

JM38510/10104

IAN SINGLE LOW-INPUT-CURRENT OPERATIONAL AMPLIFIER (EXTERNALLY COMPENSATED)

Precision Monolithics Inc

GENERAL DESCRIPTION

This data sheet covers the electrical requirements for a monolithic, low input-current, externally-compensated operational amplifier as specified in MIL-M-38510/101 for device type 04. Devices supplied to this data sheet are manufactured and tested at PMI's MIL-M-38510 certified facility and are listed in QPL-38510.

Complete device requirements will be found in MIL-M-38510 and MIL-M-38510/101 for Class B processed devices.

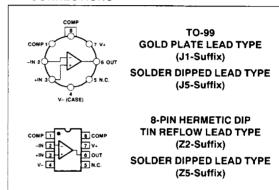
GENERIC CROSS-REFERENCE INFORMATION

This cross-reference information is presented for the convenience of the user. The generic-industry types listed may not have identical operational performance characteristics across the military temperature range or reliability factors equivalent to the MIL-M-38510 device.

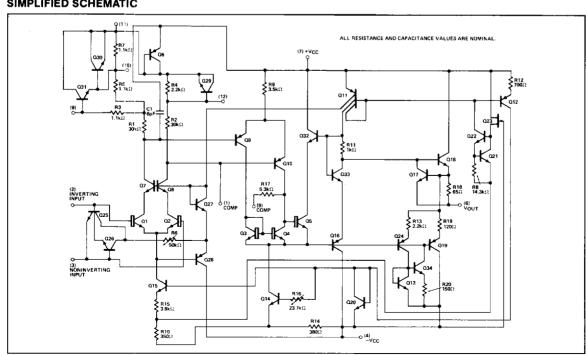
Military	Device	Type
	04	

Generic-Industry Type LM108A

CASE OUTLINE


Per MIL-M-38510, Appendix C, Case Outline A-1 (8 Lead Can), Package Type Designator "G"; and Appendix C. Case Outline D-4 (8 Lead Dual-in-Line), Package Type Designator "P".

ORDERING INFORMATION


JAN SLASH SHEET	PMI DEVICE		
JM38510/10104BGC	PM108AJ1/38510		
JM38510/10104BGA	PM108AJ5/38510		
JM38510/10104SGA*	PM108SAJ5/38510*		
JM38510/10104BPB	PM108AZ2/38510		
JM38510/10104BPA	PM108AZ5/38510		

JM38510/10104SGA, Class S device currently undergoing part I qualification. Consult PMI for availability.

PIN CONNECTIONS

SIMPLIFIED SCHEMATIC

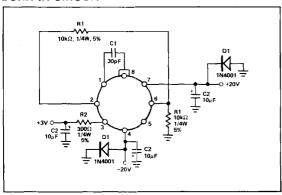
ELECTRICAL CHARACTERISTICS at $5V \le \pm V_{CC} \le 20V$ and $-55^{\circ}C \le T_{A} \le +125^{\circ}C$, unless otherwise noted.

PARAMETER	SYMBOL	CONDITIONS	MIN	MAX	UNITS
Input Offset Voltage	V _{IO}	(Note 2) $T_A = +25^{\circ}C$ $R_S = 50\Omega -55^{\circ}C \le T_A \le +125^{\circ}C$	-0.5 1.0	+0.5 +1.0	mV
Input Offset Voltage Temperature Sensitivity	ΔV _{ΙΟ} /ΔΤ	ΔT _A from -55°C to +25°C ΔT _A from +25°C to +125°C	-5.0 -5.0	+5.0 +5.0	μV/C°
Input Offset Current	1,0	(Note 2) T _A = +25°C -55°C ≤ T _A ≤ +125°C	-0.2 -0.4	+0.2 +0.4	nA
Input Offset Current Temperature Sensitivity	ΔΙ ₁₀ /ΔΤ	ΔT _A from -55°C to +25°C ΔT _A from +25°C to +125°C	-2.5 -2.5	+2.5 +2.5	pA/°C
Input Bias Current	+118,-118	$T_A = +25^{\circ}C$ (Note 2) $T_A = -55^{\circ}C$ $T_A = +125^{\circ}C$	-0.1 -0.1 -1.0	2.0 3.0 2.0	nA
Power Supply Rejection Ratio	+PSRR	$^{+V}_{CC} = ^{10V}_{-V}_{CC} = ^{10V}_{R_S} = ^{50\Omega}_{-55^{\circ}C} = ^{T_A}_{-55^{\circ}C} = ^{125^{\circ}C}_{T_A} = ^{125^{\circ}C}_{T_A}$	-16 -16	+16 +16	μV/V
Power Supply Rejection Ratio	PSRR	+V _{CC} = 20V -V _{CC} = -10V R _S = 50Ω T _A = +25°C -55°C ≤ T _A ≤ +125°C	-16 -16	+16 +16	μV/V
Input Voltage Common-Mode Rejection	CMR	±V _{CC} = 20V V _{IN} = ±15V P _S = 50Ω	96	_	dB
Adjustment For Input Offset Voltage	V _{IO}	±V _{CC} = 20V	No External Adjustment		mV
Adjustment For Input Offset Voltage	V _{IO} ADJ(-)	±V _{CC} = 20V	No External Adjustment		mV
Output Short-Circuit Current (For Positive Output)	I _{OS(+)}	±V _{CC} = 15V, t ≤ 25ms (Note 3)	15	_	mA
Output Short-Circuit Current (For Negative Output)	I _{OS(-)}	±V _{CC} = 15V, t ≤ 25ms (Note 3)		15	mA
Supply Current	Icc	$t_A = -65^{\circ}C$ $t_C = 15V$ $t_A = +25^{\circ}C$ $t_A = +125^{\circ}C$		0.8 0.6 0.6	mA
Output Voltage Swing (Maximum)	V _{OP}	$\pm V_{CC} = 20V$, $R_L = 10k\Omega$ $\pm V_{CC} = 20V$, $R_L = 2k\Omega$	+16		v
Open-Loop Voltage Gain (Single Ended) (Note 1)	A _{VS (±)}	$^{\pm V}_{CC} = 20V$ $T_A = +25^{\circ}C$ $R_L = 10k\Omega$ $-55^{\circ}C \le T_A \le +125^{\circ}C$ $V_{OUT} = \pm 15V$	80 40	=	V/mV
Open-Loop Voltage Gain (Single Ended) (Note 1)	A _{vs}	±V _{CC} = 5V R _L = 10kΩ V _{OUT} = ±2V	80	_	V/mV
Transient Response Rise Time	TR _(tr)	C _F = 10pF	_	1000	ns
Transient Response Overshoot	TR _(OS)	C _F = 10pF	_	50	%
Noise (Referred to Input) Broadband	N _, (BB)	V _{CC} = 20V Bandwidth = 5kHz	_	15	μV rms
Noise (Referred to Input) Popcorn	N, (PC)	$\pm V_{CC} = 20V$ Bandwidth = 5kHz $T_A = +25^{\circ}C$	_	40	μV peak

^{1.} Note that gain is not specified at V_{IO (ADJ)} extremes. Some gain reduction is usually seen at V_{IO (ADJ)} extremes. For closed-loop applications (closed-loop gain less than 1,000), the open-loop tests (A_{VS}) prescribed herein should guarantee a positive, reasonably linear, transfer characteristic. They do not, however, guarantee that the open-loop gain is linear, or even positive, over the operating range. If either of these requirements exist (positive open-loop gain or open-loop gain linearity), they should be specified in the individual procurement document as additional requirements.

^{2.} Tests at common-mode $V_{CM}=0$, $V_{CM}=-15V$, and $V_{CM}=+15V$. 3. Continuous short-circuit limits will be considerably less than the indicated test limits. Continuous I $_{\mbox{OS}}$ at T $_{\mbox{A}}$ ~75°C will cause T $_{\mbox{\scriptsize j}}$ to exceed the maximum of

ELECTRICAL CHARACTERISTICS at $5V \le \pm V_{CC} \le 20V$ and $-55^{\circ}C \le T_{A} \le +125^{\circ}C$, unless otherwise noted. (Continued)


PARAMETER	SYMBOL	CONDITIONS	MIN	MAX	UNITS
Slew Rate	PD / 1)	A _V = 1 -55°C ≤ T _A ≤ 25°C	0.05	_	
	SR (+)	V _{IN} = +5V T _A = 125°C	0.05	_	V/μsec
Slew Rate	SR (-)	A _V = 1 -55°C ≤ T _A ≤ 25°C	0.05	_	V/µsec
	5h (-)	$A_V = 1$ -55°C $\le T_A \le 25$ °C $V_{IN} = \pm 5V$ $T_A = 125$ °C	0.05		

NOTES:

- 1. Note that gain is not specified at V_{IO (ADJ)} extremes. Some gain reduction is usually seen at V_{IO (ADJ)} extremes. For closed-loop applications closed-loop gain less than 1,000, the open-loop tests (A_{VS}) prescribed herein should guarantee a positive, reasonably linear, transfer characteristic. They do not, however, guarantee that the open-loop gain is linear, or even positive, over the operating range. If either of these requirements exist positive open-loop gain or open-loop gain linearity, they should be
- specified in the individual procurement document as additional requirements.
- 2. Tests at common-mode $V_{CM} = 0$, $V_{CM} = -15V$, and $V_{CM} = +15V$.
- Continuous short-circuit limits will be considerably less than the indicated test limits. Continuous I_{OS} at T_A ≤ 75° C will cause T_j to exceed the maximum of 175° C.

For Other Test Circuit Diagrams, See MIL-M-38510/101

BURN-IN CIRCUIT

POWER AND THERMAL CHARACTERISTICS

Package	Case outline	Maximum allowable power dissipation	Maximum θJ—C	Maximum θJ—A
8 Lead Can ;TO-99:	G	330mW at T _A = 125°C	40° C/W	150° C/W
8 Lead Hermetic (Dual-in-Line)	Р	417mW at T _A = 125°C	50°C/W	120°C/W