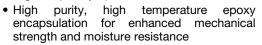

Vishay High Power Products

RoHS

COMPLIANT HALOGEN

FREE


Schottky Rectifier, 8 A

PRODUCT SUMMARY					
I _{F(AV)}	8 A				
V _R	80 V/100 V				

FEATURES

- 175 °C T_J operation
- Low forward voltage drop
- High frequency operation

- Guard ring for enhanced ruggedness and long term reliability
- Meets MSL level 1, per J-STD-020, LF maximum peak of 260 $^\circ \text{C}$
- Halogen-free according to IEC 61249-2-21 definition
- Compliant to RoHS directive 2002/95/EC
- AEC-Q101 qualified

DESCRIPTION

The VS-8TQ... Schottky rectifier series has been optimized for low reverse leakage at high temperature. The proprietary barrier technology allows for reliable operation up to 175 °C junction temperature. Typical applications are in switching power supplies, converters, freewheeling diodes, and reverse battery protection.

MAJOR RATINGS AND CHARACTERISTICS									
SYMBOL	CHARACTERISTICS	VALUES	UNITS						
I _{F(AV)}	Rectangular waveform	8	А						
V _{RRM}	Range	80/100	V						
I _{FSM}	t _p = 5 μs sine	850	А						
V _F	8 Apk, T _J = 125 °C	0.58	V						
TJ	Range	- 55 to 175	۵°						

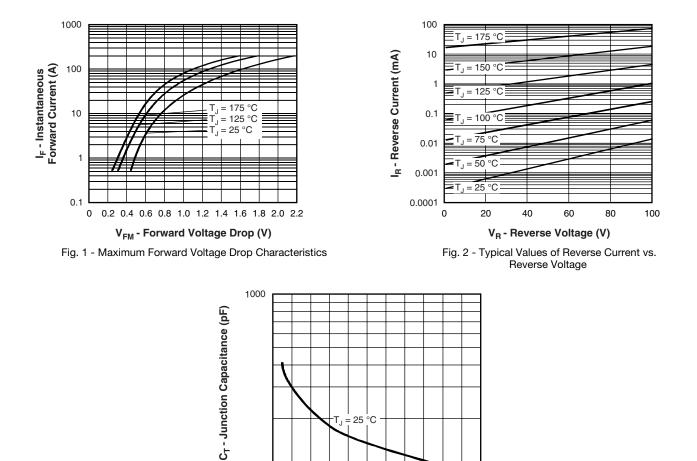
VOLTAGE RATINGS									
PARAMETER	SYMBOL	VS-8TQ080GSPbF	VS-8TQ100GSPbF	UNITS					
Maximum DC reverse voltage	V _R	80	100	V					
Maximum working peak reverse voltage	V _{RWM}	80	100	v					

ABSOLUTE MAXIMUM RATINGS									
PARAMETER	SYMBOL	TEST CONDI	VALUES	UNITS					
Maximum average forward current See fig. 5	I _{F(AV)}	50 % duty cycle at T _C = 157 °C	8	А					
Maximum peak one cycle non-repetitive surge current	I _{FSM}	5 µs sine or 3 µs rect. pulse	Following any rated load condition and with	850	A				
See fig. 7		10 ms sine or 6 ms rect. pulse	rated V _{RRM} applied	230	~				
Non-repetitive avalanche energy	E _{AS}	$T_{J} = 25 \ ^{\circ}C, \ I_{AS} = 0.5 \ A, \ L = 60 \ n$	7.50	mJ					
Repetitive avalanche current	I _{AR}	Current decaying linearly to zero Frequency limited by T_J maximum	0.5	А					

Vishay High Power Products Schott

Schottky Rectifier, 8 A

ELECTRICAL SPECIFICATIONS									
PARAMETER	SYMBOL	TEST CO	VALUES	UNITS					
		8 A	T ₁ = 25 °C	0.72					
Maximum forward voltage drop	V (1)	16 A	1j=25 0	0.88	v				
See fig. 1	V _{FM} ⁽¹⁾	8 A	T, = 125 °C	0.58	v				
		16 A	1j = 125 C	0.69					
Maximum reverse leakage current	I _{RM} ⁽¹⁾	$T_J = 25 \ ^\circ C$	$V_{\rm B}$ = Rated $V_{\rm B}$	0.28	mA				
See fig. 2		T _J = 125 °C	VR - naleu VR	7	ША				
Maximum junction capacitance	C _T	V_{R} = 5 V_{DC} (test signal range 100 kHz to 1 MHz), 25 °C		500	pF				
Typical series inductance	L _S	Measured lead to lead 5 r	8.0	nH					
Maximum voltage rate of change	dV/dt	Rated V _R	10 000	V/µs					


Note

 $^{(1)}\,$ Pulse width < 300 $\mu s,$ duty cycle < 2 %

THERMAL - MECHANICAL SPECIFICATIONS								
PARAMETER		SYMBOL	TEST CONDITIONS	VALUES	UNITS			
Maximum junction and storage temperature range		T _J , T _{Stg}		- 55 to 175	°C			
Maximum thermal resista junction to case	nce,	R _{thJC}	R _{thJC} DC operation See fig. 4		°C/W			
Typical thermal resistance, case to heatsink		R _{thCS}	Mounting surface, smooth and greased	0.50	0/11			
Approvimate weight				2	g			
Approximate weight				0.07	oz.			
Mounting torque	minimum			6 (5)	kgf · cm			
Mounting torque	maximum			12 (10)	(lbf · in)			
Marking device			Case et la D ² DAK	8TQ080GS				
			Case style D ² PAK	8TQ100GS				

Schottky Rectifier, 8 A Vishay High Power Products

T₁ = 25 °C

10 20 30 40 50 60 70 80 90 100 110 V_R - Reverse Voltage (V) Fig. 3 - Typical Junction Capacitance vs. Reverse Voltage

100 0

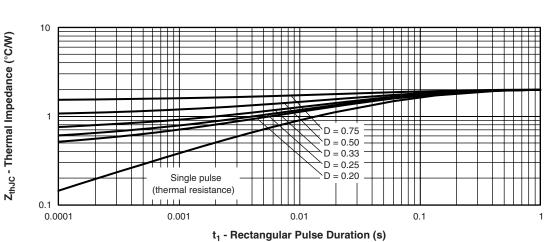
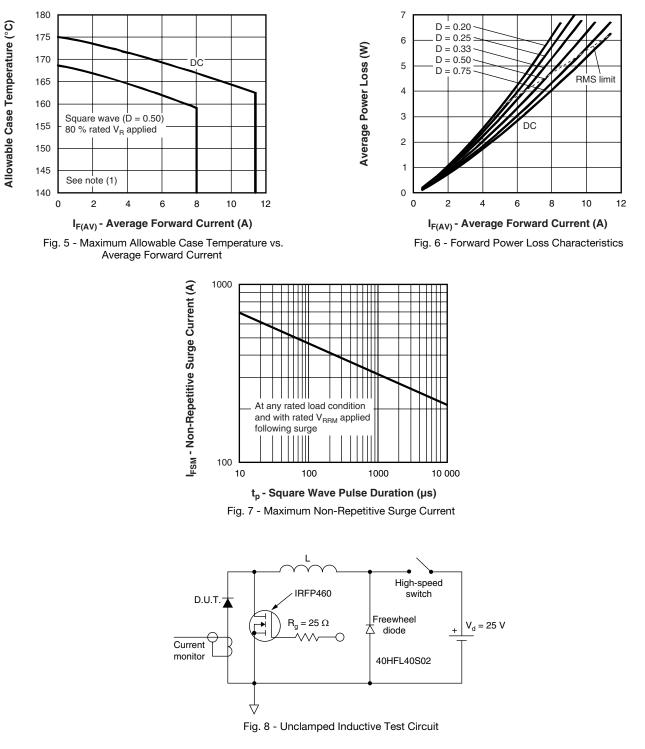
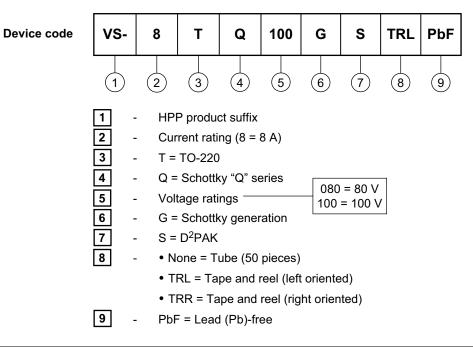



Fig. 4 - Maximum Thermal Impedance Z_{thJC} Characteristics

Vishay High Power Products

ts Schottky Rectifier, 8 A

Note


- ⁽¹⁾ Formula used: $T_C = T_J (Pd + Pd_{REV}) \times R_{thJC};$
 - $\begin{array}{l} \mathsf{Pd} = \mathsf{Forward} \ \mathsf{power} \ \mathsf{loss} = \mathsf{I}_{\mathsf{F}(\mathsf{AV})} \ \mathsf{x} \ \mathsf{V}_{\mathsf{FM}} \ \mathsf{at} \ (\mathsf{I}_{\mathsf{F}(\mathsf{AV})}/\mathsf{D}) \ (\mathsf{see fig. 6}); \\ \mathsf{Pd}_{\mathsf{REV}} = \mathsf{Inverse} \ \mathsf{power} \ \mathsf{loss} = \mathsf{V}_{\mathsf{R1}} \ \mathsf{x} \ \mathsf{I}_{\mathsf{R}} \ (\mathsf{1} \mathsf{D}); \ \mathsf{I}_{\mathsf{R}} \ \mathsf{at} \ \mathsf{V}_{\mathsf{R1}} = \mathsf{80} \ \% \ \mathsf{rated} \ \mathsf{V}_{\mathsf{R}} \end{array}$

Schottky Rectifier, 8 A Vishay High Power Products

ORDERING INFORMATION TABLE

LINKS TO RELATED DOCUMENTS							
Dimensions	www.vishay.com/doc?95046						
Part marking information	www.vishay.com/doc?95058						
Packaging information	www.vishay.com/doc?95032						
SPICE model	www.vishay.com/doc?95291						

Outline Dimensions

Vishay Semiconductors

D²PAK

Conforms to JEDEC outline D²PAK (SMD-220) в Pad layout (2)(3)A 11.00 MIN.-(E) F (0.43)ŧ (3) L1 4 (|(0.38)^{MIN.} (D1) (3) Detail A D 17.90 (0.70) Н 15.00 (0.625) (2) З 0.15)^{0.01} Ľ L2 Ĥ ţ В В 2.32 MIN. (0.08) 2.64 (0.103) 2.41 (0.096) (3)Ċ 2 x b2 С View A - A 2 x h // ± 0.004 M B ⊕ 0.010 M A M B Base Plating (4) Metal 2 x e Н b1, b3 Gauge plane c1 (4) (c) В 0° to 8° ŧ. Seating Lead assignments plane L3 A1 Lead tip (b, b2) Diodes Section B - B and C - C 1. - Anode (two die)/open (one die) Scale: None 2., 4. - Cathode Detail "A" 3. - Anode

Rotated 90 °CW Scale: 8:1

SYMBOL	MILLIMETERS		INCHES		NOTES		NOTES		SYMBOL	MILLIN	IETERS	INC	HES	NOTES
STMBOL	MIN.	MAX.	MIN.	MAX.	NOTES	NOTES	STMBOL	MIN.	MAX.	MIN.	MAX.	NOTES		
А	4.06	4.83	0.160	0.190			D1	6.86	8.00	0.270	0.315	3		
A1	0.00	0.254	0.000	0.010			E	9.65	10.67	0.380	0.420	2, 3		
b	0.51	0.99	0.020	0.039			E1	7.90	8.80	0.311	0.346	3		
b1	0.51	0.89	0.020	0.035	4		е	2.54	BSC	0.100	BSC			
b2	1.14	1.78	0.045	0.070			Н	14.61	15.88	0.575	0.625			
b3	1.14	1.73	0.045	0.068	4		L	1.78	2.79	0.070	0.110			
с	0.38	0.74	0.015	0.029			L1	-	1.65	-	0.066	3		
c1	0.38	0.58	0.015	0.023	4		L2	1.27	1.78	0.050	0.070			
c2	1.14	1.65	0.045	0.065			L3	0.25	BSC	0.010	BSC			
D	8.51	9.65	0.335	0.380	2		L4	4.78	5.28	0.188	0.208			

Notes

 $^{(1)}\,$ Dimensioning and tolerancing per ASME Y14.5 M-1994 $\,$

(2) Dimension D and E do not include mold flash. Mold flash shall not exceed 0.127 mm (0.005") per side. These dimensions are measured at the outmost extremes of the plastic body

⁽³⁾ Thermal pad contour optional within dimension E, L1, D1 and E1

⁽⁴⁾ Dimension b1 and c1 apply to base metal only

⁽⁵⁾ Datum A and B to be determined at datum plane H

⁽⁶⁾ Controlling dimension: inch

⁽⁷⁾ Outline conforms to JEDEC outline TO-263AB

Document Number: 95046 For technical questions within your region, please contact one of the following: Revision: 31-Mar-11 DiodesAmericas@vishay.com, DiodesAsia@vishay.com, DiodesEurope@vishay.com

www.vishay.com

This document is subject to change without notice. THE PRODUCTS DESCRIBED HEREIN AND THIS DOCUMENT ARE SUBJECT TO SPECIFIC DISCLAIMERS, SET FORTH AT www.vishay.com/doc?91000

DIMENSIONS in millimeters and inches

Vishay

Disclaimer

ALL PRODUCT, PRODUCT SPECIFICATIONS AND DATA ARE SUBJECT TO CHANGE WITHOUT NOTICE TO IMPROVE RELIABILITY, FUNCTION OR DESIGN OR OTHERWISE.

Vishay Intertechnology, Inc., its affiliates, agents, and employees, and all persons acting on its or their behalf (collectively, "Vishay"), disclaim any and all liability for any errors, inaccuracies or incompleteness contained in any datasheet or in any other disclosure relating to any product.

Vishay makes no warranty, representation or guarantee regarding the suitability of the products for any particular purpose or the continuing production of any product. To the maximum extent permitted by applicable law, Vishay disclaims (i) any and all liability arising out of the application or use of any product, (ii) any and all liability, including without limitation special, consequential or incidental damages, and (iii) any and all implied warranties, including warranties of fitness for particular purpose, non-infringement and merchantability.

Statements regarding the suitability of products for certain types of applications are based on Vishay's knowledge of typical requirements that are often placed on Vishay products in generic applications. Such statements are not binding statements about the suitability of products for a particular application. It is the customer's responsibility to validate that a particular product with the properties described in the product specification is suitable for use in a particular application. Parameters provided in datasheets and/or specifications may vary in different applications and performance may vary over time. All operating parameters, including typical parameters, must be validated for each customer application by the customer's technical experts. Product specifications do not expand or otherwise modify Vishay's terms and conditions of purchase, including but not limited to the warranty expressed therein.

Except as expressly indicated in writing, Vishay products are not designed for use in medical, life-saving, or life-sustaining applications or for any other application in which the failure of the Vishay product could result in personal injury or death. Customers using or selling Vishay products not expressly indicated for use in such applications do so at their own risk. Please contact authorized Vishay personnel to obtain written terms and conditions regarding products designed for such applications.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted by this document or by any conduct of Vishay. Product names and markings noted herein may be trademarks of their respective owners.

Material Category Policy

Vishay Intertechnology, Inc. hereby certifies that all its products that are identified as RoHS-Compliant fulfill the definitions and restrictions defined under Directive 2011/65/EU of The European Parliament and of the Council of June 8, 2011 on the restriction of the use of certain hazardous substances in electrical and electronic equipment (EEE) - recast, unless otherwise specified as non-compliant.

Please note that some Vishay documentation may still make reference to RoHS Directive 2002/95/EC. We confirm that all the products identified as being compliant to Directive 2002/95/EC conform to Directive 2011/65/EU.

Vishay Intertechnology, Inc. hereby certifies that all its products that are identified as Halogen-Free follow Halogen-Free requirements as per JEDEC JS709A standards. Please note that some Vishay documentation may still make reference to the IEC 61249-2-21 definition. We confirm that all the products identified as being compliant to IEC 61249-2-21 conform to JEDEC JS709A standards.