SINGLE-PHASE GLASS PASSIVATED SILICON
 SURFACE MOUNT BRIDGE RECTIFIER

Reverse Voltage - 50 to 1000 V
Forward Current - 1 A

Features

- High surge overload rating of 50 A peak
- Ideal for printed circuit board
- Low forward voltage drop
- Glass passivated chip junction

Mechanical Data

- Case: Molded plastic, DB-S
- Epoxy: UL 94V-0 rate flame retardant
- Terminal: Leads solderable per MIL-STD-202, method 208 guaranteed
- Mounting position: Any

DB-S

$\frac{126(3.2)}{102(2.6)}$

Dimensions in inches and (millimeters)

Maximum Ratings and Electrical Characteristics

Ratings at $25^{\circ} \mathrm{C}$ ambient temperature unless otherwise specified. Single phase, half wave, 60 Hz , resistive or inductive load.For capacitive load, derate current by 20\%.

Parameter	Symbols	DB101S	DB102S	DB103S	DB104S	DB105S	DB106S	DB107S	Units
Maximum Recurrent Peak Reverse Voltage	$\mathrm{V}_{\text {RRM }}$	50	100	200	400	600	800	1000	V
Maximum RMS Voltage	$\mathrm{V}_{\text {RMS }}$	35	70	140	280	420	560	700	V
Maximum DC Blocking Voltage	$V_{\text {DC }}$	50	100	200	400	600	800	1000	V
Maximum Average Forward Rectified Current at $\mathrm{T}_{\mathrm{A}}=40^{\circ} \mathrm{C}^{2)}$	$\mathrm{I}_{\text {(AV) }}$	1							A
Peak Forward Surge Current 8.3 ms Single Half-sine -wave Superimposed on Rated Load (JEDEC Method)	$\mathrm{I}_{\text {FSM }}$	50							A
Maximum Forward Voltage at 1 A DC	V_{F}	1.1							V
Maximum Reverse Current $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ at Rated DC Blocking Voltage $\mathrm{T}_{\mathrm{A}}=125^{\circ} \mathrm{C}$	I_{R}	$\begin{gathered} 5 \\ 500 \end{gathered}$							$\mu \mathrm{A}$
Typical Junction Capacitance ${ }^{1)}$	C_{3}	25							pF
Typical Thermal Resistance ${ }^{2)}$	$\mathrm{R}_{\theta \mathrm{JA}}$	40							${ }^{\circ} \mathrm{C} / \mathrm{W}$
Typical Thermal Resistance ${ }^{2)}$	$\mathrm{R}_{\text {өJL }}$	15							${ }^{\circ} \mathrm{C} / \mathrm{W}$
Operating and Storage Temperature Range	$\mathrm{T}_{\mathrm{j}}, \mathrm{T}_{\text {stg }}$	-55 to + 150							${ }^{\circ} \mathrm{C}$

${ }^{1)}$ Measured at 1 MHz and applied reverse voltage of 4 VDC .
${ }^{2)}$ Units mounted P.C.B. with $0.5 \times 0.5^{\prime \prime}(13 \times 13 \mathrm{~mm})$ copper pads.

Fig. 1 - Derating Curve Output Rectified Current

Fig. 3 - Typical Forward Characteristics
Per Leg

Fig. 5 - Typical Junction Capacitance Per Leg

Fig. 2 - Maximum Non-Repetitive Peak Forward Surge Current Per Leg

Fig. 4 - Typical Reverse Leakage Characteristics Per Leg

Fig. 6 - Typical Transient Thermal Impedance

