DATA SHEET

For a complete data sheet, please also download:

- The IC04 LOCMOS HE4000B Logic Family Specifications HEF, HEC
- The IC04 LOCMOS HE4000B Logic Package Outlines/Information HEF, HEC

HEF4508B MSI
 Dual 4-bit latch

Product specification
File under Integrated Circuits, IC04

PHILIPS

DESCRIPTION

The HEF4508B is a dual 4-bit latch, which consists of two identical independent 4-bit latches with separate strobe (ST), master reset (MR), output-enable input ($\overline{\mathrm{EO}}$) and 3-state outputs (O).
With the ST input in the HIGH state, the data on the D inputs appear at the corresponding outputs provided $\overline{\mathrm{EO}}$ is LOW. Changing the ST input to the LOW state locks the
data into the latch. A HIGH on the reset line forces the outputs to a LOW level regardless of the state of the ST input. The 3-state outputs are controlled by the output-enable input. A HIGH on EO causes the outputs to assume a high impedance OFF-state regardless of other input conditions. This allows the outputs to interface directly with bus orientated systems. When $\overline{\mathrm{EO}}$ is LOW the contents of the latches are available at the outputs.

Fig. 1 Functional diagram.

FAMILY DATA, IDD LIMITS category MSI
See Family Specifications

Fig. 2 Pinning diagram.

```
HEF4508BP(N): 24-lead DIL; plastic
    (SOT101-1)
HEF4508BD(F): 24-lead DIL; ceramic (cerdip)
    (SOT94)
HEF4508BT(D): 24-lead SO; plastic
    (SOT137-1)
( ): Package Designator North America
```


PINNING

$D_{0 A}$ to $D_{3 A}, D_{0 B}$ to $D_{3 B}$	data inputs
$S T_{A}, S T_{B}$	strobe inputs
$M R_{A}, M R_{B}$	master reset inputs
$\overline{E O}_{A}, \overline{E O}_{B}$	output enable inputs
$O_{0 A}$ to $O_{3 A}, O_{0 B}$ to $O_{3 B}$	3-state outputs

FUNCTION TABLE

INPUTS				
OUTPUT				
MR	ST	$\overline{\text { EO }}$	$\mathbf{D}_{\mathbf{n}}$	$\mathbf{O}_{\boldsymbol{n}}$
L	H	L	H	H
L	H	L	L	L
L	L	L	X	latched
H	X	L	X	L
X	X	H	X	Z

Notes

1. $\mathrm{H}=\mathrm{HIGH}$ state (the more positive voltage)
$\mathrm{L}=\mathrm{LOW}$ state (the less positive voltage)
$X=$ state is immaterial
$Z=$ high impedance OFF state

Dual 4-bit latch

Fig. 3 Logic diagram (one 4-bit latch).

Dual 4-bit latch

AC CHARACTERISTICS

$V_{S S}=0 \mathrm{~V} ; \mathrm{T}_{\mathrm{amb}}=25^{\circ} \mathrm{C} ; \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$; input transition times $\leq 20 \mathrm{~ns}$; see also waveforms Fig.4.

	$\begin{gathered} \mathbf{V}_{\mathrm{DD}} \\ \mathbf{V} \end{gathered}$	SYMBOL	MIN. TYP.	MAX.		TYPICAL EXTRAPOLATION FORMULA
Propagation delays $\mathrm{ST} \rightarrow \mathrm{O}_{\mathrm{n}}$ HIGH to LOW LOW to HIGH	$\begin{array}{r} 5 \\ 10 \\ 15 \end{array}$	$\mathrm{t}_{\text {PHL }}$	$\begin{array}{r} 115 \\ 50 \\ 35 \end{array}$	$\begin{array}{r} 230 \\ 100 \\ 70 \end{array}$	ns ns ns	$\begin{aligned} & 88 \mathrm{~ns}+(0,55 \mathrm{~ns} / \mathrm{pF}) \mathrm{C}_{\mathrm{L}} \\ & 39 \mathrm{~ns}+(0,23 \mathrm{~ns} / \mathrm{pF}) \mathrm{C}_{\mathrm{L}} \\ & 27 \mathrm{~ns}+(0,16 \mathrm{~ns} / \mathrm{pF}) \mathrm{C}_{\mathrm{L}} \end{aligned}$
	$\begin{array}{r} 5 \\ 10 \\ 15 \end{array}$	$t_{\text {PLH }}$	$\begin{array}{r} \hline 115 \\ 50 \\ 35 \end{array}$	$\begin{array}{r} \hline 230 \\ 100 \\ 70 \\ \hline \end{array}$	ns ns ns	$\begin{aligned} & 88 \mathrm{~ns}+(0,55 \mathrm{~ns} / \mathrm{pF}) \mathrm{C}_{\mathrm{L}} \\ & 39 \mathrm{~ns}+(0,23 \mathrm{~ns} / \mathrm{pF}) \mathrm{C}_{\mathrm{L}} \\ & 27 \mathrm{~ns}+(0,16 \mathrm{~ns} / \mathrm{pF}) \mathrm{C}_{\mathrm{L}} \end{aligned}$
$\mathrm{D}_{\mathrm{n}} \rightarrow \mathrm{O}_{\mathrm{n}}$ HIGH to LOW	$\begin{array}{r} 5 \\ 10 \\ 15 \end{array}$	$\mathrm{t}_{\text {PHL }}$	$\begin{aligned} & 95 \\ & 40 \\ & 30 \end{aligned}$	190 80 60	ns ns ns	$\begin{aligned} & 68 \mathrm{~ns}+(0,55 \mathrm{~ns} / \mathrm{pF}) \mathrm{C}_{\mathrm{L}} \\ & 29 \mathrm{~ns}+(0,23 \mathrm{~ns} / \mathrm{pF}) \mathrm{C}_{\mathrm{L}} \\ & 22 \mathrm{~ns}+(0,16 \mathrm{~ns} / \mathrm{pF}) \mathrm{C}_{\mathrm{L}} \end{aligned}$
LOW to HIGH	$\begin{array}{r} 5 \\ 10 \\ 15 \end{array}$	tple	$\begin{aligned} & 95 \\ & 40 \\ & 30 \end{aligned}$	190 80 60	ns ns ns	$\begin{aligned} & 68 \mathrm{~ns}+(0,55 \mathrm{~ns} / \mathrm{pF}) \mathrm{C}_{\mathrm{L}} \\ & 29 \mathrm{~ns}+(0,23 \mathrm{~ns} / \mathrm{pF}) \mathrm{C}_{\mathrm{L}} \\ & 22 \mathrm{~ns}+(0,16 \mathrm{~ns} / \mathrm{pF}) \mathrm{C}_{\mathrm{L}} \end{aligned}$
$\mathrm{MR} \rightarrow \mathrm{O}_{\mathrm{n}}$ HIGH to LOW	$\begin{array}{r} 5 \\ 10 \\ 15 \end{array}$	$\mathrm{t}_{\text {PHL }}$	$\begin{array}{r} \hline 100 \\ 40 \\ 30 \end{array}$	200 80 60	ns ns ns	$\begin{aligned} & \hline 73 \mathrm{~ns}+(0,55 \mathrm{~ns} / \mathrm{pF}) \mathrm{C}_{\mathrm{L}} \\ & 29 \mathrm{~ns}+(0,23 \mathrm{~ns} / \mathrm{pF}) \mathrm{C}_{\mathrm{L}} \\ & 22 \mathrm{~ns}+(0,16 \mathrm{~ns} / \mathrm{pF}) \mathrm{C}_{\mathrm{L}} \end{aligned}$
Output transition times HIGH to LOW LOW to HIGH	$\begin{array}{r} 5 \\ 10 \\ 15 \end{array}$	$\mathrm{t}_{\text {THL }}$	$\begin{aligned} & 60 \\ & 30 \\ & 20 \end{aligned}$	120 60 40	ns ns ns	$\begin{aligned} 10 \mathrm{~ns} & +(1,0 \mathrm{~ns} / \mathrm{pF}) \mathrm{C}_{\mathrm{L}} \\ 9 \mathrm{~ns} & +(0,42 \mathrm{~ns} / \mathrm{pF}) \mathrm{C}_{\mathrm{L}} \\ 6 \mathrm{~ns} & +(0,28 \mathrm{~ns} / \mathrm{pF}) \mathrm{C}_{\mathrm{L}} \end{aligned}$
	$\begin{array}{r} 5 \\ 10 \\ 15 \end{array}$	$\mathrm{t}_{\text {TL }}$	$\begin{aligned} & 60 \\ & 30 \\ & 20 \\ & \hline \end{aligned}$	120 60 40	ns ns ns	$\begin{aligned} 10 \mathrm{~ns} & +(1,0 \mathrm{~ns} / \mathrm{pF}) \mathrm{C}_{\mathrm{L}} \\ 9 \mathrm{~ns} & +(0,42 \mathrm{~ns} / \mathrm{pF}) \mathrm{C}_{\mathrm{L}} \\ 6 \mathrm{~ns} & +(0,28 \mathrm{~ns} / \mathrm{pF}) \mathrm{C}_{\mathrm{L}} \end{aligned}$
3-state propagation delays Output enable times $\overline{\mathrm{EO}} \rightarrow \mathrm{O}_{\mathrm{n}}$ HIGH LOW	$\begin{array}{r} 5 \\ 10 \\ 15 \end{array}$	tpzH	45 20 18	$\begin{aligned} & 90 \\ & 40 \\ & 36 \end{aligned}$	ns ns ns	
	$\begin{array}{r} 5 \\ 10 \\ 15 \end{array}$	$t_{\text {PZL }}$	45 20 18	90 40 36	ns ns ns	
Output disable times $\begin{gathered} \overline{\mathrm{EO}} \rightarrow \mathrm{O}_{\mathrm{n}} \\ \mathrm{HIGH} \end{gathered}$	$\begin{array}{r} 5 \\ 10 \\ 15 \end{array}$	$\mathrm{t}_{\text {PHZ }}$	35 20 18	$\begin{aligned} & 70 \\ & 40 \\ & 36 \end{aligned}$	ns ns ns	
LOW	$\begin{array}{r} 5 \\ 10 \\ 15 \end{array}$	tplz	45 20 18	$\begin{aligned} & 90 \\ & 40 \\ & 36 \end{aligned}$	ns ns ns	

Dual 4-bit latch

AC CHARACTERISTICS

$\mathrm{V}_{\mathrm{SS}}=0 \mathrm{~V} ; \mathrm{T}_{\mathrm{amb}}=25^{\circ} \mathrm{C} ; \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$; input transition times $\leq 20 \mathrm{~ns}$

	V_{DD}	SYMBOL	MIN.	TYP.	MAX.	
Minimum ST pulse width; HIGH	$\begin{array}{r} 5 \\ 10 \\ 15 \end{array}$	$\mathrm{t}_{\text {wSth }}$	$\begin{aligned} & 50 \\ & 30 \\ & 20 \end{aligned}$	$\begin{aligned} & 25 \\ & 15 \\ & 10 \end{aligned}$	ns ns ns	see also waveforms Fig. 4
Minimum MR pulse width; HIGH	$\begin{array}{r} 5 \\ 10 \\ 15 \end{array}$	twmRH	$\begin{aligned} & 40 \\ & 24 \\ & 20 \end{aligned}$	$\begin{aligned} & 20 \\ & 12 \\ & 10 \end{aligned}$	ns ns ns	
Recovery time for MR	$\begin{array}{r} 5 \\ 10 \\ 15 \end{array}$	$\mathrm{t}_{\text {RMR }}$	$\begin{aligned} & 20 \\ & 20 \\ & 15 \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \\ & 0 \end{aligned}$	ns ns ns	
Set-up times $\mathrm{D}_{\mathrm{n}} \rightarrow \mathrm{ST}$	$\begin{array}{r} 5 \\ 10 \\ 15 \end{array}$	t_{su}	$\begin{aligned} & 35 \\ & 25 \\ & 20 \end{aligned}$	$\begin{array}{r} 10 \\ 5 \\ 0 \end{array}$	ns ns ns	
Hold times $\mathrm{D}_{\mathrm{n}} \rightarrow \mathrm{ST}$	$\begin{array}{r} 5 \\ 10 \\ 15 \end{array}$	thold	$\begin{aligned} & 20 \\ & 20 \\ & 15 \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \\ & 0 \end{aligned}$	ns ns ns	

	$\begin{gathered} \mathbf{V}_{\mathrm{DD}} \\ \mathbf{V} \end{gathered}$	TYPICAL FORMULA FOR P ($\mu \mathrm{W}$)	
Dynamic power dissipation per package (P)	$\begin{array}{r} 5 \\ 10 \\ 15 \end{array}$	$\begin{array}{r} 2000 f_{i}+\sum\left(\mathrm{f}_{0} \mathrm{C}_{\mathrm{L}}\right) \times \mathrm{V}_{D D^{2}} \\ 9000 \mathrm{f}_{\mathrm{i}}+\sum\left(\mathrm{f}_{0} \mathrm{C}_{\mathrm{L}}\right) \times \mathrm{V}_{D D^{2}} \\ 25000 \mathrm{f}_{\mathrm{i}}+\sum\left(\mathrm{f}_{\mathrm{o}} \mathrm{C}_{\mathrm{L}}\right) \times \mathrm{V}_{\mathrm{DD}^{2}} \end{array}$	where $\mathrm{f}_{\mathrm{i}}=$ input freq. (MHz) $\mathrm{f}_{\mathrm{o}}=$ output freq. (MHz) $\mathrm{C}_{\mathrm{L}}=$ load capacitance (pF) $\sum\left(f_{0} C_{L}\right)=$ sum of outputs $\mathrm{V}_{\mathrm{DD}}=$ supply voltage (V)

Fig. 4 Waveforms showing minimum ST and MR pulse widths, set-up and hold times for D_{n} to $S T$, recovery time for MR and propagation delays from $S T$ to O_{n}, to D_{n} to O_{n} and MR to O_{n}.

Dual 4-bit latch

APPLICATION INFORMATION

Some examples of application for the HEF4508B are:

- Buffer storage
- Holding registers
- Data storage and multiplexing

Fig. 5 Example of a bus register using HEF4508B and HEF4015B.

Fig. 6 Example of a dual multiplexed bus register with function select using two HEF4508B and one HEF4019B.

FUNCTION SELECT

$\mathbf{S}_{\boldsymbol{A}}$	$\mathbf{S}_{\mathbf{B}}$	FUNCTION
L	L	inhibit (all L)
H	L	select A bus
L	H	select B bus
H	H	$A_{1}+B_{1}$

