TYPE TIS128 P-N-P SILICON TRANSISTOR

BULLETIN NO. DL-S 7312005, MARCH 1973

SILECT[†] VHF/UHF TRANSISTOR[‡] WITH FORWARD-AGC CHARACTERISTICS DESIGNED FOR COMMON-BASE AMPLIFIER APPLICATIONS

- Low Cop . . . 0.3 pF Max
- Low Noise at 850 MHz . . . 6.5 dB Max
- High Power Gain at 850 MHz . . . 10 dB Min

mechanical data

This transistor is encapsulated in a plastic compound specifically designed for this purpose, using a highly mechanized process developed by Texas Instruments. The case will withstand soldering temperatures without deformation. This device exhibits stable characteristics under high-humidity conditions and is capable of meeting MIL-STD-202C, Method 106B. The transistor is insensitive to light.

absolute maximum ratings at 25°C free-air temperature (unless otherwise noted)

Collector-Base Voltage														~60 V
Collector-Emitter Voltage (See Note	: (1:													~45 V
Emitter-Base Voltage														4 V
Continuous Collector Current														-30 mA
Continuous Device Dissipation at (o	r below) 25°	C Free	Air	Temp	eratur	e (See	Note	2)					250 mW
Storage Temperature Range												-65	°C	to 150°C
Lead Temperature 1/16 Inch from 0														

electrical characteristics at 25°C free-air temperature

PARAMETER		TEST CONDITIONS	MIN	MAX	UNIT
V(BR)CBO	Collector-Base Breakdown Voltage	IC = -100 μA, IE = 0	-60		V
V(BR)CEO	Collector-Emitter Breakdown Voltage	I _C = −1 mA, I _B = 0, See Note 3	-45		٧
CBO	Collector Cutoff Current	V _{CB} = -25 V, I _E = 0		-100	nΑ
IEBO	Emitter Cutoff Current	VEB = -4 V, IC = 0		-100	μA
hFE	Static Forward Current Transfer Ratio	V _{CE} = -10 V, I _C ≈ -2 mA	30		
h _{fe}	Small-Signal Common-Emitter Forward Current Transfer Ratio	V _{CE} = -10 V, I _C = -2 mA, f = 100 MHz	6.5		
C _{ce}	Collector-Emitter Capacitance	$V_{CE} = -10 \text{ V}, \text{ I}_{B} \approx 0, \text{ f = 1 MHz},$ See Note 4		0.3	рF

- NOTES: 1. This value applies when the base-emitter diode is open-circuited.
 - 2. Derate linearly to 150°C free-air temperature at the rate of 2 mW/°C.
 - 3. This parameter must be measured using pulse techniques. $t_W = 300 \,\mu s$, duty cycle $\leq 2\%$.
 - C_{ce} measurement employs a three-terminal capacitance bridge incorporating a guard circuit. The base is connected to the guard terminal of the bridge.
- [†]Trademark of Texas Instruments
- ‡U.S. Patent No. 3,439,238

USES CHIP P25

4-542

TYPE TIS128 P-N-P SILICON TRANSISTOR

operating characteristics at 25°C free-air temperature

	PARAMETER	TEST CONDITIONS	MIN	MAX	UNIT
F	Spot Noise Figure	$V_{CC} = -10 \text{ V}, I_{C} = -2 \text{ mA}, R_{G} = 50 \Omega,$ f = 850 MHz, See Figure 1		6.5	dB
Gpb	Unneutralized Small-Signal Common-Base Insertion Power Gain	V _{CC} = -10 V, I _C = -2 mA, f = 850 MHz,	10		dB
В	Bandwidth	See Figure 1	15		MHz
¹c	Collector Current for 30-dB Gain Reduction	V_{CC} = -10 V, f = 850 MHz, ΔG_{pb} = -30 dB [†] See Figure 1	-4.5	-7	mA

 $^{^{\}dagger}\Delta G_{nh}$ is defined as the change in G_{nh} from the value at $I_{C} = -2$ mA.

PARAMETER MEASUREMENT INFORMATION

L1: Silver-plated brass 1/32" thick, 1/2" wide, 1" long C1: 0.8-10 pF, Johansen #4642, or equivalent

FIGURE 1-850-MHz POWER GAIN, NOISE FIGURE, AND GAIN-CONTROL TEST CIRCUIT

TYPICAL CHARACTERISTICS

If cannot assume any responsibility for any circuits shown or represent that they are free from patent infringement. 373