mA}, I_B = 1 \text{ mA}$)	V _{CE(sat)}	-	-	0.25	Vdc
Output Voltage (on) ($V_{CC} = 5.0 \text{ V}, V_B = 2.5 \text{ V}, R_L = 1.0 \text{ k}\Omega$)	V _{OL}	-	_	0.2	Vdc
Output Voltage (off) (V _{CC} = 5.0 V, V _B = 0.25 V, R _L = 1.0 k Ω)	V _{OH}	4.9		-	Vdc
Input Resistor	R ₁	3.3	4.7	6.1	kΩ

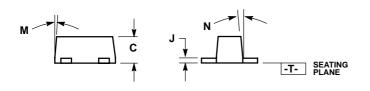
 R_1/R_2

0.8

1.0

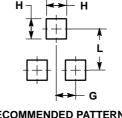
1.2


ELECTRICAL CHARACTERISTICS ($T_A = 25^{\circ}C$ unless otherwise noted) (Continued)


3. Pulse Test: Pulse Width < 300 $\mu s,$ Duty Cycle < 2.0%

Resistor Ratio

LDTC143EET1



SC-89

NOTES: 1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982. 2. CONTROLLING DIMENSION: MILLIMETERS 3. MAXIMUM LEAD THICKNESS INCLUDES LEAD FINISH THICKNESS. MINIMUM LEAD THICKNESS IS THE MINIMUM THICKNESS OF BASE MATERIAL

MATERIAL. 4. 463C-01 OBSOLETE, NEW STANDARD 463C-02.

	MILLIMETERS			INCHES			
DIM	MIN	NOM	MAX	MIN	NOM	MAX	
Α	1.50	1.60	1.70	0.059	0.063	0.067	
В	0.75	0.85	0.95	0.030	0.034	0.040	
C	0.60	0.70	0.80	0.024	0.028	0.031	
D	0.23	0.28	0.33	0.009	0.011	0.013	
G	0.50 BSC			0.020 BSC			
Н	0.53 REF			0.021 REF			
J	0.10	0.15	0.20	0.004	0.006	0.008	
K	0.30	0.40	0.50	0.012	0.016	0.020	
L	1.10 REF			0.043 REF			
М			10 °			10 °	
N			10 °			10 °	
S	1.50	1.60	1.70	0.059	0.063	0.067	

RECOMMENDED PATTERN OF SOLDER PADS