

Typical Applications

The HMC694LP4(E) is ideal for:

- Point-to-Point Radio
- Point-to-Multi-Point Radio
- EW & ECM
- X-Band Radar
- Test Equipment

Functional Diagram

HMC694LP4 / 694LP4E

GaAs MMIC ANALOG VARIABLE GAIN AMPLIFIER, 6 - 17 GHz

Features

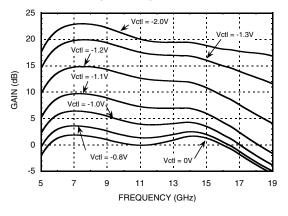
Wide Gain Control Range: 23 dB Single Control Voltage Output IP3 @ Max Gain: +30 dBm Output P1dB: +22 dBm No External Matching 24 Lead 4x4 mm SMT Package: 16 mm²

General Description

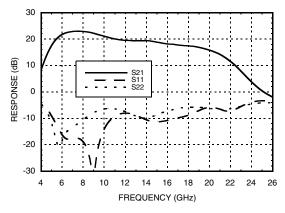
The HMC694LP4(E) is a GaAs MMIC PHEMT analog variable gain amplifier which operates between 6 and 17 GHz. Ideal for microwave radio applications, the amplifier provides up to 22 dB of gain, output P1 dB of up to +22 dBm, and up to +30 dBm of output IP3 at maximum gain, while requiring only 170 mA from a +5V supply. A gate bias pin (Vctrl) is provided to allow variable gain control up to 23 dB. Gain flatness is excellent making the HMC694LP4E ideal for EW, ECM and radar applications. The HMC694LP4E is housed in a RoHS compliant 4x4 mm QFN leadless package and is compatible with high volume surface mount manufacturing.

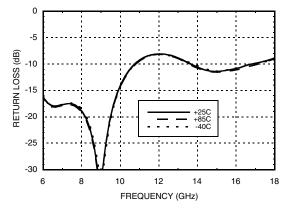
Electrical Specifications, $T_A = +25^{\circ}$ C, Vdd1, 2, 3= 5V, VctrI= -2V, Idd= 170 mA*

Parameter	Min.	Тур.	Max.	Min.	Тур.	Max.	Units
Frequency Range		6 - 10			10 - 17		GHz
Gain	19	22		14	18		dB
Gain Flatness		±1			±1.5		dB
Gain Variation Over Temperature		0.015			0.015		dB/ °C
Gain Control Range		23			20		dB
Noise Figure		6	7.5		6	6.5	dB
Input Return Loss		15			8		dB
Output Return Loss		10			8		dB
Output Power for 1 dB Compression (P1dB)	19	21		21	22		dBm
Saturated Output Power (Psat)		22			23		dBm
Output Third Order Intercept (IP3)		30			30		dBm
Total Supply Current (Idd)		170			170		mA

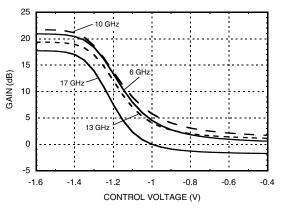

*Set Vctrl = -2V and then adjust Vgg1, 2 between -2V to 0V (typ. -0.8V) to achieve Idd = 170mA typical.

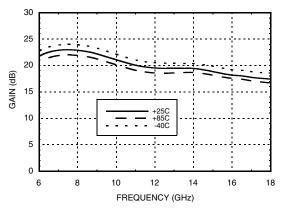
Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. Specifications subject to change without notice. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices. Trademarks and registered trademarks are the property of their respective owners.



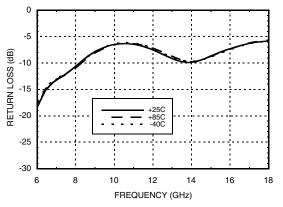

Control Voltage Range vs. Gain

Broadband Gain & Return Loss

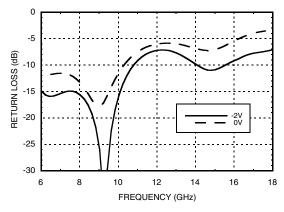

Input Return Loss vs. Temperature

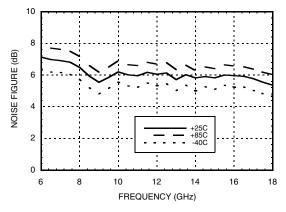

HMC694LP4 / 694LP4E

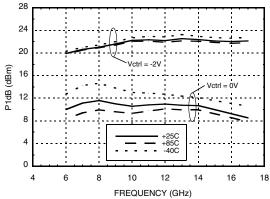
GaAs MMIC ANALOG VARIABLE GAIN AMPLIFIER, 6 - 17 GHz


Gain vs. Control Voltage

Gain vs. Temperature

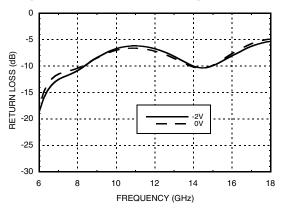

Output Return Loss vs. Temperature



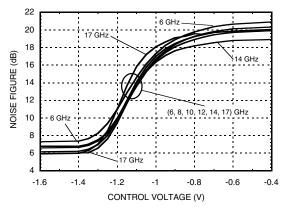

Return Loss @ Voltage Extreme

Noise Figure vs. Temperature

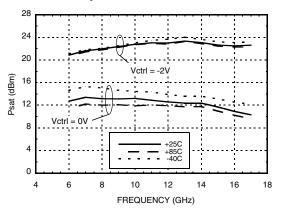
P1dB vs. Temperature



[1] Tested with broadband bias tee on RF ports and C1 = 10,000pF [2] C1, C6 and C8 = 100pF, L1 = 24nF

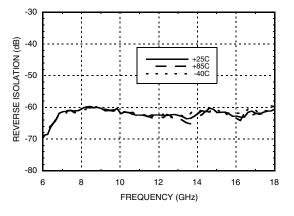

HMC694LP4 / 694LP4E

GaAs MMIC ANALOG VARIABLE GAIN AMPLIFIER, 6 - 17 GHz

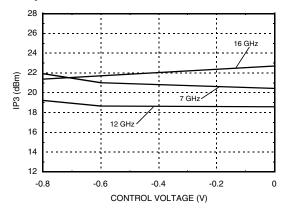

Output Return Loss @ Voltage Extreme

Noise Figure vs. CTRL

Psat vs. Temperature



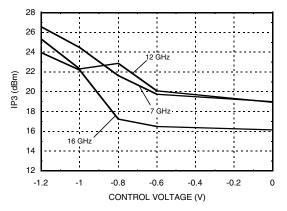
12



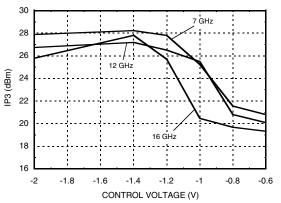
Reverse Isolation vs. Temperature



Output IP3 @ 0 dBm



HMC694LP4 / 694LP4E


GaAs MMIC ANALOG VARIABLE GAIN AMPLIFIER, 6 - 17 GHz

Output IP3 @ 5 dBm

ington, MA 01887

12

VARIABLE GAIN AMPLIFIERS - ANALOG - SMT

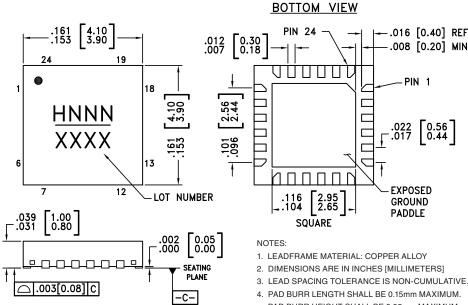
Absolute Maximum Ratings

Drain Bias Voltage (Vdd1, 2, 3)	+5.5V	
Gate Bias Voltage (Vgg1, 2)	-3 to 0V	
Gain Control Voltage (Vctrl)	-3 to 0V	
RF Power Input	+5 dBm	
Channel Temperature	175 °C	
Continuous Pdiss (T = 85 °C) (derate 10.2 mW/°C above 85 °C) ^[1]	0.92 W	
Thermal Resistance (Channel to ground paddle)	97.6 °C/W	
Storage Temperature	-65 to +150 °C	
Operating Temperature	-40 to +85 °C	

Bias Voltage

Vdd1,2,3 (V)	Idd Total (mA)	
+5.0	170	
Vgg1,2 (V)	Igg Total (mA)	
0V to -2V	<3 µA	

HMC694LP4 / 694LP4E


GAIN AMPLIFIER, 6 - 17 GHz

GaAs MMIC ANALOG VARIABLE

ELECTROSTATIC SENSITIVE DEVICE **OBSERVE HANDLING PRECAUTIONS**

Outline Drawing

- PAD BURR HEIGHT SHALL BE 0.05mm MAXIMUM.
- 5. PACKAGE WARP SHALL NOT EXCEED 0.05mm.
- 6. ALL GROUND LEADS AND GROUND PADDLE MUST BE SOLDERED TO PCB RF GROUND.
- 7. REFER TO HITTITE APPLICATION NOTE FOR SUGGESTED LAND PATTERN.

Package Information

Part Number	Package Body Material	Lead Finish	MSL Rating	Package Marking [3]	
HMC694LP4	Low Stress Injection Molded Plastic	Sn/Pb Solder	MSL1 [1]	H694 XXXX	
HMC694LP4E	RoHS-compliant Low Stress Injection Molded Plastic	100% matte Sn	MSL1 ^[2]	<u>H694</u> XXXX	

[1] Max peak reflow temperature of 235 °C

[2] Max peak reflow temperature of 260 °C

[3] 4-Digit lot number XXXX

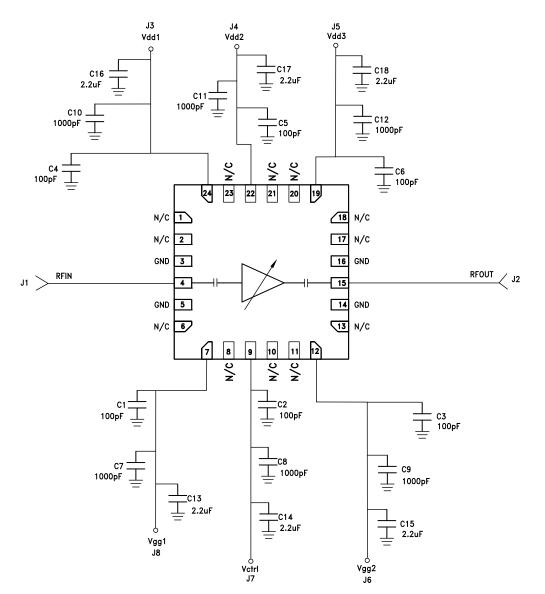
HMC694LP4 / 694LP4E

GaAs MMIC ANALOG VARIABLE GAIN AMPLIFIER, 6 - 17 GHz

Pin Descriptions

Pad Number	Function	Description	Interface Schematic	
1, 2, 6, 8, 10, 11, 13, 17, 18, 20, 21, 23	N/C	No Connection		
3, 5, 14, 16	GND	Die bottom must be connected to RF/DC ground.		
4	RFIN	This pad is AC coupled and matched to 50 Ohm.		
7, 12	Vgg1, 2	Gate control for amplifier. Adjust voltage to achieve typical Idd. Please follow "MMIC Amplifier Biasing Procedure" application note.	Vgg1,2 0	
9	Vctrl	Gain control Voltage for the amplifier. See assembly diagram for required external components.	Vctrl 0	
15	RFOUT	This pad is AC coupled and matched to 50 Ohm.		
19, 22, 24	Vdd1, 2, 3	Drain Bias Voltage for the amplifier. See assembly diagram for required external components	0 Vdd1,2,3 	

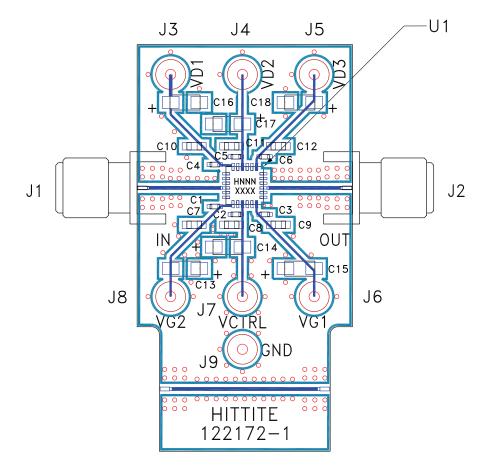
12 VARIABLE GAIN AMPLIFIERS - ANALOG - SMŢ



HMC694LP4 / 694LP4E

GaAs MMIC ANALOG VARIABLE GAIN AMPLIFIER, 6 - 17 GHz

Application Circuit



HMC694LP4 / 694LP4E

GaAs MMIC ANALOG VARIABLE GAIN AMPLIFIER, 6 - 17 GHz

Evaluation PCB

v03.0623

List of Materials for Evaluation PCB 122174 [1]

Item	Description
J1, J2	PCB Mount SMA RF Connectors
J3 - J9	DC Pin
C1 - C6	100 pF Capacitor, 0402 Pkg.
C7 - C12	1000 pF Capacitor, 0603 Pkg.
C13 - C18	2.2 µF Capacitor, CASE A
U1	HMC694LP4(E) Variable Gain Amplifier
PCB [2]	122172 Evaluation PCB

[1] Reference this number when ordering complete evaluation PCB

[2] Circuit Board Material: Arlon 25FR

The circuit board used in the application should use RF circuit design techniques. Signal lines should have 50 Ohm impedance while the package ground leads and exposed paddle should be connected directly to the ground plane similar to that shown. A sufficient number of via holes should be used to connect the top and bottom ground planes. The evaluation circuit board shown is available from Analog Devices upon request.