- DOC[™] (Dynamic Output Control) Circuit Dynamically Changes Output Impedance, Resulting in Noise Reduction Without Speed Degradation
- *EPIC*[™] (Enhanced-Performance Implanted CMOS) Submicron Process
- Less Than 2-ns Maximum Propagation Delay at 2.5-V and 3.3-V V_{CC}
- Dynamic Drive Capability Is Equivalent to Standard Outputs With I_{OH} and I_{OL} of ±24 mA at 2.5-V V_{CC}

- Overvoltage-Tolerant Inputs/Outputs Allow Mixed-Voltage-Mode Data Communications
- I_{off} Supports Partial-Power-Down Mode Operation
- Bus Hold on Data Inputs Eliminates the Need for External Pullup/Pulldown Resistors
- Package Options Include Plastic Small-Outline (DW), Thin Very Small-Outline (DGV), and Thin Shrink Small-Outline (PW) Packages

description

A Dynamic Output Control (DOC) circuit is implemented, which, during the transition, initially lowers the output impedance to effectively drive the load and, subsequently, raises the impedance to reduce noise. Figure 1 shows typical V_{OL} vs I_{OL} and V_{OH} vs I_{OH} curves to illustrate the output impedance and drive capability of the circuit. At the beginning of the signal transition, the DOC circuit provides a maximum dynamic drive that is equivalent to a high-drive standard-output device. For more information, refer to the TI application reports, *AVC Logic Family Technology and Applications*, literature number SCEA006, and *Dynamic Output Control (DOC) Circuitry Technology and Applications*, literature number SCEA009.

This octal buffer/driver is operational at 1.2-V to 3.6-V V_{CC} , but is designed specifically for 1.65-V to 3.6-V V_{CC} operation.

The SN74AVCH244 is organized as two 4-bit line drivers with separate output-enable (\overline{OE}) inputs. When \overline{OE} is low, the device passes data from the A inputs to the Y outputs. When \overline{OE} is high, the outputs are in the high-impedance state.

To ensure the high-impedance state during power up or power down, \overline{OE} should be tied to V_{CC} through a pullup resistor; the minimum value of the resistor is determined by the current-sinking capability of the driver.

Active bus-hold circuitry is provided to hold unused or floating data inputs at a valid logic level.

DOC and EPIC are trademarks of Texas Instruments Incorporated.

SN74AVCH244 OCTAL BUFFER/DRIVER WITH 3-STATE OUTPUTS SCES262C – APRIL 1999 – REVISED FEBRUARY 2000

description (continued)

This device is fully specified for partial-power-down applications using I_{off} . The I_{off} circuitry disables the outputs, preventing damaging current backflow through the device when it is powered down.

The SN74AVCH244 is characterized for operation from -40°C to 85°C.

terminal assignments

DGV, DW, OR PW PACKAGE (TOP VIEW)									
1			1						
1 <u>0</u> [1	20] v _{cc}						
1A1 🛛	2	19] 2 <u>0E</u>						
2Y4 🛛	3	18] 1Y1						
1A2 🛛	4	17] 2A4						
2Y3 [5	16] 1Y2						
1A3 [6	15] 2A3						
2Y2 [7	14] 1Y3						
1A4 [8	13] 2A2						
2Y1 [9	12] 1Y4						
GND [10	11	2A1						

FUNCTION TABLE (each 4-bit buffer/driver)

INPU	JTS	OUTPUT
OE	Α	Y
L	Н	Н
L	L	L
Н	Х	Z

logic symbol[†]

[†] This symbol is in accordance with ANSI/IEEE Std 91-1984 and IEC Publication 617-12.

logic diagram (positive logic)

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)[†]

Supply voltage range, V _{CC}	0.5 V to 4.6 V
Input voltage range, V _I (see Note 1)	0.5 V to 4.6 V
Voltage range applied to any output in the high-impedance or power-off state	e, V _O
(see Note 1)	—0.5 V to 4.6 V
$\begin{array}{c} \text{(see Notes 1 and 2)} \\ \text{(see Notes 1 and 2)} \\ \text{Input clamp current, } I_{IK} (V_I < 0) \\ \text{Output clamp current, } I_{OK} (V_O < 0) \\ \text{Continuous output current, } I_O \\ \text{Continuous current through each } V_{CC} \text{ or GND} \\ \text{Package thermal impedance, } \theta_{JA} (see Note 3): DGV package \\ DW package \\ \text{PW package} \\ \end{array}$	$\begin{array}{cccc} -0.5 \mbox{ V to } \mbox{V}_{CC} + 0.5 \mbox{ V} \\ -50 \mbox{ mA} \\ -50 \mbox{ mA} \\ \pm 50 \mbox{ mA} \\ \pm 100 \mbox{ mA} \\ 92^{\circ}\mbox{C/W} \\ 58^{\circ}\mbox{C/W} \\ 83^{\circ}\mbox{C/W} \end{array}$
Storage temperature range, T _{stg}	–65°C to 150°C

[†] Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

NOTES: 1. The input and output negative-voltage ratings may be exceeded if the input and output current ratings are observed.

2. The output positive-voltage rating may be exceeded up to 4.6 V maximum if the output current rating is observed.

3. The package thermal impedance is calculated in accordance with JESD 51.

SN74AVCH244 OCTAL BUFFER/DRIVER WITH 3-STATE OUTPUTS

SCES262C - APRIL 1999 - REVISED FEBRUARY 2000

recommended operating conditions (see Note 4)

			MIN	MAX	UNIT	
Vaa	Supply yeltogo	Operating	1.4	3.6	V	
VCC	Supply voltage	Data retention only	1.2		v	
		V _{CC} = 1.2 V	V _{CC}			
		$V_{CC} = 1.4 \text{ V to } 1.6 \text{ V}$	$0.65 \times V_{CC}$			
VIH	High-level input voltage	V _{CC} = 1.65 V to 1.95 V	$0.65 \times V_{CC}$		V	
		$V_{CC} = 2.3 \text{ V to } 2.7 \text{ V}$	1.7			
		$V_{CC} = 3 V \text{ to } 3.6 V$	2			
		V _{CC} = 1.2 V		GND		
		V _{CC} = 1.4 V to 1.6 V	$ \begin{array}{c} V_{CC} \\ 0.65 \times V_{CC} \\ 0.65 \times V_{CC} \\ 1.7 \\ 2 \\ 0 \\ 0 \\ 0 \\ $	$0.35 \times V_{CC}$		
VIL	Low-level input voltage	V _{CC} = 1.65 V to 1.95 V		$0.35 \times V_{CC}$	V	
	$V_{CC} = 2.3 \text{ V to } 2.7 \text{ V}$			0.7		
		$V_{CC} = 3 \vee to 3.6 \vee$		0.8		
VI	Input voltage		0	3.6	V	
Va	Output voltage	Active state	0	VCC	V	
vo	Oulput voltage	3-state	0	3.6	v	
		V _{CC} = 1.4 V to 1.6 V		-2	mA	
1	Static high lovel output ourrept [†]	V _{CC} = 1.65 V to 1.95 V		-4		
OHS	Static high-level output current	V _{CC} = 2.3 V to 2.7 V		-8		
		$V_{CC} = 3 V \text{ to } 3.6 V$		-12		
	$V_{CC} = 1.4 V \text{ to } 1.6 V_{CC}$			2		
IOLS		V _{CC} = 1.65 V to 1.95 V		4		
	Static low-level output current i	V_{CC} = 2.3 V to 2.7 V		8	mA	
		$V_{CC} = 3 \vee to 3.6 \vee$		12	1	
$\Delta t/\Delta v$	Input transition rise or fall rate	V _{CC} = 1.4 V to 3.6 V		5	ns/V	
Тд	Operating free-air temperature		-40	85	°C	

[†] Dynamic drive capability is equivalent to standard outputs with I_{OH} and I_{OL} of ±24 mA at 2.5-V V_{CC}. See Figure 1 for V_{OL} vs I_{OL} and V_{OH} vs I_{OH} characteristics. Refer to the TI application reports, *AVC Logic Family Technology and Applications*, literature number SCEA006, and *Dynamic Output Control (DOC) Circuitry Technology and Applications*, literature number SCEA009.

NOTE 4: All unused control inputs of the device must be held at V_{CC} or GND to ensure proper device operation. Refer to the TI application report, Implications of Slow or Floating CMOS Inputs, literature number SCBA004.

SN74AVCH244 **OCTAL BUFFER/DRIVER** WITH 3-STATE OUTPUTS

SCES262C - APRIL 1999 - REVISED FEBRUARY 2000

electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

	PARAMETER	TEST (CONDITIONS	Vcc	MIN	TYP†	MAX	UNIT	
		I _{OHS} = -100 μA		1.4 V to 3.6 V	V _{CC} -0.	.2			
		$I_{OHS} = -2 \text{ mA},$	V _{IH} = 0.91 V	1.4 V	1.05				
VOH VOL II Contro IBHL [‡] IBHL [‡] IBHLO [¶] IBHHO [#] IOF IOZ ICC Ci Contro		$I_{OHS} = -4 \text{ mA},$	VIH = 1.07 V	1.65 V	1.2			V	
		I _{OHS} = -8 mA,	VIH = 1.7 V	2.3 V	1.75				
		$I_{OHS} = -12 \text{ mA},$	V _{IH} = 2 V	3 V	2.3				
		I _{OLS} = 100 μA		1.4 V to 3.6 V			0.2		
VOH VOL IIIIII IBHL [‡] IBHH [§] IBHHO [¶] IBHHO [#] IOZ ICC		$I_{OLS} = 2 \text{ mA},$	V _{IL} = 0.49 V	1.4 V			0.4		
VOL		I _{OLS} = 4 mA,	V _{IL} = 0.57 V	1.65 V			0.45	V	
		I _{OLS} = 8 mA,	V _{IL} = 0.7 V	2.3 V			0.55		
		I _{OLS} = 12 mA,	V _{IL} = 0.8 V	3 V			0.7		
Ц	Control inputs	V _I = V _{CC} or GND		3.6 V			±2.5	μΑ	
	•	V _I = 0.57 V		1.65 V	25				
VOH VOL II Control in IBHL [‡] IBHLO [¶] IBHLO [#] IOZ ICC Control in		V _I = 0.7 V		2.3 V	45			μA	
		V _I = 0.8 V		3 V	75				
		VI = 1.07 V		1.65 V	-25				
I _{BHH} §		V _I = 1.7 V	2.3 V	-45			μA		
		V _I = 2 V		3 V	-75				
				1.95 V	200			μΑ	
BHLO	,¶	$V_I = 0$ to V_{CC}	$V_{I} = 0$ to V_{CC}		300				
				3.6 V	500				
				1.95 V	-200				
Івнно	o [#]	$V_I = 0$ to V_{CC}	$V_{I} = 0$ to V_{CC}		-300			μA	
				3.6 V	-500				
loff		V _I or V _O = 3.6 V		0			±10	μΑ	
loz		$V_{O} = V_{CC} \text{ or } GND$		3.6 V			±12.5	μΑ	
ICC		$V_I = V_{CC}$ or GND,	IO = 0	3.6 V			40	μA	
	Control in guite			2.5 V					
	Control inputs								
	Deta innuta	$\int v_{I} = v_{CC} \text{ or GND}$		2.5 V] pr	
	Data inputs			3.3 V					
6	Outouto			2.5 V				~ ~	
	Outputs	vO = vCC or GND		3.3 V				р⊢	

[†] Typical values are measured at $T_A = 25^{\circ}C$.

[‡]The bus-hold circuit can sink at least the minimum low sustaining current at V_{IL} max. I_{BHL} should be measured after lowering V_{IN} to GND and then raising it to VIL max.

§ The bus-hold circuit can source at least the minimum high sustaining current at VIH min. IBHH should be measured after raising VIN to VCC and then lowering it to VIH min.

 \P An external driver must source at least I_{BHLO} to switch this node from low to high.

[#] An external driver must sink at least IBHHO to switch this node from high to low.

SN74AVCH244 OCTAL BUFFER/DRIVER WITH 3-STATE OUTPUTS SCES262C – APRIL 1999 – REVISED FEBRUARY 2000

switching characteristics over recommended operating free-air temperature range (unless otherwise noted) (see Figures 2 through 5)

PARAMETER			V _{CC} = 1.2 V	V _{CC} = 1.5 V ± 0.1 V		V _{CC} = 1.8 V ± 0.15 V		V _{CC} = 2.5 V ± 0.2 V		V _{CC} = 3.3 V ± 0.3 V		UNIT
		(001101)	TYP	MIN	MAX	MIN	MAX	MIN	MAX	MIN	MAX	
^t pd	А	Y										ns
t _{en}	ŌĒ	Y										ns
^t dis	ŌE	Y										ns

operating characteristics, $T_A = 25^{\circ}C$

DADAMETED			V _{CC} = 1.8 V	V _{CC} = 2.5 V	V _{CC} = 3.3 V		
			TEST CONDITIONS	TYP	TYP	TYP	UNIT
	Power dissipation	Outputs enabled	$C_{1} = 0$ $f = 10$ MHz				ъĘ
Cpd	capacitance	Outputs disabled	$C_L = 0$, $I = I0 M HZ$				l b⊢

- NOTES: A. CL includes probe and jig capacitance.
 - B. Waveform 1 is for an output with internal conditions such that the output is low except when disabled by the output control. Waveform 2 is for an output with internal conditions such that the output is high except when disabled by the output control.
 C. All input pulses are supplied by generators having the following characteristics: PRR ≤ 10 MHz, Z_Q = 50 Ω, t_f ≤ 2 ns, t_f ≤ 2 ns.
 - D. The outputs are measured one at a time with one transition per measurement.
 - E. t_{PLZ} and t_{PHZ} are the same as t_{dis} .
 - F. t_{PZL} and t_{PZH} are the same as t_{en} .
 - G. tp $_{\rm H}$ and tp $_{\rm H}$ are the same as t_{pd}.

Figure 2. Load Circuit and Voltage Waveforms

- NOTES: A. CL includes probe and jig capacitance.
 - B. Waveform 1 is for an output with internal conditions such that the output is low except when disabled by the output control. Waveform 2 is for an output with internal conditions such that the output is high except when disabled by the output control.
 C. All input pulses are supplied by generators having the following characteristics: PRR ≤ 10 MHz, Z_Q = 50 Ω, t_f ≤ 2 ns, t_f ≤ 2 ns.
 - D. The outputs are measured one at a time with one transition per measurement.
 - E. tpLz and tpHz are the same as tdis.
 - F. tpzL and tpzH are the same as ten.
 - G. tPLH and tPHL are the same as tpd.

Figure 3. Load Circuit and Voltage Waveforms

- NOTES: A. CL includes probe and jig capacitance.
 - B. Waveform 1 is for an output with internal conditions such that the output is low except when disabled by the output control. Waveform 2 is for an output with internal conditions such that the output is high except when disabled by the output control. C. All input pulses are supplied by generators having the following characteristics: PRR \leq 10 MHz, Z_O = 50 Ω , t_f \leq 2 ns, t_f \leq 2 ns.
 - D. The outputs are measured one at a time with one transition per measurement.

 - E. tpLz and tpHz are the same as tdis.
 - F. tp71 and tp7H are the same as ten.
 - G. tpLH and tpHL are the same as tpd.

Figure 4. Load Circuit and Voltage Waveforms

NOTES: A. CL includes probe and jig capacitance.

- B. Waveform 1 is for an output with internal conditions such that the output is low except when disabled by the output control. Waveform 2 is for an output with internal conditions such that the output is high except when disabled by the output control.
- C. All input pulses are supplied by generators having the following characteristics: PRR \leq 10 MHz, Z_O = 50 Ω , t_f \leq 2 ns, t_f \leq 2 ns.
- D. The outputs are measured one at a time with one transition per measurement.
- E. t_{PLZ} and t_{PHZ} are the same as t_{dis} .
- F. t_{P7I} and t_{P7H} are the same as t_{en} .
- G. t_{PLH} and t_{PHL} are the same as t_{pd} .

Figure 5. Load Circuit and Voltage Waveforms

