

Low-Voltage Large-Current Amplifier Applications

Package Dimensions

unit:mm

2033A

(): 2SB808

Specifications

Absolute Maximum Ratings at Ta = 25°C

Parameter	Symbol	Conditions	Ratings	Unit
Collector-to-Base Voltage	V _{CBO}		(-)20	V
Collector-to-Emitter Voltage	V _{CEO}		(–)15	V
Emitter-to-Base Voltage	V _{EBO}		(–)5	V
Collector Current	IC		(-)0.7	Α
Collector Current (Pulse)	I _{CP}		(-)1.5	А
Collector Dissipation	PC		250	mW
Junction Temperature	Tj		125	°C
Storage Temperature	Tstg		-55 to +125	°C

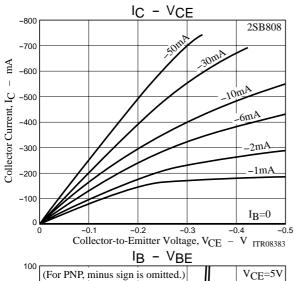
Electrical Characteristics at Ta = 25°C

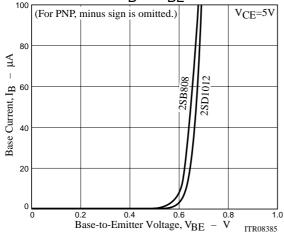
Parameter	Symbol	Conditions	Ratings			Unit
r alametei	Symbol	Symbol		typ	max	Offic
Collector Cutoff Current	I _{CBO}	V _{CB} =(-)15V, I _E =0			(–)1.0	μΑ
Emitter Cutoff Current	IEBO	V _{EB} =(-)4V, I _C =0			(–)1.0	μΑ
DC Current Gain	h _{FE} 1	V _{CE} =(-)2V, I _C =(-)50mA	160*		960*	
DC Current Gain	h _{FE} 2	V _{CE} =(-)2V, I _C =(-)500mA Pulse	80			
Gain-Bandwidth Product	f _T	V _{CE} =(-)10V, I _C =(-)50mA		250		MHz
Common Base Output Capacitance	0	\//\10\/_f_1MHz		(13)		pF
Common Base Output Capacitance	C _{ob}	V _{CB} =(-)10V, f=1MHz		8		pF

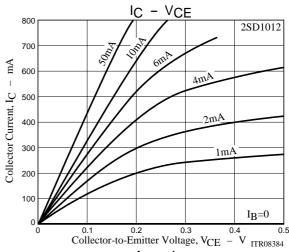
Continued on next page.

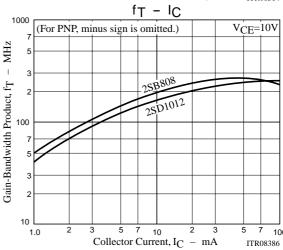
- Any and all SANYO products described or contained herein do not have specifications that can handle applications that require extremely high levels of reliability, such as life-support systems, aircraft's control systems, or other applications whose failure can be reasonably expected to result in serious physical and/or material damage. Consult with your SANYO representative nearest you before using any SANYO products described or contained herein in such applications.
- SANYO assumes no responsibility for equipment failures that result from using products at values that exceed, even momentarily, rated values (such as maximum ratings, operating condition ranges,or other parameters) listed in products specifications of any and all SANYO products described or contained herein.

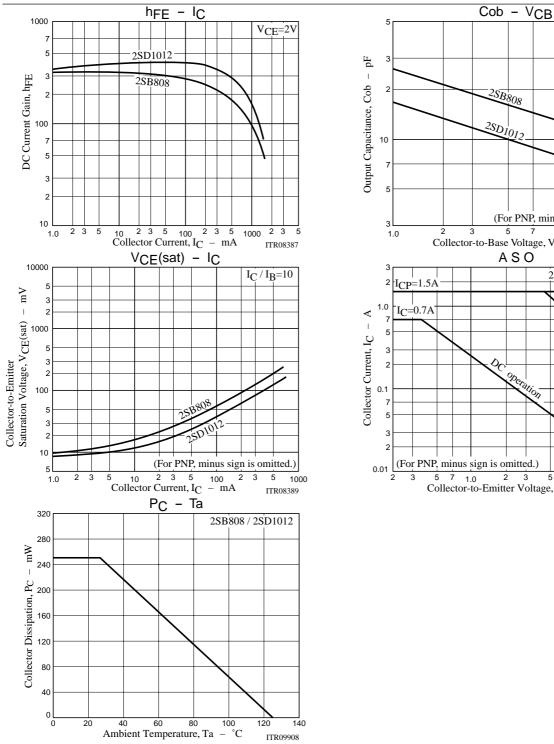
Continued from preceding page.

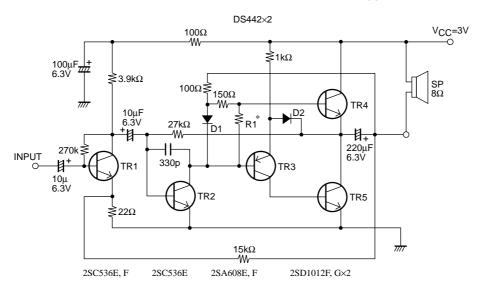

Parameter	Symbol	Conditions	Ratings			Unit
r alametei	Symbol	Conditions	min	typ	max	OIIII
	\/· .1	I _C =(-)5mA, I _B =(-)0.5mA		(-15)	(-35)	mV
Collector-to-Emitter Saturation Voltage	VCE(sat) ¹			10	25	mV
Conector-to-Emitter Saturation Voltage	V0=(1)2	I _C =(-)100mA, I _B =(-)10mA		(-60)	(-120)	mV
	VCE(sat)2			30	80	mV
Base-to-Emitter Saturation Voltage	V _{BE(sat)}	I _C =(-)100mA, I _B =(-)10mA		(-)0.8	(-)1.2	V
Collector-to-Base Breakdown Voltage	V _(BR) CBO	$I_{C}=(-)10\mu A, I_{E}=0$	(-)20			V
Collector-to-Emitter Breakdown Voltage	V _(BR) CEO	I _C =(−)1mA, R _{BE} =∞	(–)15			V
Emitter-to-Base Breakdown Votage	V _{(BR)EBO}	I _E =(-)10μA, I _C =0	(–)5			V


^{* :} The 2SB808/2SD1012 are classified by 50mA h_{FE} as follows :


2SB808


2SD1012


Rank	F	G	
hFE	160 to 320	280 to 560	
Rank	F	G	Н
hFE	160 to 320	280 to 560	480 to 960



f=1MHz

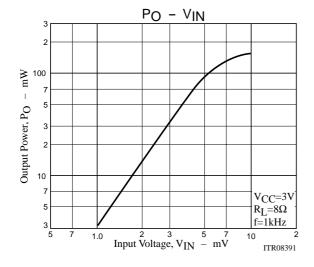
Sample Application Circuit: Low-voltage 3V (PO 120mW) ITL-OTL power amplifier.

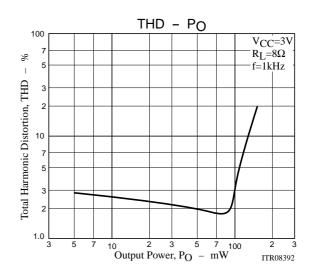
· Circuit configuration

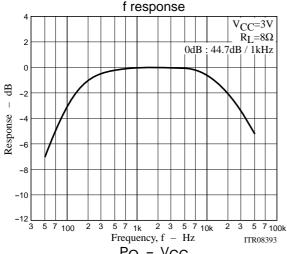
For obtaining an output of more than 100mW, the middle-point voltage at the output stage and the collector voltage of the driver transistor must be $V_{CC}/2$. Therefore, the output stage is of quasi complementary configuration composed of npn/npn transistors. The phase is reversed by the 2SA608 and the middle-point voltage are the output stage and the collector voltage of the driver transistor are more to be $V_{CC}/2$ so that the output can be maximized.

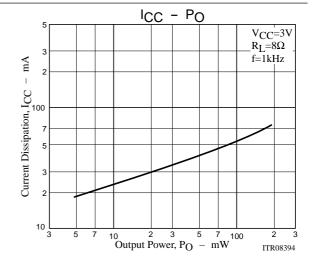
R1: Used control idele current

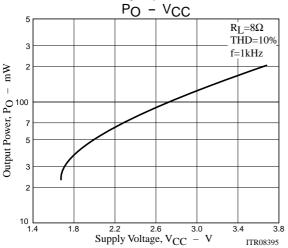
For R1=820 Ω . use rank F for [TR4, 5(2SD1012)]


For R1=680 Ω . use rank G for [TR4, 5(2SD1012)]


ITR09909


Main Specifications


Characteristic	Conditions	f=400Hz	f=1kHz	Unit
Current dissipation	Quiescent, total current dissipation	11.0 to 15.5	11.0 to 15.5	mA
Output power	THD=10%	120 to 125	127 to 130	mW
Votlage gain	P _O =10mW	43.3 to 45.5	43.5 to 45.7	dB
Total harmonic distortion	P _O =50mW	1.4 to 2.6	1.3 to 2.5	%
Input resistance	P _O =10mW	10.4 to 20.5	11.0 to 21.0	kΩ


Note : for above-mentioned $h_{\mbox{\scriptsize FE}}$ rank.

- Specifications of any and all SANYO products described or contained herein stipulate the performance, characteristics, and functions of the described products in the independent state, and are not guarantees of the performance, characteristics, and functions of the described products as mounted in the customer's products or equipment. To verify symptoms and states that cannot be evaluated in an independent device, the customer should always evaluate and test devices mounted in the customer's products or equipment.
- SANYO Electric Co., Ltd. strives to supply high-quality high-reliability products. However, any and all semiconductor products fail with some probability. It is possible that these probabilistic failures could give rise to accidents or events that could endanger human lives, that could give rise to smoke or fire, or that could cause damage to other property. When designing equipment, adopt safety measures so that these kinds of accidents or events cannot occur. Such measures include but are not limited to protective circuits and error prevention circuits for safe design, redundant design, and structural design.
- In the event that any or all SANYO products(including technical data, services) described or contained herein are controlled under any of applicable local export control laws and regulations, such products must not be exported without obtaining the export license from the authorities concerned in accordance with the above law.
- No part of this publication may be reproduced or transmitted in any form or by any means, electronic or mechanical, including photocopying and recording, or any information storage or retrieval system, or otherwise, without the prior written permission of SANYO Electric Co., Ltd.
- Any and all information described or contained herein are subject to change without notice due to product/technology improvement, etc. When designing equipment, refer to the "Delivery Specification" for the SANYO product that you intend to use.
- Information (including circuit diagrams and circuit parameters) herein is for example only; it is not guaranteed for volume production. SANYO believes information herein is accurate and reliable, but no guarantees are made or implied regarding its use or any infringements of intellectual property rights or other rights of third parties.

This catalog provides information as of September, 2003. Specifications and information herein are subject to change without notice.