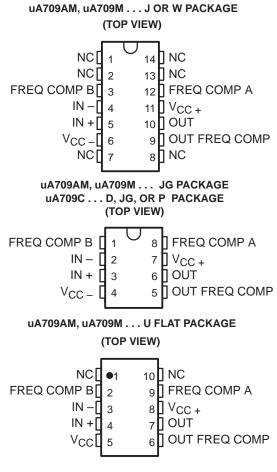
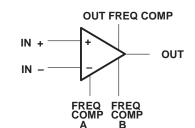
SLOS096 - D942, FEBRUARY 1971 - REVISED MAY 1988


- Common-Mode Input Range . . . ±10 V Typical
- Designed to Be Interchangeable With Fairchild µA709A, µA709, and µA709C
- Maximum Peak-to-Peak Output Voltage Swing ... 28-V Typical With 15-V Supplies

description

These circuits are general-purpose operational amplifiers. each having high-impedance differential inputs and a low-impedance output. Component matching, inherent with silicon monolithic circuit-fabrication techniques. produces an amplifier with low-drift and low-offset characteristics. Provisions are incorporated within the circuit whereby external components may be used to compensate the amplifier for stable operation under various feedback or load conditions. These amplifiers are particularly useful for applications requiring transfer or generation of linear or nonlinear functions.


The uA709A circuit features improved offset characteristics, reduced input-current requirements, and lower power dissipation when compared to the uA709 circuit. In addition, maximum values of the average temperature coefficients of offset voltage and current are specified for the uA709A.

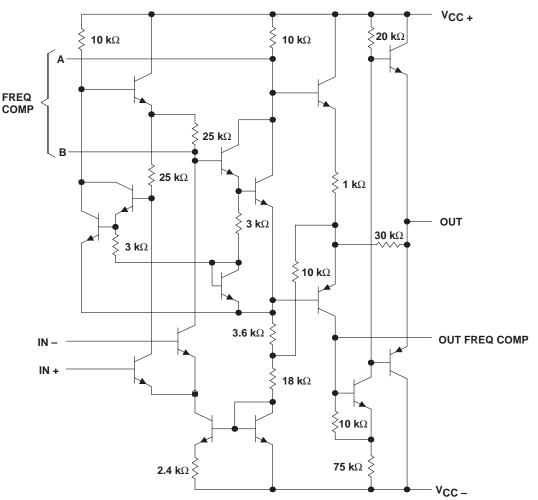
The uA709C is characterized for operation from 0°C to 70°C. The uA709AM and uA709M are characterized for operation over the full military temperature range of -55°C to 125°C.

NC - No internal connection

symbol

	Via max	AGE					
TA	V _{IO} max AT 25°C	SMALL OUTLINE (D)	CERAMIC (J)	CERAMIC DIP (JG)	PLASTIC DIP (P)	FLAT PACK (U)	FLAT PACK (W)
0°C to 70°C	7.5 mV	uA709CD	_	uA709CJG	uA709CP	_	_
−55°C to	5 mV		uA709MJ	uA709MJG		uA709MU	uA709MW
125°C	2 mV		uA709AMJ	uA709AMJG	_	uA709AMU	uA709AMW

AVAILABLE OPTIONS


The D package is available taped and reeled. Add the suffix R to the device type when ordering, (e.g., uA709CDR).

Copyright © 1988, Texas Instruments Incorporated

SLOS096 - D942, FEBRUARY 1971 - REVISED MAY 1988

schematic

Component values shown are nominal.

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)

		uA709C	uA709M uA709AM	UNIT
Supply voltage, V _{CC+} (see Note 1)		18	18	V
Supply voltage, V _{CC} (see Note 1)		-18	-18	V
Differential input voltage (see Note 2)	±5	±5	V	
Input voltage (either input, see Notes 1 and 3)	±10	±10	V	
Duration of output short circuit (see Note 4)		5	5	S
Continuous total power dissipation		See Dissipation Rating Table		
Operating free-air temperature range	0 to 70	-55 to 125	°C	
Storage temperature range		-65 to 150	-65 to 150	°C
Lead temperature 1,6 mm (1/16 inch) from case for 60 seconds	J, JG, U, or W package	300	300	°C
Lead temperature 1,6 mm (1/16 inch) from case for 10 seconds	D or P package	260		°C

NOTES: 1. All voltage values, unless otherwise noted, are with respect to the midpoint between V_{CC+} and V_{CC-}.

2. Differential voltages are at the noninverting input terminal with respect to the inverting input terminal.

3. The magnitude of the input voltage must never exceed the magnitude of the supply voltage or 10 V, whichever is less.

4. The output may be shorted to ground or either power supply.

SLOS096 - D942, FEBRUARY 1971 - REVISED MAY 1988

DISSIPATION RATING TABLE								
PACKAGE	$T_A \le 25^{\circ}C$ POWER RATING	DERATING FACTOR	DERATE ABOVE T _A	T _A = 70°C POWER RATING	T _A = 125°C POWER RATING			
D	300 mW	N/A	N/A	300 mW	N/A			
J (uA709_M)	300 mW	11.0 mW/°C	123°C	300 mW	275 mW			
JG (uA709_M)	300 mW	8.4 mW/°C	114°C	300 mW	210 mW			
JG (uA709C)	300 mW	N/A	N/A	300 mW	N/A			
Р	300 mW	N/A	N/A	300 mW	N/A			
U	300 mW	5.4 mW/°C	94°C	300 mW	135 mW			
W	300 mW	8.0 mW/°C	113°C	300 mW	200 mW			

SLOS096 - D942, FEBRUARY 1971 - REVISED MAY 1988

electrical characteristics at specified free-air temperature, V_{CC \pm} = \pm 9 V to \pm 15 V (unless otherwise noted)

				- +	u/	4709AM	c	uA709M			
PARAMETER		TEST CONDITIONS [†]		TA‡	MIN	TYP§	MAX	MIN	TYP§	MAX	UNIT
. ,			D (1010	25°C		0.6	2		1	5	mV
VIO	Input offset voltage	V _O = 0,	$R_S \le 10 \text{ k}\Omega$	Full range			3			6	
	Average temperature coefficient of input	V _O = 0,	R _S = 50 Ω	Full range		1.8	10		3		μV/°C
αΛΙΟ	offset voltage	V _O = 0,	R _S = 10 kΩ	Full range		4.8	25		6		μν/ ς
				25°C		10	50		50	200	
IIO	Input offset current	VO = 0		−55°C		40	250		100	500	nA
				125°C		3.5	50		20	200	
	Average temperature			−55°C to 25°C		0.45	2.8				nA/°C
αVIO coefficient of input offset voltage		V _O = 0		25°C to 125°C		0.08	0.5				nA/°C
L	lanut hing summark	N - 0		25°C		0.1	0.2		0.2	0.5	
IB	Input bias current	$V_{O} = 0$		−55°C		0.3	0.6		0.5	1.5	μA
Vice	Common-mode	$V_{CC\pm} = \pm 15 V$	V	25°C	±8	±10		±8	±10		V
VICR	input voltage range			Full range	±8			±8			Ľ
M	Maximum peak-to-peak output voltage swing	$V_{CC\pm} = \pm 15 \text{ V}, \text{ R}_{L} \ge 10 \text{ k}\Omega$		25°C	24	28		24	28		
		$VCC \pm = \pm 13$ V		Full range	24			24			v
VO(PP)		$V_{CC\pm} = \pm 15 V_{e}$, $R_L = 2 k\Omega$	25°C	20	26		20	26		v
		$V_{CC\pm} = \pm 15 V_{e}$, $R_L \ge 2 k\Omega$	Full range	20			20			
A. (D	Large-signal differential	$V_{CC\pm} = \pm 15 \text{ V}, \text{ R}_{L} = 10 \text{ V}$	$R_L \ge 2 k\Omega$,	25°C		45			45		V/mV
AVD	voltage amplification			Full range	25		70	25		70	V/IIIV
r.	Input resistance	rosistanco		25°C	350	750		150	400		kΩ
ri	mputresistance			−55°C	85	185		40	100		132
r _o	Output resistance	V _O = 0,	See Note 5	25°C		150			150		Ω
CMRR	Common-mode	VIC = VICRmin	1	25°C	80	110		70	90		dB
OWNER	rejection ratio	VIC - VICRIIII		Full range	80			70			ub
ksvs	Power supply sensitivity	$V_{CC} = \pm 9 V to$	0 + 15 V	25°C		40	100		25	150	μV/V
	(ΔVIO / ΔVCC)	100 - 20 1 %	5 ± 10 V	Full range			100			150	μν/ν
		$V_{CC\pm} = \pm 15 V_{cC\pm}$	Noload	25°C		2.5	3.6		2.6	5.5	
ICC	Supply current	VO = 0	, 110 1040,	−55°C		2.7	4.5				mA
		VU-0		125°C		2.1	3				
		$V_{CC\pm} = \pm 15 V_{cC\pm}$	No load	25°C		75	108		78	165	
PD	Total power dissipation	$V_0 = 0$, 110 1040,	−55°C		81	135				mW
				125°C		63	90				

[†] All characteristics are specified under open-loop with zero common-mode input voltage unless otherwise specified.

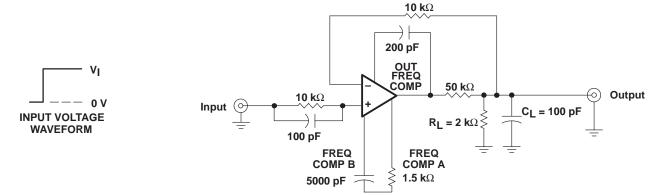
[‡] Full range for uA709C is 0°C to 70°C. Full range for uA709AM and uA709M is -55°C to 125°C.

All typical values are at V_{CC±} = ±15 V. NOTE 5: This typical value applies only at frequencies above a few hundred hertz because of the effects of drift and thermal feedback.

SLOS096 - D942, FEBRUARY 1971 - REVISED MAY 1988

	DADAMETED	TEOT		TA∓	uA709C			
	PARAMETER	TESTO	TEST CONDITIONS [†]		MIN	TYP	MAX	UNIT
Via	Input offect voltage			25°C		2	7.5	mV
VIO	Input offset voltage	VCC∓=∓9 V	$V_{CC\pm} = \pm 9 V$ to $\pm 15 V$, $V_O = 0$				10	IIIV
	Input offect current	$\gamma = +0$				100	500	nA
I _{IO} Input offset current		VCC∓=⊤9 V	$V_{CC\pm} = \pm 9 V$ to $\pm 15 V$, $V_{O} = 0$				750	IIA
lun.	Input biog ourrest		to +15 \/ \/o - 0	25°C		0.3	1.5	
IIB Input bias cur	Input bias current	$V_{CC\pm} = \pm 9 V \text{ to } \pm 15 V, V_{O} = 0$		Full range			2	μA
VICR	Common-mode input voltage range			25°C	±8	±10		V
	Maximum peak-to-peak output voltage swing	RL ≥ 10 kΩ		25°C	24	28		v
				Full range	24			
VO(PP)		$R_L = 2 k\Omega$		25°C	20	26		v
		$R_L \ge 2 k\Omega$		Full range	20			
Avd	Large-signal differential	$P_{\rm L} < 2 k_{\rm C}$		25°C	15	45		\//m)/
	voltage amplification	$R_{L} \leq 2 k\Omega$,	$V_{O} = \pm 10$ V	Full range	12			V/mV
				25°C	50	250		ĿŌ
ri	Input resistance			Full range	35			kΩ
r _o	Output resistance	$V_{O} = 0,$	See Note 5	25°C		150		Ω
CMRR	Common-mode rejection ratio	V _{IC} = V _{ICR} mi	n	25°C	65	90		dB
ksvs	Supply voltage sensitivity	$V_{CC} = \pm 9 V$ to	±15 V	25°C		25	200	μV/V
PD	Total power dissipation	V _O = 0,	No load	25°C		80	200	mW

electrical characteristics at specified free-air temperature (unless otherwise noted V_{CC \pm} = \pm 15 V)


[†] All characteristics are specified under open-loop operation with zero volts common-mode voltage unless otherwise specified.
[‡] Full range for uA709C is 0°C to 70°C. Full range for uA709AM and uA709M is -55°C to 125°C.

NOTE 5: This typical value applies only at frequencies above a few hundred hertz because of the effects of drift and thermal feedback.

operating characteristics, V_{CC \pm} = \pm 9 V to \pm 15 V, T_A = 25°C

PARAMETER TEST CONDITIONS [†]					uA709C uA709M uA709AM			UNIT	
								MAX	1
tr	Rise time	Vi = 20 mV,	$R_1 = 2 k\Omega$	See Figure 1	$C_L = 0$		0.3	1	μs
	Overshoot factor	vi = 20 mv,	ις _L – 2 κs2,	occ i igure i	C _L = 100 pF		6%	30%	

PARAMETER MEASUREMENT INFORMATION

PACKAGING INFORMATION

Orderable Device	Status ⁽¹⁾	Package Type	Package Drawing	Pins Package Qty	Eco Plan ⁽²⁾	Lead/Ball Finish	MSL Peak Temp ⁽³⁾
UA709CP	OBSOLETE	PDIP	Р	8	TBD	Call TI	Call TI

⁽¹⁾ The marketing status values are defined as follows:

ACTIVE: Product device recommended for new designs.

LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.

NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.

PREVIEW: Device has been announced but is not in production. Samples may or may not be available.

OBSOLETE: TI has discontinued the production of the device.

(2) Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS) or Green (RoHS & no Sb/Br) - please check http://www.ti.com/productcontent for the latest availability information and additional product content details. TBD: The Pb-Free/Green conversion plan has not been defined.

Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements for all 6 substances, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes.

Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame retardants (Br or Sb do not exceed 0.1% by weight in homogeneous material)

⁽³⁾ MSL, Peak Temp. -- The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.

Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications, enhancements, improvements, and other changes to its products and services at any time and to discontinue any product or service without notice. Customers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All products are sold subject to TI's terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by government requirements, testing of all parameters of each product is not necessarily performed.

TI assumes no liability for applications assistance or customer product design. Customers are responsible for their products and applications using TI components. To minimize the risks associated with customer products and applications, customers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right, copyright, mask work right, or other TI intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information published by TI regarding third-party products or services does not constitute a license from TI to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alteration is an unfair and deceptive business practice. TI is not responsible or liable for such altered documentation.

Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

Following are URLs where you can obtain information on other Texas Instruments products and application solutions:

Products		Applications	
Amplifiers	amplifier.ti.com	Audio	www.ti.com/audio
Data Converters	dataconverter.ti.com	Automotive	www.ti.com/automotive
DSP	dsp.ti.com	Broadband	www.ti.com/broadband
Interface	interface.ti.com	Digital Control	www.ti.com/digitalcontrol
Logic	logic.ti.com	Military	www.ti.com/military
Power Mgmt	power.ti.com	Optical Networking	www.ti.com/opticalnetwork
Microcontrollers	microcontroller.ti.com	Security	www.ti.com/security
Low Power Wireless	www.ti.com/lpw	Telephony	www.ti.com/telephony
		Video & Imaging	www.ti.com/video
		Wireless	www.ti.com/wireless

Mailing Address: Texas Instruments Post Office Box 655303 Dallas, Texas 75265

Copyright © 2007, Texas Instruments Incorporated