Document Title

256Kx36-Bit Pipelined NtRAM™

Revision History

Rev. No.	<u>History</u>	<u>Draft Date</u>	<u>Remark</u>
0.0	1. Initial document.	June. 09. 1998	Preliminary
0.1	 Changed DC parameters Icc; from 450mA to 420mA at 150MHZ. IsB1; from 10mA to 20mA, IsB2; from 10mA to 20mA. 	Aug. 19. 1998	Preliminary
0.2	 Changed tcD from 4.0ns to 4.2ns at -75 Changed DC condition at Icc and parameters ISB1; from 20mA to 30mA, ISB2; from 20mA to 30mA. 	Sep. 09. 1998	Preliminary
0.3	 ADD 119BGA(7x17 Ball Grid Array Package) ADD x32 organization. 	Oct. 15. 1998	Preliminary
0.4	Changed Vol Max value from 0.2V to 0.4V at 2.5V I/O.	Dec. 23 .1998	Preliminary
1.0	 Final Spec Release. Remove x32 organization. 	Jan. 29. 1999	Final
2.0	1. Remove VDDQ Supply voltage(2.5V I/O)	Feb. 25. 1999	Final
3.0	1. Add VDDQ Supply voltage(2.5V I/O)	May. 13. 1999	Final

The attached data sheets are prepared and approved by SAMSUNG Electronics. SAMSUNG Electronics CO., LTD. reserve the right to change the specifications. SAMSUNG Electronics will evaluate and reply to your requests and questions on the parameters of this device. If you have any questions, please contact the SAMSUNG branch office near your office, call or contact Headquarters.

256Kx36-Bit Pipelined NtRAM™

FEATURES

- 3.3V+0.165V/-0.165V Power Supply.
- I/O Supply Voltage 3.3V+0.165V/-0.165V for 3.3V I/O or 2.5V+0.4V/-0.125V for 2.5V I/O.
- Byte Writable Function.
- Enable clock and suspend operation.
- Single READ/WRITE control pin.
- Self-Timed Write Cycle.
- Three Chip Enable for simple depth expansion with no data contention only for TQFP.
- A interleaved burst or a linear burst mode.
- Asynchronous output enable control.
- Power Down mode.
- •100-TQFP-1420A /119BGA(7x17 Ball Grid Array Package).

FAST ACCESS TIMES

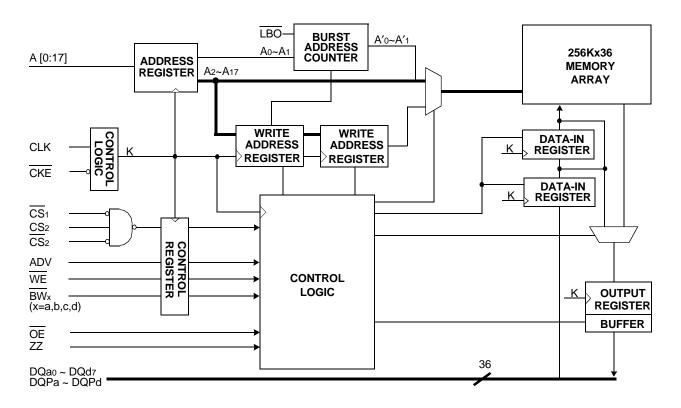
PARAMETER	Symbol	-15	-13	-10	Unit
Cycle Time	tcyc	6.7	7.5	10	ns
Clock Access Time	tcD	3.8	4.2	5.0	ns
Output Enable Access Time	toe	3.8	4.2	5.0	ns

GENERAL DESCRIPTION

The K7N803601M is 9,437,184 bits Synchronous Static SRAMs

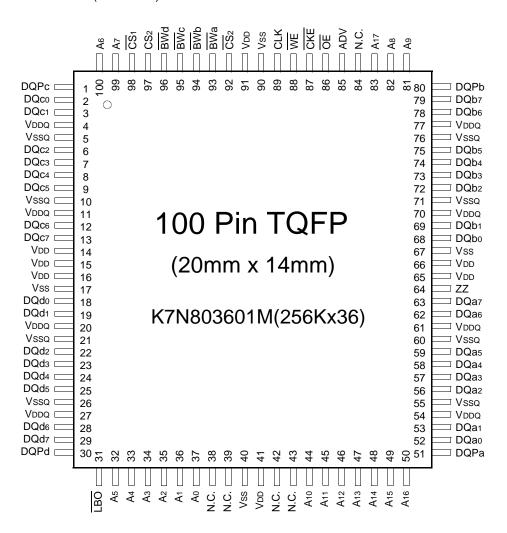
The $NtRAM^{TM}$, or No Turnaround Random Access Memory utilizes all the bandwidth in any combination of operating cycles. Address, data inputs, and all control signals except output enable and linear burst order are synchronized to input clock. Burst order control must be tied "High or Low".

Asynchronous inputs include the sleep mode enable(ZZ).


Output Enable controls the outputs at any given time.

Write cycles are internally self-timed and initiated by the rising edge of the clock input. This feature eliminates complex off-chip write pulse generation

and provides increased timing flexibility for incoming signals. For read cycles, pipelined SRAM output data is temporarily stored by an edge triggered output register and then released to the output buffers at the next rising edge of clock.


The K7N803601M is implemented with SAMSUNG's high performance CMOS technology and is available in 100pin TQFP and 119BGA packages. Multiple power and ground pins minimize ground bounce.

LOGIC BLOCK DIAGRAM

PIN CONFIGURATION(TOP VIEW)

PIN NAME

SYMBOL	PIN NAME	TQFP PIN NO.	SYMBOL	PIN NAME	TQFP PIN NO.
A0 - A17	Address Inputs	32,33,34,35,36,37,44	VDD	Power Supply(+3.3V)	14,15,16,41,65,66,91
	-	45,46,47,48,49,50,81	Vss	Ground	17,40,67,90
		82,83,99,100	N.C.	No Connect	38,39,42,43,84
ADV	Address Advance/Load	85			
ADV WE	Read/Write Control Input	88	DQao~a7	Data Inputs/Outputs	52,53,56,57,58,59,62,63
CLK	Clock	89	DQb0~b7		68,69,72,73,74,75,78,79
CKE CS ₁	Clock Enable	87	DQc0~c7		2,3,6,7,8,9,12,13
CS ₁	Chip Select	98	DQd0~d7		18,19,22,23,24,25,28,29
CS ₂	Chip Select	97	DQPa~Pd		51,80,1,30
CS ₂ CS ₂	Chip Select	92			
$\overline{BW}x(x=a,b,c,d)$	Byte Write Inputs	93,94,95,96	VDDQ	Output Power Supply	4,11,20,27,54,61,70,77
ŌE	Output Enable	86		(3.3V or 2.5V)	
ZZ	Power Sleep Mode	64	Vssq	Output Ground	5,10,21,26,55,60,71,76
LBO	Burst Mode Control	31		,	

Notes: 1. The pin 84 is reserved for address bit for the 16Mb NtRAM.

2. Ao and A₁ are the two least significant bits(LSB) of the address field and set the internal burst counter if burst is desired.

K7N803601M

119BGA PACKAGE PIN CONFIGURATIONS(TOP VIEW)

K7N803601M(256Kx36)

	1	2	3	4	5	6	7
Α	VDDQ	А	Α	NC	Α	Α	VDDQ
В	NC	CS ₂	А	CKE	Α	Α	NC
С	NC	А	А	VDD	Α	Α	NC
D	DQc	DQPc	Vss	NC	Vss	DQPb	DQb
E	DQc	DQc	Vss	CS ₁	Vss	DQb	DQb
F	VDDQ	DQc	Vss	ŌE	Vss	DQb	VDDQ
G	DQc	DQc	BWc	ADV	BWb	DQb	DQb
Н	DQc	DQc	Vss	NC	Vss	DQb	DQb
J	VDDQ	VDD	NC	VDD	NC	VDD	VDDQ
К	DQd	DQd	Vss	CLK	Vss	DQa	DQa
L	DQd	DQd	BWd	NC	BWa	DQa	DQa
М	VDDQ	DQd	Vss	WE	Vss	DQa	VDDQ
N	DQd	DQd	Vss	A1*	Vss	DQa	DQa
Р	DQd	DQPd	Vss	Ao*	Vss	DQPa	DQa
R	NC	А	LBO	VDD	NC	А	NC
Т	NC	NC	А	А	А	NC	ZZ
U	VDDQ	NC	NC	NC	NC	NC	VDDQ

Note: * Ao and A1 are the two least significant bits(LSB) of the address field and set the internal burst counter if burst is desired.

PIN NAME

SYMBOL	PIN NAME	SYMBOL	PIN NAME
Α	Address Inputs	VDD	Power Supply
		Vss	Ground
Ao,A1	Burst Address Inputs		
ADV WE	Address Advance/Load	N.C.	No Connect
	Read/Write Control Input		
CLK CKE CS1	Clock	DQa	Data Inputs/Outputs
CKE	Clock Enable	DQb	Data Inputs/Outputs
CS ₁	Chip Select	DQc	Data Inputs/Outputs
CS ₂	Chip Select	DQd	Data Inputs/Outputs
BWx	Byte Write Inputs	DQPa~Pd	Data Inputs/Outputs
(x=a,b,c,d)			
<u> </u>		VDDQ	Power Supply
ŌE	Output Enable		
ZZ LBO	Power Sleep Mode		
LBO	Burst Mode Control		

FUNCTION DESCRIPTION

The K7N803601M is $NtRAM^{TM}$ designed to sustain 100% bus bandwidth by eliminating turnaround cycle when there is transition from Read to Write, or vice versa.

All inputs (with the exception of OE, LBO and ZZ) are synchronized to rising clock edges.

All read, write and deselect cycles are initiated by the ADV input. Subsequent burst addresses can be internally generated by the burst advance pin (ADV). ADV should be driven to Low once the device has been deselected in order to load a new address for next operation.

Clock Enable(CKE) pin allows the operation of the chip to be suspended as long as necessary. When CKE is high, all synchronous inputs are ignored and the internal device registers will hold their previous values.

NtRAM™ latches external address and initiates a cycle, when CKE, ADV are driven to low and all three chip enables(CS1, CS2, CS2) are active .

Output Enable (\overline{OE}) can be used to disable the output at any given time.

Read operation is initiated when at the rising edge of the clock, the address presented to the address inputs are latched in the address register, \overline{CKE} is driven low, all three chip enables($\overline{CS1}$, $\overline{CS2}$, $\overline{CS2}$) are active, the write enable input signals \overline{WE} are driven high, and ADV driven low. The internal array is read between the first rising edge and the second rising edge of the clock and the data is latched in the output register. At the second clock edge the data is driven out of the SRAM. Also during read operation \overline{OE} must be driven low for the device to drive out the requested data.

Write operation occurs when $\overline{\text{WE}}$ is driven low at the rising edge of the clock. $\overline{\text{BW}}[\text{d:a}]$ can be used for byte write operation. The pipelined NtRAMTM uses a late-late write cycle to utilize 100% of the bandwidth.

At the first rising edge of the clock, $\overline{\text{WE}}$ and address are registered, and the data associated with that address is required two cycle later.

Subsequent addresses are generated by ADV High for the burst access as shown below. The starting point of the burst seguence is provided by the external address. The burst address counter wraps around to its initial state upon completion.

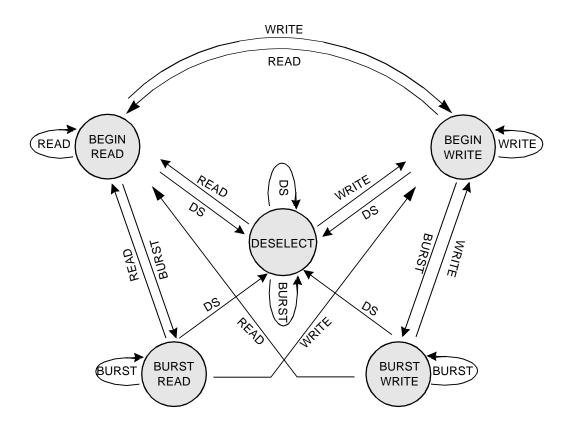
The burst sequence is determined by the state of the $\overline{\text{LBO}}$ pin. When this pin is low, linear burst sequence is selected. And when this pin is high, Interleaved burst sequence is selected.

During normal operation, ZZ must be driven low. When ZZ is driven high, the SRAM will enter a Power Sleep Mode after 2 cycles. At this time, internal state of the SRAM is preserved. When ZZ returns to low, the SRAM normally operates after 2 cycles of wake up time.

BURST SEQUENCE TABLE

(Interleaved Burst, LBO=High)

LBO PIN	HIGH	Case 1		Case 2		Case 3		Case 4	
LBOTIN		A 1	Ao						
Fi	First Address		0	0	1	1	0	1	1
	J.		1	0	0	1	1	1	0
			0	1	1	0	0	0	1
Fourth Address		1	1	1	0	0	1	0	0


(Linear Burst, LBO=Low)

LBO PIN	LOW	Case 1		Case 2		Case 3		Case 4	
LDO I III		A 1	Ao	A 1	Ao	A 1	A ₀	A 1	Ao
First Address		0	0	0	1	1	0	1	1
			1	1	0	1	1	0	0
\downarrow		1	0	1	1	0	0	0	1
Fourth Address		1	1	0	0	0	1	1	0

Note: 1. LBO pin must be tied to High or Low, and Floating State must not be allowed.

STATE DIAGRAM FOR NtRAM™

COMMAND	ACTION
DS	DESELECT
READ	BEGIN READ
WRITE	BEGIN WRITE
BURST	BEGIN READ BEGIN WRITE CONTINUE DESELECT

Notes: 1. An IGNORE CLOCK EDGE cycle is not shown is the above diagram. This is because CKE HIGH only blocks the clock(CLK) input and does not change the state of the device.

2. States change on the rising edge of the clock(CLK)

TRUTH TABLES

SYNCHRONOUS TRUTH TABLE

CS ₁	CS ₂	CS ₂	ADV	WE	BWx	OE	CKE	CLK	ADDRESS ACCESSED	OPERATION
Н	Х	Х	L	Χ	Х	Х	L	↑	N/A	Not Selected
Х	L	Х	L	Х	Х	Х	L	↑	N/A	Not Selected
Χ	Х	Н	L	Х	Х	Χ	L	↑	N/A	Not Selected
Х	Х	Х	Н	Х	Х	Х	L	1	N/A	Not Selected Continue
L	Н	L	L	Н	Х	L	L	1	External Address	Begin Burst Read Cycle
Х	Х	Х	Н	Х	Х	L	L	1	Next Address	Continue Burst Read Cycle
L	Н	L	L	Н	Х	Н	L	1	External Address	NOP/Dummy Read
Х	Х	Х	Н	Х	Х	Н	L	1	Next Address	Dummy Read
L	Н	L	L	L	L	Х	L	1	External Address	Begin Burst Write Cycle
Х	Х	Х	Н	Х	L	Х	L	1	Next Address	Continue Burst Write Cycle
L	Н	L	L	L	Н	Х	L	1	N/A	NOP/Write Abort
Х	Х	Х	Н	Х	Н	Х	L	1	Next Address	Write Abort
Х	Х	Х	Х	Х	Х	Х	Н	1	Current Address	Ignore Clock

Notes: 1. X means "Don't Care".

- 2. The rising edge of clock is symbolized by ($\ \ \,).$
- 3. A continue deselect cycle can only be enterd if a deselect cycle is executed first.
- 4. WRITE = L means Write operation in WRITE TRUTH TABLE.

 WRITE = H means Read operation in WRITE TRUTH TABLE.
- 5. Operation finally depends on status of asynchronous input pins(ZZ and \overline{OE}).

WRITE TRUTH TABLE(x36)

WE	BWa	BWb	BWc	BWd	OPERATION
Н	X	X	X	X	READ
L	L	Н	Н	Н	WRITE BYTE a
L	Н	L	Н	Н	WRITE BYTE b
L	Н	Н	L	Н	WRITE BYTE c
L	Н	Н	Н	L	WRITE BYTE d
L	L	L	L	L	WRITE ALL BYTEs
L	Н	Н	Н	Н	WRITE ABORT/NOP

Notes: 1. X means "Don't Care".

2. All inputs in this table must meet setup and hold time around the rising edge of $CLK(\uparrow)$.

ASYNCHRONOUS TRUTH TABLE

Operation	ZZ	OE	I/O STATUS
Sleep Mode	Н	Х	High-Z
Read	L	L	DQ
Read	L	Н	High-Z
Write	L	Х	Din, High-Z
Deselected	L	Χ	High-Z

Notes

- 1. X means "Don't Care".
- Sleep Mode means power Sleep Mode of which stand-by current does not depend on cycle time.
- Deselected means power Sleep Mode of which stand-by current depends on cycle time.

ABSOLUTE MAXIMUM RATINGS*

PARAMETER	SYMBOL	RATING	UNIT
Voltage on VDD Supply Relative to Vss	VDD	-0.3 to 4.6	V
Voltage on Any Other Pin Relative to Vss	Vin	-0.3 to 4.6	V
Power Dissipation	PD	1.6	W
Storage Temperature	Тѕтс	-65 to 150	°C
Operating Temperature	Topr	0 to 70	°C
Storage Temperature Range Under Bias	TBIAS	-10 to 85	°C

^{*}Notes: Stresses greater than those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operating sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect reliability.

OPERATING CONDITIONS at 3.3V I/O(0° C \leq TA \leq 70° C)

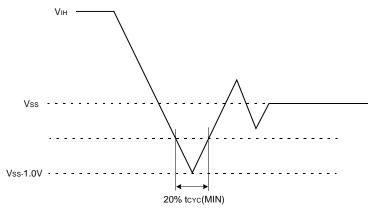
PARAMETER	SYMBOL	MIN	Тур.	MAX	UNIT
Supply Voltage	VDD	3.135	3.135 3.3 3.465		V
	VDDQ	3.135	3.3	3.465	V
Ground	Vss	0	0	0	V

OPERATING CONDITIONS at 2.5V I/O(0° C \leq TA \leq 70 $^{\circ}$ C)

PARAMETER	SYMBOL	MIN	Тур.	MAX	UNIT
Supply Voltage	VDD	3.135	3.135 3.3 3.465		V
	VDDQ	2.375	2.5	2.9	V
Ground	Vss	0	0	0	V

CAPACITANCE*(TA=25°C, f=1MHz)

PARAMETER	SYMBOL	TEST CONDITION	MIN	MAX	UNIT
Input Capacitance	CIN	VIN=0V	-	6	pF
Output Capacitance	Соит	Vout=0V	-	8	pF


^{*}Note: Sampled not 100% tested.

DC ELECTRICAL CHARACTERISTICS(VDD=3.3V+0.165V/-0.165V, TA=0°C to +70°C)

PARAMETER	SYMBOL	TEST CONDITIONS		MIN	MAX	UNIT	NOTES
Input Leakage Current(except ZZ)	lıL	VDD=Max ; VIN=Vss to VDD		-2	+2	μΑ	
Output Leakage Current	loL	Output Disabled, Vout=Vss to VDDQ		-2	+2	μΑ	
		15		-	420		
Operating Current	Icc	Device Selected, IouT=0mA, ZZ≤VIL, Cycle Time ≥ tcyc Min	-13	-	370	mA	1,2
		ZZSVIL, Cycle Time z toro iviin	-10	-	300		
		Device deselected, Iout=0mA,	Device deselected, IOUT=0mA, -15		80		
	IsB	ZZ≤Vı∟, f=Max, All Inputs≤0.2V or ≥	-13	-	70	mA	
		VDD-0.2V	-10	-	60		
Standby Current	ISB1	Device deselected, IOUT=0mA, ZZ≤0 f=0, All Inputs=fixed (VDD-0.2V or 0.2	-	30	mA		
	ISB2	Device deselected, IouT=0mA, ZZ≥VDD-0.2V, f=Max, All Inputs≤VIL or ≥VIH		-	30	mA	
Output Low Voltage(3.3V I/O)	Vol	IoL=8.0mA		-	0.4	V	
Output High Voltage(3.3V I/O)	Voн	IOH=-4.0mA		2.4	-	V	
Output Low Voltage(2.5V I/O)	Vol	IoL=1.0mA		-	0.4	V	
Output High Voltage(2.5V I/O)	Voн	IOH=-1.0mA		2.0	-	V	
Input Low Voltage(3.3V I/O)	VIL			-0.3*	0.8	V	
Input High Voltage(3.3V I/O)	VIH			2.0	VDD+0.5**	V	3
Input Low Voltage(2.5V I/O)	VIL			-0.3*	0.7	V	
Input High Voltage(2.5V I/O)	Vıн			1.7	VDD+0.5**	V	3

Notes: 1. Reference AC Operating Conditions and Characteristics for input and timing.
2. Data states are all zero.
3. In Case of I/O Pins, the Max. VIH=VDDQ+0.3V

TEST CONDITIONS

 $(VDD=3.3V+0.165V/-0.165V, VDDQ=3.3V+0.165/-0.165V, VDDQ=3.3V+0.165V, VDDQ=2.5V+0.4V/-0.125V, TA=0to 70^{\circ}C) + (VDD=3.3V+0.165V/-0.165V, VDDQ=2.5V+0.4V/-0.125V, TA=0to 70^{\circ}C) + (VDD=3.3V+0.165V/-0.165V/$

Parameter	Value
Input Pulse Level(for 3.3V I/O)	0 to 3.0V
Input Pulse Level(for 2.5V I/O)	0 to 2.5V
Input Rise and Fall Time(Measured at 20% to 80% for 3.3V I/O)	1.0V/ns
Input Rise and Fall Time(Measured at 20% to 80% for 2.5V I/O)	1.0V/ns
Input and Output Timing Reference Levels for 3.3V I/O	1.5V
Input and Output Timing Reference Levels for 2.5V I/O	VDDQ/2
Output Load	See Fig. 1

Output Load(A)

Output Load(B), (for tLZC, tLZOE, tHZOE & tHZC)

Pout

VDDQ/2 for 2.5V I/O

Output Load(B), (for tLZC, tLZOE, tHZOE & tHZC)

*3.3V for 3.3V I/O

*/+2.5V for 2.5V I/O

Dout

353 Ω / 1538 Ω *5pF*

* Including Scope and Jig Capacitance

Fig. 1

AC TIMING CHARACTERISTICS(VDD=3.3V+0.165V/-0.165V, TA=0 to 70°C)

DADAMETER	SYMBOL	-15		-13		-10		UNIT
PARAMETER	STWIDOL	MIN	MAX	MIN	MAX	MIN	MAX	ONT
Cycle Time	tcyc	6.7	-	7.5	-	10.0	-	ns
Clock Access Time	tcD	-	3.8	-	4.2	-	5.0	ns
Output Enable to Data Valid	toE	-	3.8	-	4.2	-	5.0	ns
Clock High to Output Low-Z	tLZC	1.5	-	1.5	-	1.5	-	ns
Output Hold from Clock High	tон	1.5	-	1.5	-	1.5	-	ns
Output Enable Low to Output Low-Z	tlzoe	0	-	0	-	0	-	ns
Output Enable High to Output High-Z	thzoe	-	3.0	-	3.5	-	3.5	ns
Clock High to Output High-Z	tHZC	-	3.0	-	3.5	-	3.5	ns
Clock High Pulse Width	tch	2.5	-	3.0	-	3.0	-	ns
Clock Low Pulse Width	tcL	2.5	-	3.0	-	3.0	-	ns
Address Setup to Clock High	tas	1.5	-	1.5	-	1.5	-	ns
CKE Setup to Clock High	tces	1.5	-	1.5	-	1.5	-	ns
Data Setup to Clock High	tos	1.5	-	1.5	-	1.5	-	ns
Write Setup to Clock High (WE, BWx)	tws	1.5	-	1.5	-	1.5	-	ns
Address Advance Setup to Clock High	tadvs	1.5	-	1.5	-	1.5	-	ns
Chip Select Setup to Clock High	tcss	1.5	-	1.5	-	1.5	-	ns
Address Hold from Clock High	tah	0.5	-	0.5	-	0.5	-	ns
CKE Hold from Clock High	tceh	0.5	-	0.5	-	0.5	-	ns
Data Hold from Clock High	tDH	0.5	-	0.5	-	0.5	-	ns
Write Hold from Clock High (WE, BWEx)	twn	0.5	-	0.5	-	0.5	-	ns
Address Advance Hold from Clock High	tadvh	0.5	-	0.5	-	0.5	-	ns
Chip Select Hold from Clock High	tcsH	0.5	-	0.5	-	0.5	-	ns
ZZ High to Power Down	tpds	2	-	2	-	2	-	cycle
ZZ Low to Power Up	tpus	2	-	2	-	2	-	cycle

Notes: 1. All address inputs must meet the specified setup and hold times for all rising clock(CLK) edges when ADV is sampled low and $\overline{\text{CS}}$ is sampled low. All other synchronous inputs must meet the specified setup and hold times whenever this device is chip selected.

2. Chip selects must be valid at each rising edge of CLK(when ADV is Low) to remain enabled.

It is not possible for two SRAMs on the same board to be at such different voltage and temperature.

4. To avoid bus contention, At a given voltage and temperature tclz is more than thzc.

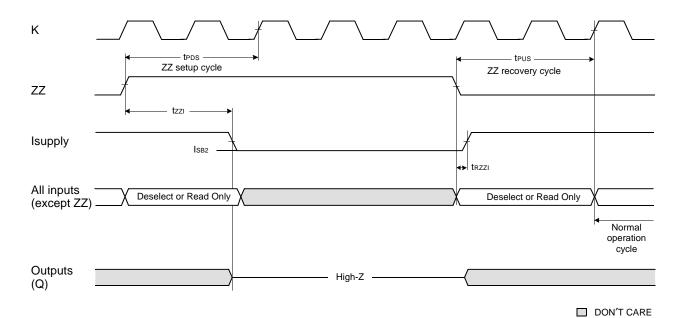
The specs as shown do not imply bus contention because tclz is a Min. parameter that is worst case at totally different test conditions (0°C,3.465V) than tchz, which is a Max. parameter(worst case at 70°C,3.135V)

^{3.} A write cycle is defined by WE low having been registered into the device at ADV Low, A Read cycle is defined by WE High with ADV Low, Both cases must meet setup and hold times.

SLEEP MODE

SLEEP MODE is a low current, power-down mode in which the device is deselected and current is reduced to ISB2. The duration of SLEEP MODE is dictated by the length of time the ZZ is in a High state.

After entering SLEEP MODE, all inputs except ZZ become disabled and all outputs go to High-Z


The ZZ pin is an asynchronous, active high input that causes the device to enter SLEEP MODE.

When the ZZ pin becomes a logic High, ISB2 is guaranteed after the time tzzl is met. Any operation pending when entering SLEEP MODE is not guaranteed to successful complete. Therefore, SLEEP MODE (READ or WRITE) must not be initiated until valid pending operations are completed. similarly, when exiting SLEEP MODE during tpus, only a DESELECT or READ cycle should be given while the SRAM is transitioning out of SLEEP MODE.

SLEEP MODE ELECTRICAL CHARACTERISTICS

DESCRIPTION	CONDITIONS	SYMBOL	MIN	MAX	UNITS
Current during SLEEP MODE	ZZ ≥ ViH	ISB2		10	mA
ZZ active to input ignored		tpds	2		cycle
ZZ inactive to input sampled		tpus	2		cycle
ZZ active to SLEEP current		tzzı		2	cycle
ZZ inactive to exit SLEEP current		trzzi	0		

SLEEP MODE WAVEFORM

* Please refer to attached timing diagram 5.

