

## Solid State Devices, Inc.

14701 Firestone Blvd \* La Mirada, Ca 90638 Phone: (562) 404-4474 \* Fax: (562) 404-1773 ssdi@ssdi-power.com \* www.ssdi-power.com

## **Designer's Data Sheet**

## Part Number/Ordering Information 1/

SPD

L Screening 2/ = Not Screened TX = TX Level TXV = TXV S = S Level

#### L Package Type

\_\_ = Axial Leaded SMS = Surface Mount Square Tab SM = Surface Mount Round Tab

#### **Family**

6620 = 200V, 2A 6623 = 800V, 1.5A 6621 = 400V, 2A 6624 = 900V, 1.5A 622 = 600V, 2A 6625 = 1000V, 1.5A

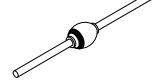
# SPD6620 thru SPD6625 Series

1.5 - 2 AMP
ULTRA FAST RECOVERY RECTIFIER
200 — 1000 VOLTS
30 — 60 nsec

#### **FEATURES:**

- Ultra Fast Reverse Recovery Time 30-60 ns Max 4/
- PIV to 1000 Volts (1200V Version Available)
- Hermetically Sealed
- Low Reverse Leakage Current
- Rugged Single Chip Construction
- For High Efficiency Applications
- Available in Axial, Round Tab & Square Tab Versions
- Metallurgically Bonded
- TX, TXV, and S-Level Screening Available<sup>2/</sup>
- Ruggedized Replacement for 1N6620 thru 1N6625, US

| MAXIMUM RATINGS 3/                                                                                                                  |                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                         |       |
|-------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------|-------|
| RATING                                                                                                                              |                                                                | SYMBOL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | VALUE                                   | UNIT  |
| Peak Repetitive Reverse Voltage<br>And<br>DC Blocking Voltage                                                                       | SPD6620<br>SPD6621<br>SPD6622<br>SPD6623<br>SPD6624<br>SPD6625 | V <sub>RRM</sub><br>V <sub>RWM</sub><br>V <sub>R</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 200<br>400<br>600<br>800<br>900<br>1000 | Volts |
| Average Rectified Forward Current (Resistive Load, 60 Hz, Sine Wave, T <sub>L</sub> = 25°C)                                         | SPD6620 thru SPD6622<br>SPD6623 thru SPD6625                   | I <sub>o</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 2<br>1.5                                | Amps  |
| Peak Surge Current <sup>5/</sup> (8.3 msec Pulse, Half Sine Wave Superimpos reach equilibrium between pulses, T <sub>C</sub> = 25°C | I <sub>FSM</sub>                                               | 20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Amps                                    |       |
| Operating & Storage Temperature                                                                                                     |                                                                | $T_{\text{OP}}$ and $T_{\text{STG}}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | -65 to +175                             | °C    |
| Thermal Resistance,                                                                                                                 | unction to Lead for Axial, L =.375"<br>Junction to End Tab     | $R_{	extstyle 	extst$ | 38<br>20                                | °C/W  |


#### **NOTES:**

- 1/ For Ordering Information, Price, and Availability- Contact Factory.
- 2/ Screening Based on MIL-PRF-19500. Screening Flows Available on Request.
- 3/ Unless Otherwise Specified, All Electrical Characteristics @25°C.
- $\underline{4}$ / Recovery Conditions:  $I_F = 0.5$  Amp,  $I_R = 1.0$  Amp rec. to .25 Amp.
- **5**/ SPD6625- I<sub>FSM</sub> = 15A.
- 6/ SM Device Type SPD6623 & SPD6624 utilize VF & trr limits of SPD6625.

Axial Leaded

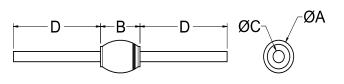
SMS

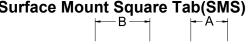
SM

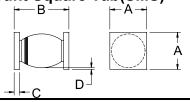




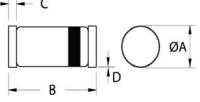






**SPD6620 thru SPD6625 Series** 


14701 Firestone Blvd \* La Mirada, Ca 90638 Phone: (562) 404-4474 \* Fax: (562) 404-1773 ssdi@ssdi-power.com \* www.ssdi-power.com

| ELECTRICAL CHARACTERISTICS 3/                                                             |                                                                             |                                   |                      |      |  |
|-------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------|-----------------------------------|----------------------|------|--|
| CHARACTERISTICS                                                                           |                                                                             |                                   | VALUE                | UNIT |  |
| Instantaneous Forward Voltage Drop                                                        | SPD6620 thru SPD6622 @ 1.2A<br>SPD6623 and SPD6624 @ 1.0A<br>SPD6625 @ 1.0A | <u>6</u> / <b>V</b> <sub>F1</sub> | 1.40<br>1.55<br>1.75 | Vdc  |  |
| (300 μs Pulse, T <sub>A</sub> = 25°C)                                                     | SPD6620 thru SPD6622 @ 2.0A<br>SPD6623 and SPD6624 @ 1.5A<br>SPD6625 @ 1.5A | <u>6</u> / <b>V</b> <sub>F2</sub> | 1.60<br>1.80<br>1.95 |      |  |
| Instantaneous Forward Voltage Drop<br>(300 µs Pulse, T <sub>A</sub> = -55°C)              | SPD6620 thru SPD6622 @ 2.0A<br>SPD6623 and SPD6624 @ 1.5A<br>SPD6625 @ 1.5A | <u>6</u> / <b>V</b> <sub>F3</sub> | 1.80<br>2.00<br>2.20 | Vdc  |  |
| Maximum Reverse Leakage Current (Rated $V_R$ , 300 $\mu$ s Pulse Minimum , $T_A$ = 25°C)  | SPD6620 Thru SPD6624<br>SPD6625                                             | I <sub>R1</sub>                   | 2.0                  | μΑ   |  |
| Maximum Reverse Leakage Current (Rated $V_R$ , 300 $\mu$ s Pulse Minimum , $T_A$ = 100°C) | SPD6620 Thru SPD6624<br>SPD6625                                             | I <sub>R2</sub>                   | 150<br>200           | μΑ   |  |
| Junction Capacitance<br>(VR = 10Vdc, T <sub>A</sub> = 25°C , f = 1MHz)                    | SPD6620 thru SPD6622<br>SPD6623 and SPD6624<br>SPD6625                      | CJ                                | 24<br>17<br>13       | pf   |  |
| Maximum Reverse Recovery Time ( $I_F = 500$ mA, $I_R = 1$ A, $I_{RR} = 250$ mA)           | SPD6620 thru SPD6622<br>SPD6623 and SPD6624<br>SPD6625                      | <sup>6</sup> / t <sub>rr</sub>    | 30<br>50<br>60       | ns   |  |


| DIMENSIONS (inches) |           |           | DIMENSIONS (inches) |      |              |              |            |
|---------------------|-----------|-----------|---------------------|------|--------------|--------------|------------|
| DIM.                | SPD6620 - | SPD6623 - | SPD6625             | DIM. | SPD6620SMS - | SPD6623SMS - | SPD6625SMS |
|                     | SPD6622   | SPD6624   |                     |      | SPD6622SMS   | SPD6624SMS   |            |
| Α                   | .100/.128 | .100/.120 | .115/.128           | Α    | .128/.132    | .128/.132    | .128/.132  |
| В                   | .140/.190 | .140/.165 | .140/.165           | В    | .190/.240    | .190/.230    | .190/.230  |
| С                   | .027/.032 | .027/.032 | .028 /.033          | С    | .023/.027    | .023/.027    | .023/.027  |
| D                   | 1.0 Min   | 1.0 min   | 1.0 min             | D    | .001 min     | .001 min     | .001 min   |
| AYIAI               | AXIAL 5   |           |                     |      |              |              |            |







# **Surface Mount Round Tab (SM)**



| DIMENSIONS (inches)   |       |       |  |  |
|-----------------------|-------|-------|--|--|
| SPD6620SM - SPD6622SM |       |       |  |  |
| DIM.                  | MIN.  | MAX.  |  |  |
| Α                     | .095" | .105" |  |  |
| В .190"               |       | .210" |  |  |
| С                     | .010" | .030" |  |  |
| D                     |       |       |  |  |