Specification of Thermoelectric Module

TEHC1-12706

Description

The 127 couples, $40 \text{ mm} \times 40 \text{ mm}$ size single module which is made of our high performance ingot to achieve superior cooling performance and 74 C or larger delta Tmax, is designed for superior cooling and heating applications. Beyond the standard below, we can design and manufacture the custom made module according to your special requirements.

Features

- High effective cooling and efficiency.
- No moving parts, no noise, and solid-state
- Compact structure, small in size, light in weight
- Environmental friendly, RoHS compliant
- Precise temperature control
- Exceptionally reliable in quality, high performance

Application

- Food and beverage service refrigerator
- Portable cooler box for cars
- Temperature stabilizer
- Liquid cooling
- CPU cooler and scientific instrument
- Photonic and medical systems

Performance Specification Sheet

Th(C)	27	50	Hot side temperature at environment: dry air, N ₂	
DT (87)	74	83	Temperature Difference between cold and hot side of the module	
$\mathrm{DT}_{\mathrm{max}}(\mathbb{C})$			when cooling capacity is zero at cold side	
U _{max} (Voltage)	16.8	18.08	Voltage applied to the module at DT _{max}	
I _{max(} amps)	6.3	6.3	DC current through the modules at DT _{max}	
Q _{Cmax} (Watts)	66	73.6	Cooling capacity at cold side of the module under DT=0 °C	
AC resistance(ohms)	2.05	2.25	The module resistance is tested under AC	
Tolerance (%)	±10		For thermal and electricity parameters	

Geometric Characteristics Dimensions in millimeters

Positive lead wire (Red) 20AWG leads, PVC insulated Negative lead wire (Black) 150±3 Cold side:Tc See ordering option See ordering option See ordering option

Manufacturing Options

A. Solder:

- 1. T100: BiSn (Melting Point=138 ℃)
- 2. T200: CuSn (Melting Point=227 °C)

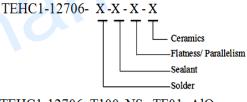
B. Sealant:

- 1. NS: No sealing (Standard)
- 2. SS: Silicone sealant
- 3. EPS: Epoxy sealant
- 4. Customer specify sealing

C. Ceramics:

- 1. AlO :Alumina (Al₂O₃, white 96%)
- 2. AlN: Aluminum Nitride
- 3. AL: Aluminum substrate

D. Ceramics Surface Options:


- 1. Blank ceramics (not metalized)
- 2. Metalized (Copper-Nickel plating)

Ordering Option

Cuffin	Thickness	Flatness/	Lead wire length(mm)
Suffix	(mm)	Parallelism (mm)	Standard/Optional length
TF	0:3.8±0.1	0:0.05/0.05	150±3/Specify
TF	1:3.8±0.05	1:0.025/0.025	150±3/Specify
TF	2:3.8±0.025	2:0.015/0.015	150±3/Specify

Eg. TF01: Thickness 3.8 ±0.1(mm) and Flatness 0.025/0.025 (mm)

Naming for the Module

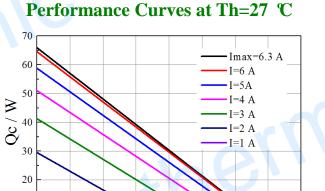
TEHC1-12706-T100-NS-TF01-AlO

T100: BiSn(Tmelt=138°C)

NS: No sealing AlO: Alumina white 96% TF01: Thickness \pm 0.15 (mm) and Flatness/Parallelism 0.08/0.13(mm)

10

0

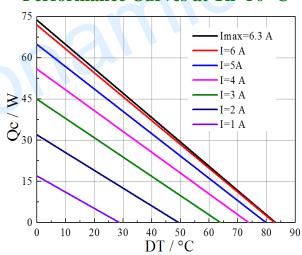

0

10

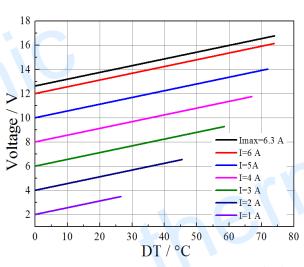
20

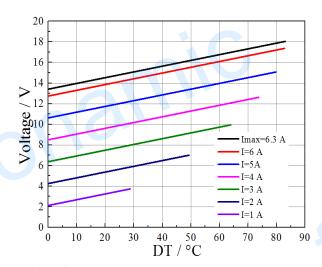
Specification of Thermoelectric Module

TEHC1-12706

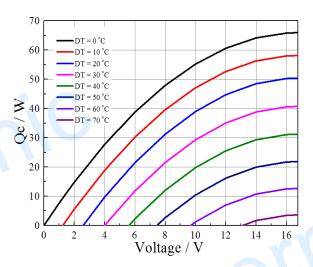

DT / °C

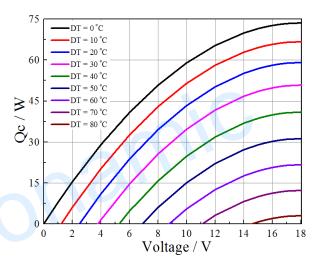
60


70

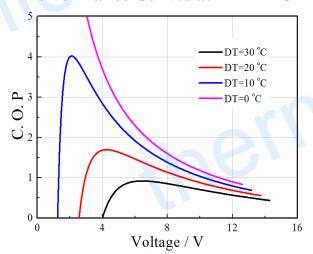

80

Performance Curves at Th=50 °C

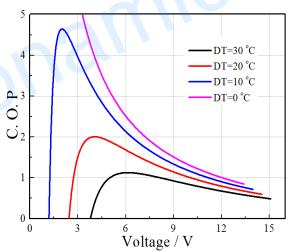



Standard Performance Graph Qc = f(DT)

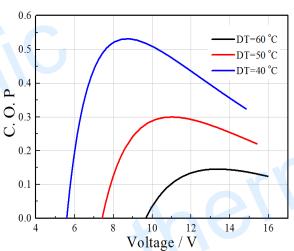
Standard Performance Graph V = f(DT)

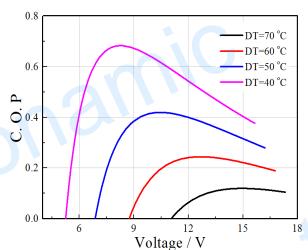


Standard Performance Graph Qc = f(V)


Specification of Thermoelectric Module

TEHC1-12706





Performance Curves at Th=50 ℃

Standard Performance Graph COP = f(V) of ΔT ranged from 0 to 30 °C

Standard Performance Graph COP = f(V) of ΔT ranged from 40 to 60/70 °C

Remark: The coefficient of performance (COP) is the cooling power Qc/Input power (V \times I).

Operation Cautions

- Attach the cold side of module to the object to be cooled
- Attach the hot side of module to a heat radiator for heat dissipating
- Operation or storage module below 100 °C
- Operation below I_{max} or V_{max}
- Work under DC

Note: All specifications subject to change without notice.