

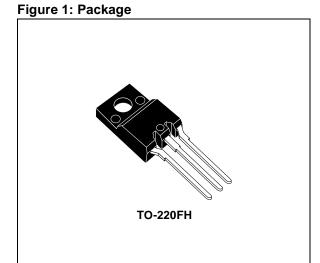
STFV4N150N-CHANNEL 1500V - 5Ω - 4A TO-220FHVery High Voltage PowerMESH™ MOSFET

Table 1: General Features

TYPE	V _{DSS}	R _{DS(on)}	ID	Pw
STFV4N150	1500 V	<7Ω	4 A	40 W

- TYPICAL $R_{DS}(on) = 5 \Omega$
- AVALANCHE RUGGEDNESS
- GATE CHARGE MINIMIZED
- VERY LOW INTRINSIC CAPACITANCES
- HIGH SPEED SWITCHING
- FULLY PLASTIC TO-220 PACKAGE
- CREEPAGE DISTANCE PATH IS > 4mm

DESCRIPTION


Using the well consolidated high voltage MESH OVERLAY[™] process, STMicroelectronics has designed an advanced family of Power MOSFETs with outstanding performances. The strengthened layout coupled with the Company's proprietary edge termination structure, gives the lowest RDS(on) per area, unrivalled gate charge and switching characteristics. The creepage path is what makes this package unique from TO-220FP. The creepage distance path between each lead and between the leads and the heatsink has been increased to >4.0mm, making this package met all stringent safety norms in high voltage applications.

APPLICATIONS

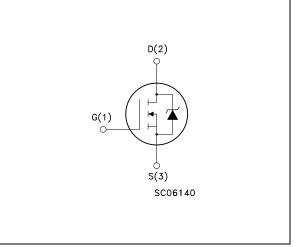

SWITCH MODE POWER SUPPLIES

Table 2: Order Codes

SALES TYPE	MARKING	PACKAGE	PACKAGING
STFV4N150	STFV4N150 FV4N150		TUBE

Figure 2: Internal Schematic Diagram

Table 3: Absolute Maximum ratings

Symbol	Parameter	Value	Unit
V _{DS}	Drain-source Voltage (V _{GS} = 0)	1500	V
V _{DGR}	Drain-gate Voltage (R_{GS} = 20 k Ω)	1500	V
V _{GS}	Gate- source Voltage	± 30	V
I _D	Drain Current (continuous) at $T_C = 25^{\circ}C$	4	А
ID	Drain Current (continuous) at T _C = 100°C	2.5	A
I _{DM} (•)	Drain Current (pulsed)	12	А
P _{TOT}	Total Dissipation at $T_C = 25^{\circ}C$	40	W
	Derating Factor	0.32	W/°C
T _j T _{stg}	Operating Junction Temperature Storage Temperature	-55 to 150	°C

(•) Pulse width limited by safe operating area (*) Limited only by maximum temperature allowed

Table 4: Thermal Data

Rthj-case	Thermal Resistance Junction-case Max	3.12	°C/W
Rthj-amb	Thermal Resistance Junction-ambient Max	62.5	°C/W

Table 5: Avalanche Characteristics

Symbol	Parameter	Max Value	Unit
I _{AR}	Avalanche Current, Repetitive or Not-Repetitive (pulse width limited by T _j max)	4	A
E _{AS}	Single Pulse Avalanche Energy (starting T _j = 25 °C, I _D = I _{AR} , V _{DD} = 50 V)	350	mJ

ELECTRICAL CHARACTERISTICS (T_{CASE} =25°C UNLESS OTHERWISE SPECIFIED)

Table 6: On /Off

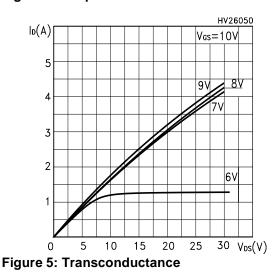
Symbol	Parameter	Test Conditions	Min.	Тур.	Max.	Unit
V _{(BR)DSS}	Drain-source Breakdown Voltage	$I_{D} = 1 \text{ mA}, V_{GS} = 0$	1500			V
I _{DSS}	Zero Gate Voltage Drain Current (V _{GS} = 0)	V_{DS} = Max Rating V_{DS} = Max Rating, T_{C} = 125°C			10 500	μΑ μΑ
I _{GSS}	Gate-body Leakage Current (V _{DS} = 0)	$V_{GS} = \pm 30 V$			± 100	nA
V _{GS(th)}	Gate Threshold Voltage	$V_{DS} = V_{GS}, I_D = 250 \ \mu A$	3	4	5	V
R _{DS(on)}	Static Drain-source On Resistance	V _{GS} = 10 V, I _D = 2 A		5	7	Ω

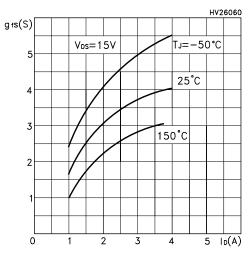
ELECTRICAL CHARACTERISTICS (CONTINUED)

Table 7: Dynamic

Symbol	Parameter	Test Conditions	Min.	Тур.	Max.	Unit
g _{fs} (1)	Forward Transconductance	$V_{DS} = 30 \text{ V}$, $I_D = 2 \text{ A}$		3.5		S
C _{iss} C _{oss} C _{rss}	Input Capacitance Output Capacitance Reverse Transfer Capacitance	$V_{DS} = 25 V$, f = 1 MHz, $V_{GS} = 0$		1300 120 12		pF pF pF
t _{d(on)} t _r t _{d(off)} t _f	Turn-on Delay Time Rise Time Turn-off-Delay Time Fall Time	$V_{DD} = 750 \text{ V}, \text{ I}_D = 2 \text{ A}, R_G = 4.7 \Omega, V_{GS} = 10 \text{ V}$ (see Figure 17)		35 30 45 45		ns ns ns ns
Q _g Q _{gs} Q _{gd}	Total Gate Charge Gate-Source Charge Gate-Drain Charge	$V_{DD} = 600 \text{ V}, I_D = 4 \text{ A}, V_{GS} = 10 \text{ V}$ (see Figure 20)		30 10 9	50	nC nC nC

Table 8: Source Drain Diode


Symbol	Parameter	Test Conditions	Min.	Тур.	Max.	Unit
I _{SD} I _{SDM} (2)	Source-drain Current Source-drain Current (pulsed)				4 12	A A
V _{SD} (1)	Forward On Voltage	$I_{SD} = 4 \text{ A}, V_{GS} = 0$			2	V
t _{rr} Q _{rr} I _{RRM}	Reverse Recovery Time Reverse Recovery Charge Reverse Recovery Current	$I_{SD} = 4 \text{ A}, \text{ di/dt} = 100 \text{ A/}\mu\text{s}$ $V_{DD} = 45 \text{V}$ (see Figure 18)		510 3 12		ns µC A
t _{rr} Q _{rr} I _{RRM}	Reverse Recovery Time Reverse Recovery Charge Reverse Recovery Current	$\begin{split} I_{SD} &= 4 \text{ A, } \text{di/dt} = 100 \text{ A/}\mu\text{s} \\ V_{DD} &= 45\text{V, } \text{T}_{\text{j}} = 150^{\circ}\text{C} \\ (\text{see Figure 18}) \end{split}$		650 4 12.6		ns µC A


(1) Pulsed: Pulse duration = 300 µs, duty cycle 1.5 %.
(2) Pulse width limited by safe operating area.

HV26250 $|_{D}(A)|$ Tj=150°C Tc=25°C Single pulse 10¹ 10µs 100µs 10⁰ 1ms 10^{-1} 10^{-2} 10¹ 10[°] 4 68 10² V_{DS} (V) 10⁻¹

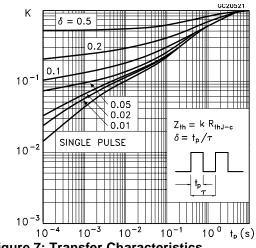

Figure 4: Output Characteristics

Figure 3: Safe Operating Area

Figure 6: Thermal Impedance

Figure 7: Transfer Characteristics

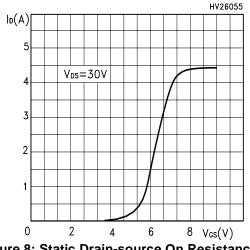
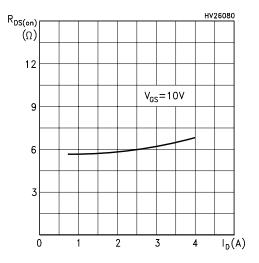



Figure 8: Static Drain-source On Resistance

لرک

Figure 9: Gate Charge vs Gate-source Voltage

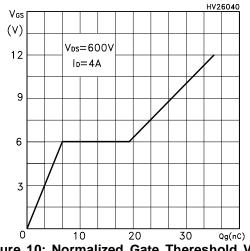


Figure 10: Normalized Gate Thereshold Voltage vs Temperature HV26110

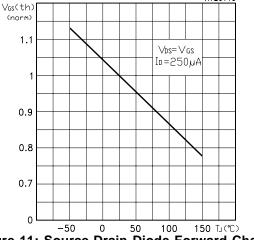
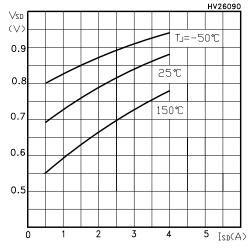



Figure 11: Source-Drain Diode Forward Characteristics

<u>____</u>

Figure 12: Capacitance Variations

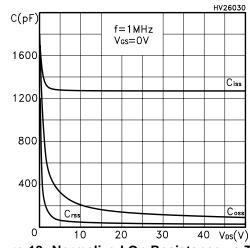


Figure 13: Normalized On Resistance vs Temperature

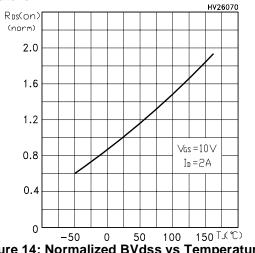
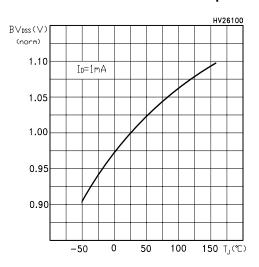
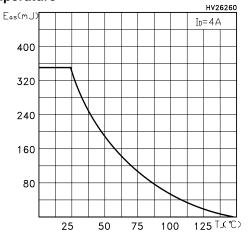




Figure 14: Normalized BVdss vs Temperature

Figure 15: Maximum Avalanche Energy vs Temperature

Figure 16: Unclamped Inductive Load Test Circuit

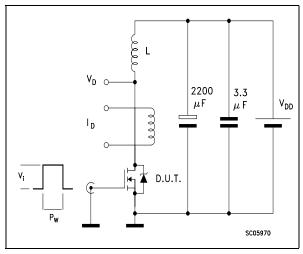


Figure 17: Switching Times Test Circuit For Resistive Load

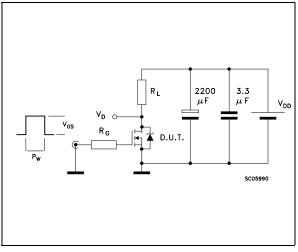
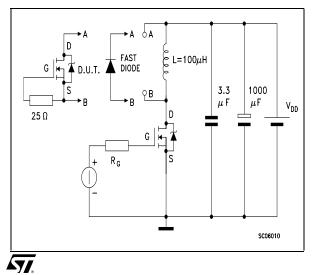



Figure 18: Test Circuit For Inductive Load Switching and Diode Recovery Times

Figure 19: Unclamped Inductive Waveform

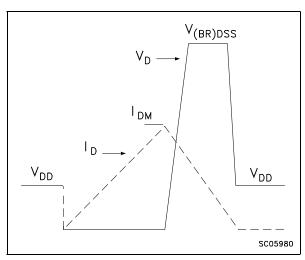
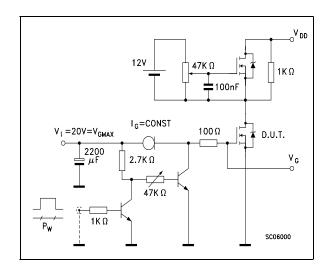
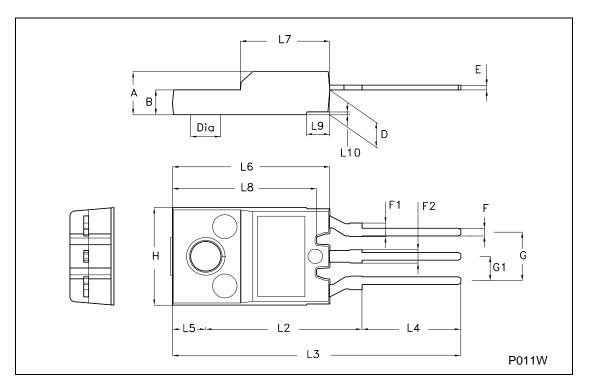




Figure 20: Gate Charge Test Circuit

TO-220FH (Fully plastic High voltage) MECHANICAL DATA

DIM.		mm			inch	
DIM.	MIN.	TYP.	MAX.	MIN.	TYP.	MAX.
А	4.4		4.6	0.173		0.181
В	2.5		2.7	0.098		0.106
D	2.5		2.75	0.098		0.108
E	0.45		0.7	0.017		0.027
F	0.75		1	0.030		0.039
F1	1.3		1.8	0.051		0.070
F2	1.3		1.8	0.051		0.070
G	4.95		5.2	0.195		0.204
G1	2.4		2.7	0.094		0.106
Н	10		10.4	0.393		0.409
L2		16			0.630	
L3	28.6		30.6	1.126		1.204
L4	9.8		10.6	0.385		0.417
L5		3.4			0.134	
L6	15.9		16.4	0.626		0.645
L7	9		9.3	0.354		0.366
L8	14.5		15	0.570		0.590
L9		2.4			0.094	

Table 9: Revision History

Date	Revision	Description of Changes
07-Jul-2005	1	First release.

Information furnished is believed to be accurate and reliable. However, STMicroelectronics assumes no responsibility for the consequences of use of such information nor for any infringement of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of STMicroelectronics. Specifications mentioned in this publication are subject to change without notice. This publication supersedes and replaces all information previously supplied. STMicroelectronics products are not authorized for use as critical components in life support devices or systems without express written approval of STMicroelectronics.

The ST logo is a registered trademark of STMicroelectronics

All other names are the property of their respective owners

© 2005 STMicroelectronics - All Rights Reserved

STMicroelectronics group of companies

Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan -Malaysia - Malta - Morocco - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America

ĹΥ/