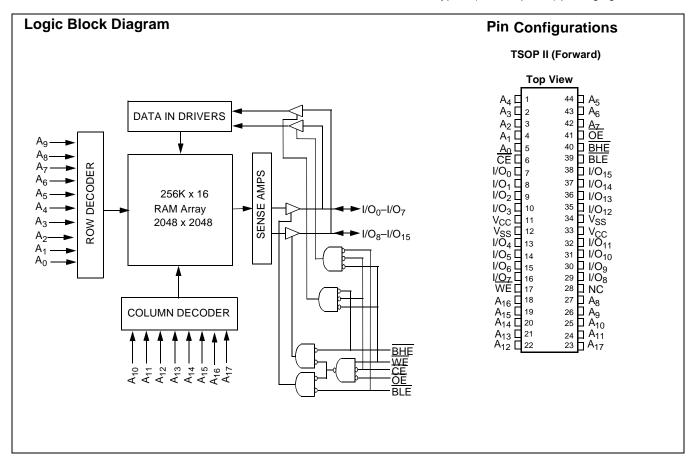


256K x 16 Static RAM

Features

- Low voltage range:
 CY62146V: 2.7V-3.6V
- Ultra-low active, standby power
- Easy memory expansion with CE and OE features
- TTL-compatible inputs and outputs
- · Automatic power-down when deselected
- CMOS for optimum speed/power

Functional Description

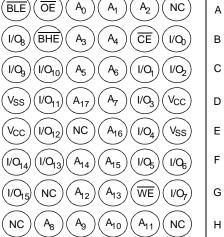

The CY62146V is a high-performance CMOS static RAM organized as 262,144 words by 16 bits. These devices feature advanced circuit design to provide ultra-low active current. This is ideal for providing More Battery Life™ (MoBL™) in portable applications such as cellular telephones. The device also has an automatic power-down feature that significantly reduces power consumption by 99% when addresses are not toggling. The device can also be put into standby mode when deselected (CE HIGH). The input/output pins (I/O₀ through

 I/O_{15}) are placed in a high-impedance state when: deselected (CE HIGH), outputs are disabled (OE HIGH), BHE and BLE are disabled (BHE, BLE HIGH), or during a write operation (CE LOW, and WE LOW).

Writing to the device is accomplished by taking Chip Enable (\overline{CE}) and Write Enable (\overline{WE}) inputs LOW. If Byte Low Enable (\overline{BLE}) is LOW, then data from I/O pins $(I/O_0$ through I/O₇), is written into the location specified on the address pins $(A_0$ through A_{16}). If Byte High Enable (\overline{BHE}) is LOW, then data from I/O pins $(I/O_8$ through $I/O_{15})$ is written into the location specified on the address pins $(A_0$ through $A_{17})$.

Reading from the device is accomplished by taking Chip Enable ($\overline{\text{CE}}$) and Output Enable ($\overline{\text{OE}}$) LOW while forcing the Write Enable ($\overline{\text{WE}}$) HIGH. If Byte Low Enable ($\overline{\text{BLE}}$) is LOW, then data from the memory location specified by the address pins will appear on I/O₀ to I/O₇. If Byte High Enable ($\overline{\text{BHE}}$) is LOW, then data from memory will appear on I/O₈ to I/O₁₅. See the truth table at the back of this data sheet for a complete description of read and write modes.

The CY62146V is available in 48-Ball FBGA and standard 44-Pin TSOP Type II (forward pinout) packaging.



MoBL and More Battery Life are trademarks of Cypress Semiconductor Corporation.

Pin Configurations (continued)

Maximum Ratings

(Above which the useful life may be impaired. For user guidelines, not tested.) Storage Temperature-65°C to +150°C Ambient Temperature with Power Applied......–55°C to +125°C Supply Voltage to Ground Potential.....-0.5V to +4.6V DC Voltage Applied to Outputs in High Z State $^{[1]}$ -0.5V to $\rm V_{CC}$ + 0.5V

DC Input Voltage^[1]......-0.5V to V_{CC} + 0.5V

Output Current into Outputs (LOW)	20 mA
Static Discharge Voltage(per MIL-STD-883, Method 3015)	>2001V
Latch-Up Current	. >200 mA

Operating Range

Device	Range	Ambient Temperature	v _{cc}
CY62146V	Industrial	-40°C to +85°C	2.7V to 3.6V

Product Portfolio

						Power Dis	sipation (In	dustrial)
	V _{CC} Range				Operating (I _{CC})		Standby (I _{SB2})	
Product	V _{CC(min.)}	V _{CC(typ.)} ^[2]	V _{CC(max.)}	Power	Typ. ^[2]	Maximum	Typ. ^[2]	Maximum
CY62146V	2.7V	3.0V	3.6V	LL	7 mA	15 mA	2 μΑ	20 μΑ

Notes:

- V_{IL(min.)} = -2.0V for pulse durations less than 20 ns.
 Typical values are included for reference only and are not guaranteed or tested. Typical values are measured at V_{CC} = V_{CC(typ.)}, T_A = 25°C.

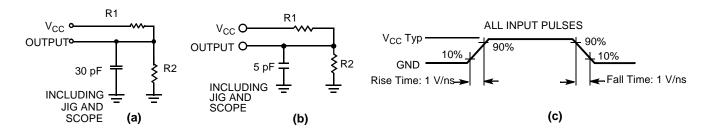
Electrical Characteristics Over the Operating Range

					CY62146V	1	
Parameter	Description	Test Condi	tions	Min.	Typ. ^[2]	Max.	Unit
V _{OH}	Output HIGH Voltage	$I_{OH} = -1.0 \text{ mA}$	V _{CC} = 2.7V	2.4			V
V _{OL}	Output LOW Voltage	I _{OL} = 2.1 mA	$V_{CC} = 2.7V$			0.4	V
V _{IH}	Input HIGH Voltage		$V_{CC} = 3.6V$	2.2		V _{CC} + 0.5V	V
V _{IL}	Input LOW Voltage		$V_{CC} = 2.7V$	-0.5		0.8	V
I _{IX}	Input Load Current	$GND \le V_1 \le V_{CC}$	$GND \le V_1 \le V_{CC}$			+1	μΑ
I _{OZ}	Output Leakage Current	$GND \le V_O \le V_{CC}$, Ou	GND ≤ V _O ≤ V _{CC} , Output Disabled			+1	μΑ
I _{CC}	V _{CC} Operating Supply Current	$I_{OUT} = 0 \text{ mA},$ $f = f_{MAX} = 1/t_{RC},$ CMOS Levels	V _{CC} = 3.6V		7	15	mA
		I _{OUT} = 0 mA, f = 1 MI CMOS Levels	Hz,		1	2	mA
I _{SB1}	Automatic CE Power-Down Current— CMOS Inputs	$\label{eq:control_control} \begin{split} \overline{\text{CE}} &\geq \text{V}_{\text{CC}} - 0.3\text{V},\\ \text{V}_{\text{IN}} &\geq \text{V}_{\text{CC}} - 0.3\text{V or}\\ \text{V}_{\text{IN}} &\leq 0.3\text{V}, \text{f} = \text{f}_{\text{MAX}} \end{split}$		2	20	^	
I _{SB2}	Automatic CE Power-Down Current— CMOS Inputs	$ \frac{\overline{CE}}{\overline{CE}} \ge V_{CC} - 0.3V \qquad V_{CC} = UL V_{IN} \ge V_{CC} - 0.3V, f = 0 $ $ V_{IN} \le 0.3V, f = 0 $				20	μΑ

Capacitance^[3]

Parameter	Description	Test Conditions	Max.	Unit
C _{IN}	Input Capacitance	$T_A = 25^{\circ}C, f = 1 \text{ MHz},$	6	pF
C _{OUT}	Output Capacitance	$V_{CC} = V_{CC(typ.)}$	8	pF

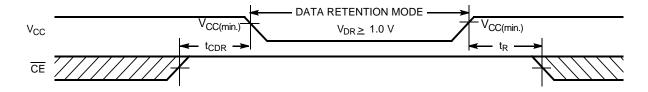
Thermal Resistance


Description	Test Conditions	Symbol	BGA	TSOPII	Unit
Thermal Resistance (Junction to Ambient) ^[3]	Still Air, soldered on a 4.25 x 1.125 inch, 4-layer printed circuit board	Θ_{JA}	55	60	°C/W
Thermal Resistance (Junction to Case) ^[3]		Θ _{JC}	16	22	°C/W

Note:

^{3.} Tested initially and after any design or process changes that may affect these parameters.

AC Test Loads and Waveforms


Equivalent to: THÉVENIN EQUIVALENT

Parameter	3.0V	Unit
R1	1105	Ω
R2	1550	Ω
R _{TH}	645	Ω
V _{TH}	1.75	V

Data Retention Characteristics (Over the Operating Range)

Parameter	meter Description Conditions		Min.	Typ. ^[2]	Max.	Unit	
V_{DR}	V _{CC} for Data Retention)			1.0		3.6	V
I _{CCDR}	Data Retention Current	$\frac{V_{CC}}{CE} = 1.0V$ $\frac{V_{CC}}{CE} \ge V_{CC} - 0.3V,$ $V_{IN} \ge V_{CC} - 0.3V \text{ or }$ $V_{IN} \le 0.3V$ No input may exceed $V_{CC} + 0.3V$			1	10	μА
t _{CDR} ^[3]	Chip Deselect to Data Retention Time			0			ns
t _R ^[4]	Operation Recovery Time			70			ns

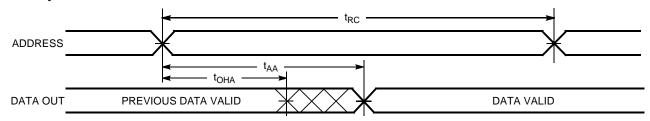
Data Retention Waveform

Note:

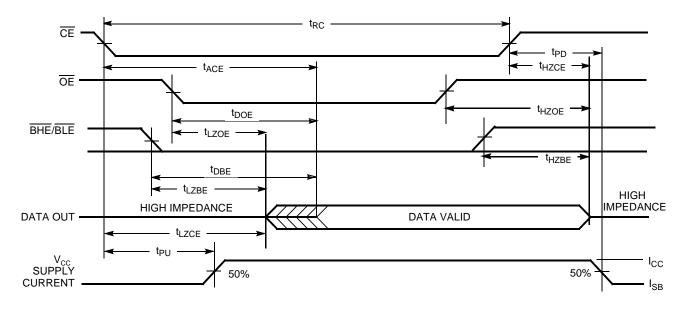
^{4.} Full Device AC operation requires linear V_{CC} ramp from V_{DR} to $V_{CC(min.)} \ge 10~\mu s$ or stable $V_{CC(min.)} \ge 10~\mu s$.

Switching Characteristics Over the Operating Range^[5]

		70) ns		
Parameter	Description	Min.	Max.	Unit	
READ CYCLE				1	
t _{RC}	Read Cycle Time	70		ns	
t _{AA}	Address to Data Valid		70	ns	
t _{OHA}	Data Hold from Address Change	10		ns	
t _{ACE}	CE LOW to Data Valid		70	ns	
t _{DOE}	OE LOW to Data Valid		25	ns	
t _{LZOE}	OE LOW to Low Z ^[6, 7]	5		ns	
t _{HZOE}	OE HIGH to High Z ^[7]		20	ns	
t _{LZCE}	CE LOW to Low Z ^[6]	10		ns	
t _{HZCE}	CE HIGH to High Z ^[6, 7]		20	ns	
t _{PU}	CE LOW to Power-Up	0		ns	
t _{PD}	CE HIGH to Power-Down		70	ns	
t _{DBE}	BHE / BLE LOW to Data Valid		35	ns	
t _{LZBE}	BHE / BLE LOW to Low Z	5		ns	
t _{HZBE}	BHE / BLE HIGH to High Z		20	ns	
WRITE CYCLE ^[8, 9]	•			•	
t _{WC}	Write Cycle Time	70		ns	
t _{SCE}	CE LOW to Write End	60		ns	
t _{AW}	Address Set-Up to Write End	60		ns	
t _{HA}	Address Hold from Write End	0		ns	
t _{SA}	Address Set-Up to Write Start	0		ns	
t _{PWE}	WE Pulse Width	40		ns	
t _{BW}	BHE / BLE Pulse Width	60		ns	
t _{SD}	Data Set-Up to Write End	30		ns	
t _{HD}	Data Hold from Write End	0		ns	
t _{HZWE}	WE LOW to High Z ^[6, 7]		25	ns	
t _{LZWE}	WE HIGH to Low Z ^[6]	10		ns	


- Test conditions assume signal transition time of 5 ns or less, timing reference levels of 1.5V, input pulse levels of 0 to V_{CC(typ.)}, and output loading of the specified I_{OL}/I_{OH} and 30 pF load capacitance.

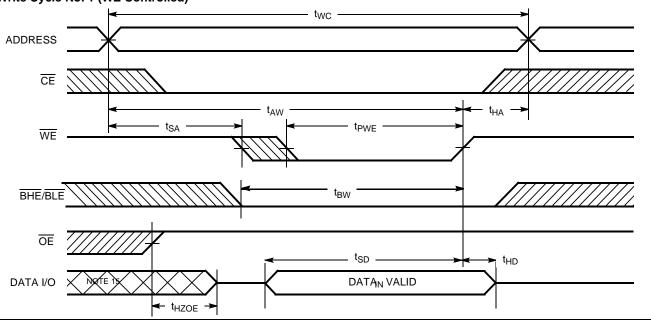
- At any given temperature and voltage condition, t_{HZCE} is less than t_{LZCE}, t_{HZOE} is less than t_{LZOE}, and t_{HZWE} is less than t_{LZWE} for any given device. t_{HZOE}, t_{HZCE}, and t_{HZWE} are specified with C_L = 5 pF as in part (b) of AC Test Loads. Transition is measured ±500 mV from steady-state voltage. The internal write time of the memory is defined by the overlap of CE LOW and WE LOW. Both signals must be LOW to initiate a write and either signal can terminate a write by going HIGH. The data input set-up and hold timing should be referenced to the rising edge of the signal that terminates the write. The minimum write cycle time for Write Cycle #3 (WE controlled, OE LOW) is the sum of t_{HZWE} and t_{SD}.



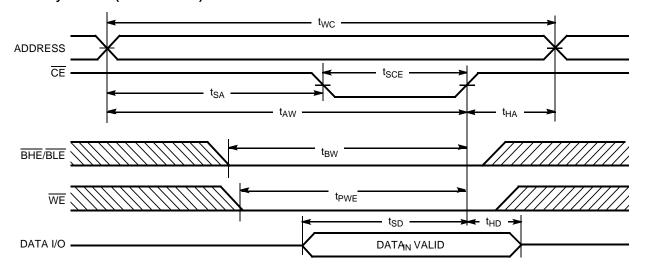
Switching Waveforms

Read Cycle No. 1^[10, 11]

Read Cycle No. 2 $^{[11, 12]}$


Notes:

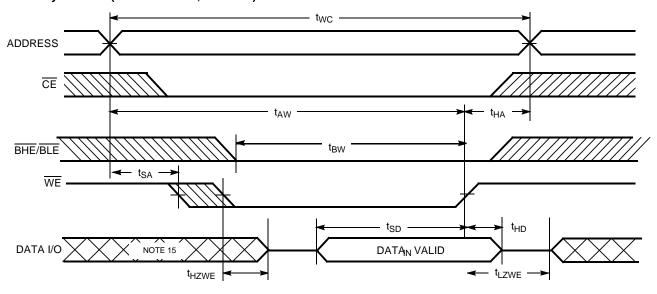
- Device is continuously selected. OE, CE = V_{IL}.
 WE is HIGH for read cycle.
 Address valid prior to or coincident with CE transition LOW.



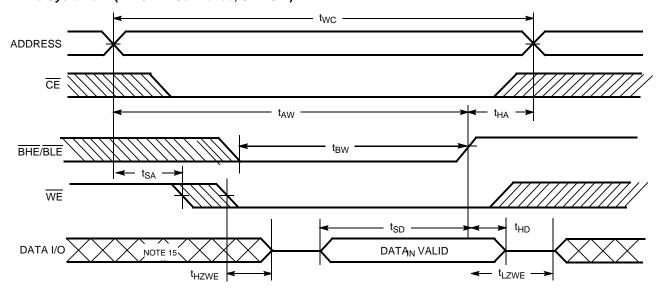
Switching Waveforms (continued)

Write Cycle No. 1 ($\overline{\text{WE}}$ Controlled) $^{[8, 13, 14]}$

Write Cycle No. 2 ($\overline{\text{CE}}$ Controlled) $^{[8,\ 13,\ 14]}$

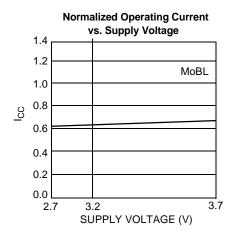

Notes:

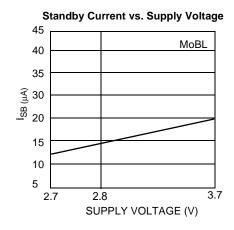
- Data I/O is high-impedance if OE = V_{IH}.
 If CE goes HIGH simultaneously with WE HIGH, the output remains in a high-impedance state.
 During this period, the I/Os are in output state and input signals should not be applied.

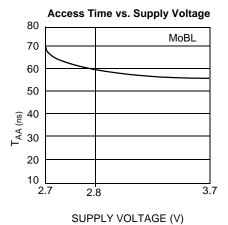


Switching Waveforms (continued)

Write Cycle No. 3 ($\overline{\text{WE}}$ Controlled, $\overline{\text{OE}}$ LOW) [9, 14]




Write Cycle No. 4 (BHE/BLE Controlled, OE LOW)^{15]}

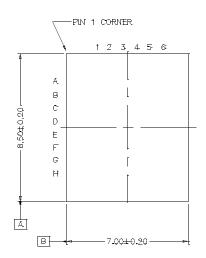


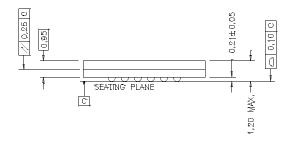
Typical DC and AC Characteristics

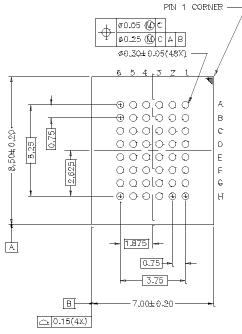
Truth Table

CE	WE	OE	BHE	BLE	Inputs/Outputs	Mode	Power
Н	Х	Х	Х	Х	High Z	Deselect/Power-Down	Standby (I _{SB})
L	Н	L	L	L	Data Out (I/O ₀ -I/O ₁₅)	Read	Active (I _{CC})
L	Н	L	Н	L	Data Out (I/O_0 – I/O_7); I/O_8 – I/O_{15} in High Z	Read	Active (I _{CC})
L	Н	L	L	Н	Data Out (I/O ₈ –I/O ₁₅); I/O ₀ –I/O ₇ in High Z	Read	Active (I _{CC})
L	Н	L	Н	Н	High Z	Output Disabled	Active (I _{CC})
L	Н	Н	Х	Х	High Z	Output Disabled	Active (I _{CC})
L	L	Х	L	L	Data In (I/O ₀ -I/O ₁₅)	Write	Active (I _{CC})
L	L	Х	Н	L	Data In (I/O ₀ -I/O ₇); I/O ₈ -I/O ₁₅ in High Z	Write	Active (I _{CC})
L	L	Х	L	Н	Data In (I/O ₈ –I/O ₁₅); I/O ₀ –I/O ₇ in High Z	Write	Active (I _{CC})
L	L	Х	Н	Н	High Z	Output Disabled	Active (I _{CC})

BOTTOM VIEW

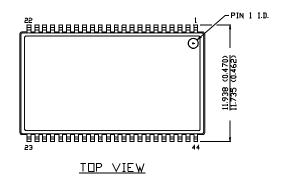

Ordering Information

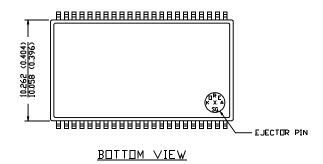

Speed (ns)	Ordering Code	Package Name	Package Type	Operating Range
70	CY62146VLL-70ZI	Z44	44-Pin TSOP II	Industrial
	CY62146VLL-70BAI	BA48B	48-Ball Fine Pitch BGA	

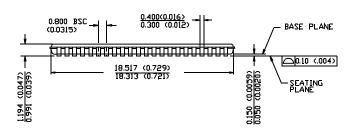

Package Diagrams

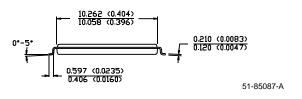
48-Ball (7.00 mm x 8.50 mm x 1.20 mm) Fine Pitch BGA BA48B

TOP VIEW


51-85106-B




Package Diagrams (continued)


44-Pin TSOP II Z44

DIMENSION IN MM (INCH) MAX MIN.

Document Title: CY62146V MoBL™ 256K x 16 Static RAM Document Number: 38-05159						
REV.	ECN NO.	Issue Date	Orig. of Change	Description of Change		
**	109963	10/02/01	SZV	Change from Spec number: 38-00647 to 38-05159		