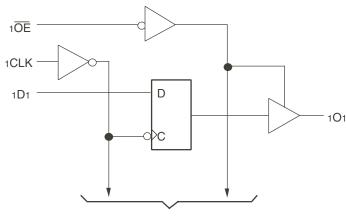


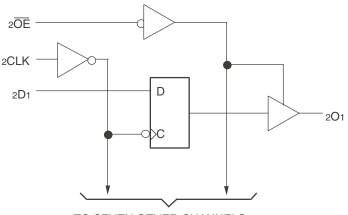
FAST CMOS 16-BIT REGISTER (3-STATE)

IDT74FCT162374AT/CT/ET

FEATURES:


- 0.5 MICRON CMOS Technology
- · High-speed, low-power CMOS replacement for ABT functions
- Typical tsk(o) (Output Skew) < 250ps
- Low input and output leakage ≤1µA (max.)
- Vcc = 5V ±10%
- Balanced Output Drivers: ±24mA
- · Reduced system switching noise
- Typical VOLP (Output Ground Bounce) < 0.6V at Vcc = 5V, TA = 25°C
- · Available in SSOP and TSSOP packages

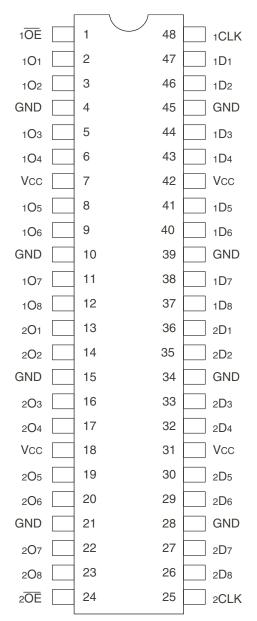
DESCRIPTION:


The FCT162374T 16-bit edge-triggered D-type registers are built using advanced dual metal CMOS technology. These high-speed, low-power registers are ideal for use as buffer registers for data synchronization and storage. The Output Enable ($x\overline{OE}$) and clock (xCLK) controls are organized to operate each device as two 8-bit registers or one 16-bit register with common clock. Flow-through organization of signal pins simplifies layout. All inputs are designed with hysteresis for improved noise margin.

The FCT162374T has balanced output drive with current limiting resistors. This offers low ground bounce, minimal undershoot, and controlled output fall times–reducing the need for external series terminating resistors. The FCT162374T are plug-in replacements for the FCT16374T and ABT16374 for on-board bus interface applications.

FUNCTIONAL BLOCK DIAGRAM

TO SEVEN OTHER CHANNELS


TO SEVEN OTHER CHANNELS

The IDT logo is a registered trademark of Integrated Device Technology, Inc.

INDUSTRIAL TEMPERATURE RANGE

SEPTEMBER 2009

PIN CONFIGURATION

SSOP/ TSSOP TOP VIEW

INDUSTRIAL TEMPERATURE RANGE

ABSOLUTE MAXIMUM RATINGS⁽¹⁾

Symbol	Description	Max	Unit	
VTERM ⁽²⁾	Terminal Voltage with Respect to GND	–0.5 to 7	V	
VTERM ⁽³⁾	⁽³⁾ Terminal Voltage with Respect to GND –0.5 to Vcc+0.5			
Tstg	Storage Temperature	-65 to +150	°C	
Ιουτ	DC Output Current	-60 to 120	mA	

NOTES:

 Stresses greater than those listed under ABSOLUTE MAXIMUM RATINGS may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect reliability.

2. All device terminals except FCT162XXX Output and I/O terminals.

3. Output and I/O terminals terminals for FCT162XXX.

CAPACITANCE (TA = +25°C, F = 1.0MHz)

Symbo	Parameter ⁽¹⁾	Conditions	Тур.	Max.	Unit
CIN	Input Capacitance	VIN = 0V	3.5	6	pF
Соит	Output Capacitance	Vout = 0V	3.5	8	pF

NOTE:

1. This parameter is measured at characterization but not tested.

PIN DESCRIPTION

Pin Names	Description			
xDx	Data Inputs			
xCLK	Clock Inputs			
хОх	3-State Outputs			
xŌĒ	3-State Outputs Enable Input (Active LOW)			

FUNCTION TABLE(1)

		Outputs		
Function	хDх	xCLK	xOE	хОх
Hi-Z	Х	L	Н	Z
	Х	Н	Н	Z
Load	L	\uparrow	L	L
Register	Н	\uparrow	L	Н
	L	\uparrow	Н	Z
	Н	\uparrow	Н	Z

NOTE:

1. H = HIGH Voltage Level

L = LOW Voltage Level

X = Don't Care

Z = High-Impedance

 \uparrow = LOW-to-HIGH transition

DC ELECTRICAL CHARACTERISTICS OVER OPERATING RANGE

Following Conditions Apply Unless Otherwise Specified: Industrial: TA = -40° C to $+85^{\circ}$ C, Vcc = $5.0V \pm 10\%$

Symbol	Parameter	Test Condit	ions ⁽¹⁾	Min.	Тур. ⁽²⁾	Max.	Unit
Vih	Input HIGH Level	Guaranteed Logic HIGH Level		2	_	_	V
VIL	Input LOW Level	Guaranteed Logic LOW Level		_	_	0.8	V
Ін	Input HIGH Current (Input pins) ⁽⁵⁾	Vcc = Max.	VI = VCC	_	_	±1	μA
	Input HIGH Current (I/O pins) ⁽⁵⁾			_	—	±1	
lil	Input LOW Current (Input pins) ⁽⁵⁾		VI = GND	_	_	±1	
	Input LOW Current (I/O pins) ⁽⁵⁾			_	_	±1	
Іоzн	High Impedance Output Current	Vcc = Max.	Vo = 2.7V	_	_	±1	μA
Iozl	(3-State Output pins) ⁽⁵⁾		Vo = 0.5V	_	_	±1	
Vik	Clamp Diode Voltage	Vcc = Min., IIN = -18mA		_	-0.7	-1.2	V
los	Short Circuit Current	Vcc = Max., Vo = GND ⁽³⁾		-80	-140	-250	mA
Vн	Input Hysteresis	_		_	100	_	mV
ІССL ІССН ІССZ	Quiescent Power Supply Current	Vcc = Max. VIN = GND or Vcc		—	5	500	μA

OUTPUT DRIVE CHARACTERISTICS

Symbol	Parameter	Test Conditions ⁽¹⁾		Min	Тур. ⁽²⁾	Max.	Unit
IODL	Output LOW Current	VCC = 5V, VIN = VIH or VIL, VO = $1.5V^{(3)}$		60	115	200	mA
Іодн	Output HIGH Current	VCC = 5V, VIN = VIH or VIL, VO = $1.5V^{(3)}$		-60	-115	-200	mA
Vон	Output HIGH Voltage	Vcc = Min	Iон = –24mA	2.4	3.3	_	V
		VIN = VIH or VIL					
Vol	OutputLOWVoltage	Vcc = Min	Iol = 24mA	_	0.3	0.55	V
		VIN = VIH or VIL					

NOTES:

1. For conditions shown as Min. or Max., use appropriate value specified under Electrical Characteristics for the applicable device type.

2. Typical values are at Vcc = 5.0V, +25°C ambient.

3. Not more than one output should be tested at one time. Duration of the test should not exceed one second.

4. Duration of the condition can not exceed one second.

5. The test limit for this parameter is $\pm 5\mu A$ at TA = $-55^{\circ}C$.

POWER SUPPLY CHARACTERISTICS

Symbol	Parameter	Test Conditions ⁽¹⁾			Тур. ⁽²⁾	Max.	Unit
Δlcc	Quiescent Power Supply Current TTL Inputs HIGH	Vcc = Max. $VIN = 3.4V^{(3)}$		-	0.5	1.5	mA
ICCD	Dynamic Power Supply Current ⁽⁴⁾	Vcc = Max. Outputs Open xOE = GND One Input Togging 50% Duty Cycle	VIN = VCC VIN = GND	_	60	100	μΑ/ MHz
IC	Total Power Supply Current ⁽⁶⁾	Vcc = Max. Outputs Open fcP = 10MHz	Vin = Vcc Vin = GND	—	0.6	1.5	mA
		50% Duty Cycle xOE = GND fi = 5MHz 50% Duty Cycle One Bit Toggling	VIN = 3.4V VIN = GND	_	1.1	3	
		Vcc = Max. Outputs Open fcP = 10MHz 50% Duty Cycle	Vin = Vcc Vin = GND	_	3	5.5 ⁽⁵⁾	
		xOE = GND Sixteen BitsTogging fi = 2.5MHz 50% Duty Cycle	VIN = 3.4V VIN = GND	_	7.5	19 ⁽⁵⁾	

NOTES:

1. For conditions shown as Min. or Max., use appropriate value specified under Electrical Characteristics for the applicable device type.

2. Typical values are at Vcc = 5.0V, +25°C ambient.

3. Per TTL driven input (VIN = 3.4V). All other inputs at Vcc or GND.

4. This parameter is not directly testable, but is derived for use in Total Power Supply Calculations.

5. Values for these conditions are examples of the Icc formula. These limits are guaranteed but not tested.

6. IC = IQUIESCENT + INPUTS + IDYNAMIC

IC = ICC + Δ ICC DHNT + ICCD (fCPNCP/2 + fiNi)

Icc = Quiescent Current (IccL, IccH and Iccz)

 Δ Icc = Power Supply Current for a TTL High Input (VIN = 3.4V)

DH = Duty Cycle for TTL Inputs High

NT = Number of TTL Inputs at DH

ICCD = Dynamic Current caused by an Input Transition Pair (HLH or LHL)

fcp = Clock Frequency for Register Devices (Zero for Non-Register Devices)

NCP = Number of Clock Inputs at fCP

fi = Input Frequency

Ni = Number of Inputs at fi

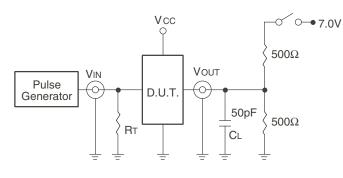
SWITCHING CHARACTERISTICS OVER OPERATING RANGE

			74FCT162374AT		74FCT162374CT 74FCT162374ET		62374ET		
Symbol	Parameter	Condition ⁽¹⁾	Min. ⁽²⁾	Max.	Min. ⁽²⁾	Max.	Min. ⁽²⁾	Max.	Unit
tPLH .	Propagation Delay	CL = 50pF	2	6.5	2	5.2	1.5	3.7	ns
t PHL	xCLK to xOx	$RL = 500\Omega$							
tpzh	Output Enable Time		1.5	6.5	1.5	5.5	1.5	4.4	ns
tPZL									
tphz	Output Disable Time		1.5	5.5	1.5	5	1.5	3.6	ns
tPLZ									
tsu	Set-up Time HIGH or LOW, xDx to xCLK		2	—	2	-	1.5	—	ns
ħ	Hold Time HIGH or LOW, xDx to xCLK		1.5	—	1.5	_	0	—	ns
tw	xCLK Pulse Width HIGH or LOW		5	_	5	_	3(4)	—	ns
tsk(o)	Output Skew ⁽³⁾		_	0.5	_	0.5	_	0.5	ns

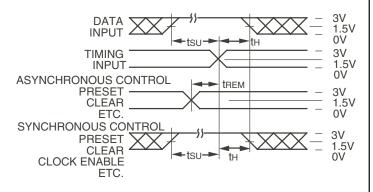
NOTES:

1. See test circuit and waveforms.

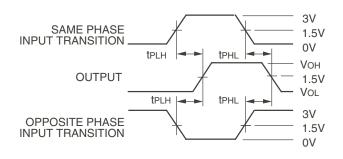
2. Minimum limits are guaranteed but not tested on Propagation Delays.


3. Skew between any two outputs of the same package switching in the same direction. This parameter is guaranteed by design.

4. This limit is guaranteed but not tested.


IDT74FCT162374AT/CT/ET FAST CMOS 16-BIT REGISTER (3-STATE)

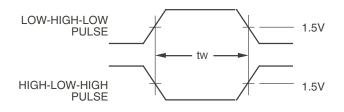
INDUSTRIAL TEMPERATURE RANGE


TEST CIRCUITS AND WAVEFORMS

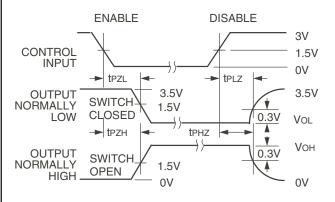
Test Circuit for All Outputs

Set-up, Hold and Release Times

Propagation Delay


SWITCH POSITION

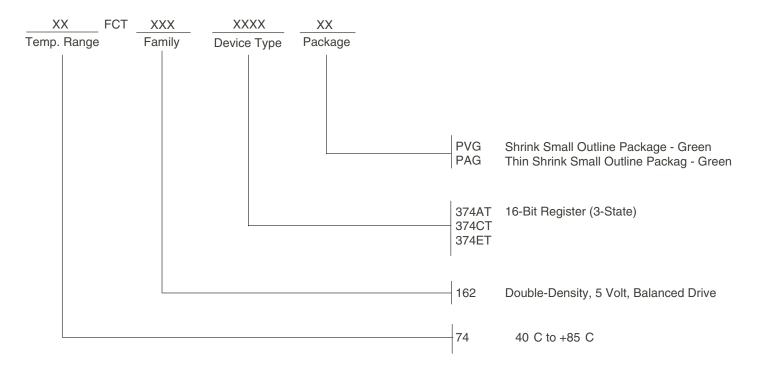
Test	Switch
Open Drain Disable Low Enable Low	Closed
All Other Tests	Open


DEFINITIONS:

CL = Load capacitance: includes jig and probe capacitance.

RT = Termination resistance: should be equal to ZOUT of the Pulse Generator.

Pulse Width


Enable and Disable Times

NOTES:

1. Diagram shown for input Control Enable-LOW and input Control Disable-HIGH.

2. Pulse Generator for All Pulses: Rate \leq 1.0MHz; tF \leq 2.5ns; tR \leq 2.5ns.

ORDERING INFORMATION

Datasheet Document History

09/06/09 Pg.6 Updated the ordering information by removing the "IDT" notation and non RoHS part.

IMPORTANT NOTICE AND DISCLAIMER

RENESAS ELECTRONICS CORPORATION AND ITS SUBSIDIARIES ("RENESAS") PROVIDES TECHNICAL SPECIFICATIONS AND RELIABILITY DATA (INCLUDING DATASHEETS), DESIGN RESOURCES (INCLUDING REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES "AS IS" AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING, WITHOUT LIMITATION, ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, OR NON-INFRINGEMENT OF THIRD PARTY INTELLECTUAL PROPERTY RIGHTS.

These resources are intended for developers skilled in the art designing with Renesas products. You are solely responsible for (1) selecting the appropriate products for your application, (2) designing, validating, and testing your application, and (3) ensuring your application meets applicable standards, and any other safety, security, or other requirements. These resources are subject to change without notice. Renesas grants you permission to use these resources only for development of an application that uses Renesas products. Other reproduction or use of these resources is strictly prohibited. No license is granted to any other Renesas intellectual property or to any third party intellectual property. Renesas disclaims responsibility for, and you will fully indemnify Renesas and its representatives against, any claims, damages, costs, losses, or liabilities arising out of your use of these resources. Renesas' products are provided only subject to Renesas' Terms and Conditions of Sale or other applicable terms agreed to in writing. No use o any Renesas resources expands or otherwise alters any applicable warranties or warranty disclaimers for these products.

(Disclaimer Rev.1.0 Mar 2020)

Corporate Headquarters

TOYOSU FORESIA, 3-2-24 Toyosu, Koto-ku, Tokyo 135-0061, Japan www.renesas.com

Trademarks

Renesas and the Renesas logo are trademarks of Renesas Electronics Corporation. All trademarks and registered trademarks are the property of their respective owners. **Contact Information**

For further information on a product, technology, the most up-to-date version of a document, or your nearest sales office, please visit: <u>www.renesas.com/contact/</u>