

Vishay Semiconductors

Small Signal Switching Diodes, High Voltage

Features

- Silicon Epitaxial Planar Diodes
- · For general purpose
- These diodes are also available in other case styles including: the DO-35 case with the type designation BAV19 - BAV21, the MiniMELF case with the type designation BAV100 - BAV103, the SOT-23 case with the type designation BAS19 -BAS21 and the SOD-123 case with the type designation BAV19W - BAV21W

Mechanical Data

Case: SOD-323 Plastic case Weight: approx. 5.0 mg Packaging Codes/Options:

GS18 / 10 k per 13" reel (8 mm tape), 10 k/box GS08 / 3 k per 7" reel (8 mm tape), 15 k/box

Parts Table

Part	Type differentiation	Ordering code	Marking	Remarks
BAV19WS	V _R = 100 V	BAV19WS-GS18 or BAV19WS-GS08	A8	Tape and Reel
BAV20WS	V _R = 150 V	BAV20WS-GS18 or BAV20WS-GS08	A9	Tape and Reel
BAV21WS	V _R = 200 V	BAV21WS-GS18 or BAV21WS-GS08	AA	Tape and Reel

Document Number 85726 www.vishay.com

Rev. 1.3, 08-Jul-04

Vishay Semiconductors

Absolute Maximum Ratings

T_{amb} = 25 °C, unless otherwise specified

Parameter	Test condition	Part	Symbol	Value	Unit
Continuous reverse voltage		BAV19WS	V _R	100	V
		BAV20WS	V _R	150	V
		BAV21WS	V _R	200	V
Repetitive peak reverse voltage		BAV19WS	V_{RRM}	120	V
		BAV20WS	V_{RRM}	200	V
		BAV21WS	V_{RRM}	250	V
DC Forward current	T _{amb} = 25 °C		I _F	250 ¹⁾	mA
Rectified current (average) half wave rectification with resist. load	T _{amb} = 25 °C		I _{F(AV)}	200 ¹⁾	А
Repetitive peak forward current	$f \ge 50$ Hz, $\theta = 180$ °, $T_{amb} = 25$ °C		I _{FRM}	625 ¹⁾	mA
Surge forward current	t < 1 s, T _j = 25 °C		I _{FSM}	1	Α
Power dissipation	T _{amb} = 25 °C		P _{tot}	200 ¹⁾	mW

¹⁾ Valid provided that leads are kept at ambient temperature

Thermal Characteristics

T_{amb} = 25 °C, unless otherwise specified

Parameter	Test condition	Symbol	Value	Unit
Thermal resistance junction to ambient air		R _{thJA}	650 ¹⁾	°C/W
Junction temperature		T _j	150 ¹⁾	°C
Storage temperature range		T _S	- 65 to + 175 ¹⁾	°C

¹⁾ Valid provided that leads are kept at ambient temperature

Electrical Characteristics

T_{amb} = 25 °C, unless otherwise specified

Parameter	Test condition	Part	Symbol	Min	Тур.	Max	Unit
Forward voltage	I _F = 100 mA		V _F			1.00	V
	I _F = 200 mA		V _F			1.25	V
Leakage current	V _R = 100 V	BAV19WS	I _R			100	nA
	V _R = 100 V, T _j = 100 °C	BAV19WS	I _R			15	μΑ
	V _R = 150 V	BAV20WS	I _R			100	nA
	V _R = 150 V, T _j = 100 °C	BAV20WS	I _R			15	μΑ
	V _R = 200 V	BAV21WS	I _R			100	nA
	$V_R = 200 \text{ V}, T_j = 100 ^{\circ}\text{C}$	BAV21WS	I _R			15	μΑ
Dynamic forward resistance	I _F = 10 mA		r _f		5		Ω
Diode capacitance	V _R = 0, f = 1 MHz		C _{tot}			1.5	pF
Reverse recovery time	$I_F = 30$ mA, $I_R = 30$ mA, $I_{rr} = 3$ mA, $R_1 = 100$ Ω		t _{rr}			50	ns
	1fr = 0 115 t, 1 t = 100 22						

Vishay Semiconductors

Typical Characteristics (T_{amb} = 25 °C unless otherwise specified)

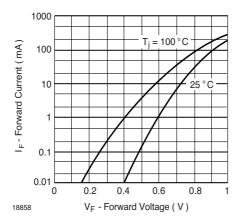


Figure 1. Forward Current vs. Forward Voltage

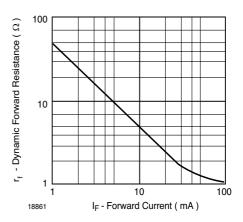


Figure 4. Dynamic Forward Resistance vs. Forward Current

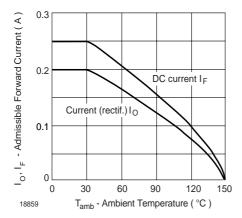


Figure 2. Admissible Forward Current vs. Ambient Temperature

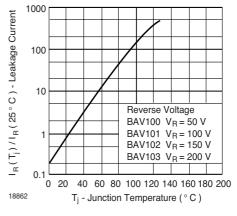


Figure 5. Leakage Current vs. Junction Temperature

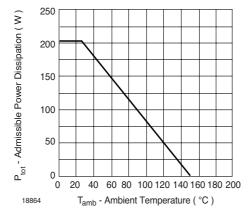


Figure 3. Admissible Power Dissipation vs. Ambient Temperature

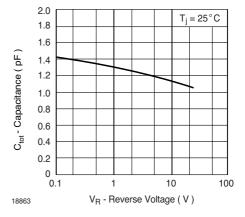
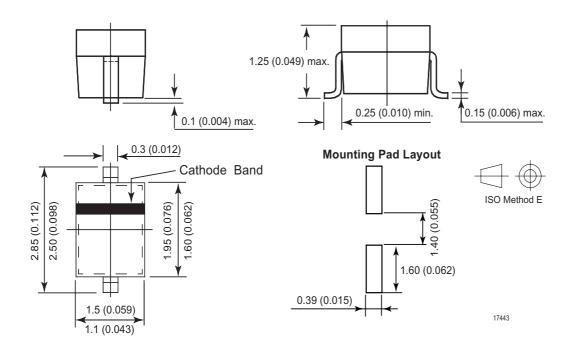



Figure 6. Capacitance vs. Reverse Voltage

Vishay Semiconductors

VISHAY

Package Dimensions in mm (Inches)

Vishay Semiconductors

Ozone Depleting Substances Policy Statement

It is the policy of Vishay Semiconductor GmbH to

- 1. Meet all present and future national and international statutory requirements.
- 2. Regularly and continuously improve the performance of our products, processes, distribution and operatingsystems with respect to their impact on the health and safety of our employees and the public, as well as their impact on the environment.

It is particular concern to control or eliminate releases of those substances into the atmosphere which are known as ozone depleting substances (ODSs).

The Montreal Protocol (1987) and its London Amendments (1990) intend to severely restrict the use of ODSs and forbid their use within the next ten years. Various national and international initiatives are pressing for an earlier ban on these substances.

Vishay Semiconductor GmbH has been able to use its policy of continuous improvements to eliminate the use of ODSs listed in the following documents.

- 1. Annex A, B and list of transitional substances of the Montreal Protocol and the London Amendments respectively
- 2. Class I and II ozone depleting substances in the Clean Air Act Amendments of 1990 by the Environmental Protection Agency (EPA) in the USA
- 3. Council Decision 88/540/EEC and 91/690/EEC Annex A, B and C (transitional substances) respectively.

Vishay Semiconductor GmbH can certify that our semiconductors are not manufactured with ozone depleting substances and do not contain such substances.

We reserve the right to make changes to improve technical design and may do so without further notice.

Parameters can vary in different applications. All operating parameters must be validated for each customer application by the customer. Should the buyer use Vishay Semiconductors products for any unintended or unauthorized application, the buyer shall indemnify Vishay Semiconductors against all claims, costs, damages, and expenses, arising out of, directly or indirectly, any claim of personal damage, injury or death associated with such unintended or unauthorized use.

Vishay Semiconductor GmbH, P.O.B. 3535, D-74025 Heilbronn, Germany Telephone: 49 (0)7131 67 2831, Fax number: 49 (0)7131 67 2423

Document Number 85726 www.vishay.com Rev. 1.3, 08-Jul-04