SN74ALVC16240 **16-BIT BUFFER/DRIVER** WITH 3-STATE OUTPUTS SCAS415A - JANUARY 1993 - REVISED JULY 1995

 Member of the Texas Instruments Widebus[™] Family 	DGG	-	L PACI VIEW)	
 EPIC ™ (Enhanced-Performance Implanted CMOS) Submicron Process 	10E [E] 2 <mark>0E</mark>
 Designed to Facilitate Incident-Wave Switching for Line Impedances of 50 Ω 	1Y1 [1Y2 [3	46] 1A1] 1A2
or Greater	GND [1Y3 [] GND] 1A3
 Typical V_{OLP} (Output Ground Bounce) < 0.8 V at V_{CC} = 3.3 V, T_A = 25°C 	1Y4 [6	43] 1A4
 Typical V_{OHV} (Output V_{OH} Undershoot) 	V _{CC} [2Y1 [8	41	V _{CC} 2A1
> 2 V at V_{CC} = 3.3 V, T_A = 25°C	2Y2 [2A2
 Bus Hold on Data Inputs Eliminates the Need for External Pullup/Pulldown 	GND [2Y3 [] GND] 2A3
Resistors	2Y4 [2A4
Package Options Include Plastic 300-mil	3Y1 [E	3A1
Shrink Small-Outline (DL) and Thin Shrink	3Y2 [] 3A2
Small-Outline (DGG) Packages	GND [3Y3 [] GND] 3A3
description	3Y4 [] 3A4
	V _{CC} [18	31] V _{CC}
This 16-bit buffer/driver is designed for 2.7-V to 3.6 -V V _{CC} operation.	4Y1 [4A1
	4Y2 [] 4A2
The SN74ALVC16240 is designed specifically to improve both the performance and density of	GND [4Y3 [] GND] 4A3

improve both the performance and density of 3-state memory address drivers, clock drivers, and bus-oriented receivers and transmitters.

The device can be used as four 4-bit buffers, two 8-bit buffers, or one 16-bit buffer. It provides inverting outputs and symmetrical OE (active-low output-enable) inputs.

The SN74ALVC16240 is available in TI's shrink small-outline (DL) and thin shrink small-outline (DGG) packages, which provide twice the I/O pin count and functionality of standard small-outline packages in the same printed-circuit-board area.

4Y4

23

24

4OE

26 4A4

25 **П** 3OE

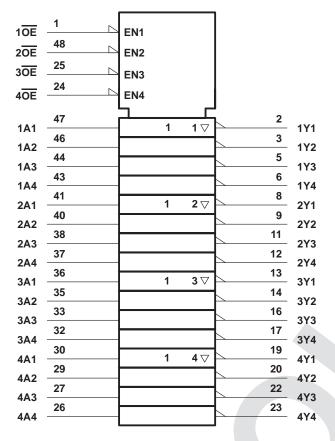
The SN74ALVC16240 is characterized for operation from -40°C to 85°C.

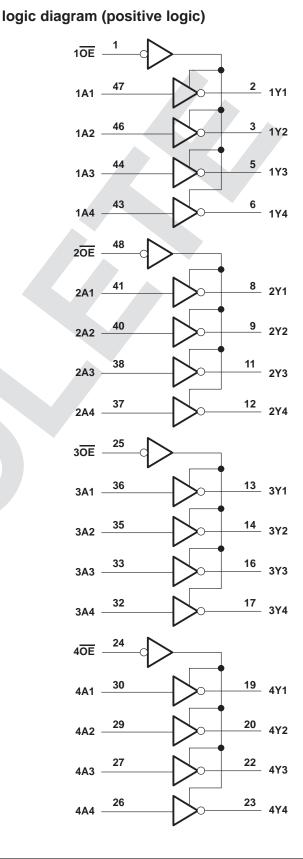
(each 4-bit buffer)			
INP	UTS	OUTPUT	
OE	Α	Y	
L	Н	L	
L	L	н	
н	Х	Z	

FUNCTION TABLE

Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.

EPIC and Widebus are trademarks of Texas Instruments Incorporated.


PRODUCT PREVIEW information concerns products in the formative or design phase of development. Characteristic data and other specifications are design goals. Texas Instruments reserves the right to change or discontinue these products without notice.


SN74ALVC16240 16-BIT BUFFER/DRIVER WITH 3-STATE OUTPUTS

SCAS415A - JANUARY 1993 - REVISED JULY 1995

logic symbol[†]

[†] This symbol is in accordance with ANSI/IEEE Std 91-1984 and IEC Publication 617-12.

SN74ALVC16240 **16-BIT BUFFER/DRIVER** WITH 3-STATE OUTPUTS

SCAS415A - JANUARY 1993 - REVISED JULY 1995

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)[†]

Supply voltage range, V _{CC}	0.5 V to 4.6 V
Input voltage range, V _I (see Note 1)	–0.5 V to 4.6 V
Output voltage range, V _O (see Notes 1 and 2)	-0.5 V to V _{CC} + 0.5 V
Input clamp current, I _{IK} (V _I < 0)	-50 mA
Output clamp current, I_{OK} (V _O < 0 or V _O > V _{CC})	±50 mA
Continuous output current, $I_O (V_O = 0 \text{ to } V_{CC})$	±50 mA
Continuous current through V _{CC} or GND	±100 mA
Maximum power dissipation at $T_A = 55^{\circ}C$ (in still air) (see Note	3): DGG package 0.85 W
	DL package 1.2 W
Storage temperature range, T _{stg}	–65°C to 150°C
-5	

[†] Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

NOTES: 1. The input and output negative-voltage ratings may be exceeded if the input and output clamp-current ratings are observed.

- 2. This value is limited to 4.6 V maximum.
- 3. The maximum package power dissipation is calculated using a junction temperature of 150°C and a board trace length of 750 mils. For more information, refer to the Package Thermal Considerations application note in the 1994 ABT Advanced BiCMOS Technology Data Book, literature number SCBD002B.

recommended operating conditions (see Note 4)

		MIN	MAX	UNIT	
Vcc	Supply voltage		2.7	3.6	V
VIH	High-level input voltage	V _{CC} = 2.7 V to 3.6 V	2		V
V_{IL}	Low-level input voltage	V _{CC} = 2.7 V to 3.6 V		0.8	V
VI	Input voltage		0	VCC	V
Vo	Output voltage		0	VCC	V
юн	High-level output current	V _{CC} = 2.7 V		-12	— mA
		$V_{CC} = 3 V$		-24	
IOL	Low-level output current	V _{CC} = 2.7 V		12	mA
		$V_{CC} = 3 V$		24	IIIA
$\Delta t/\Delta v$ Input transition rise or fall rate		0	10	ns/V	
TA	A Operating free-air temperature		-40	85	°C

NOTE 4: Unused control inputs must be held high or low to prevent them from floating.

SN74ALVC16240 16-BIT BUFFER/DRIVER WITH 3-STATE OUTPUTS SCAS415A – JANUARY 1993 – REVISED JULY 1995

electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

PARAMETER	TEST CONDITIONS	Vcc†	MIN	MAX	UNIT	
Vон	I _{OH} = -100 μA	MIN to MAX	V _{CC} -0.	2		
	$I_{OH} = -12 \text{ mA}$	2.7 V	2.2		V	
		3 V	2.4			
	I _{OH} = -24 mA	3 V	2			
VOL	I _{OL} = 100 μA	MIN to MAX		0.2	V	
	I _{OL} = 12 mA	2.7 V		0.4		
	I _{OL} = 24 mA	3 V		0.55		
Ц	$V_{I} = V_{CC} \text{ or } GND$	3.6 V		±5	μA	
li(hold)	V _I = 0.8 V	21	75		μΑ	
	V _I = 2 V	3 V	-75			
I _{OZ}	$V_{O} = V_{CC} \text{ or } GND$	3.6 V		±10	μA	
ICC	$V_{I} = V_{CC} \text{ or } GND,$ $I_{O} = 0$	3.6 V		40	μA	
∆ICC	One input at $V_{CC} - 0.6 V$, Other inputs at V_{CC} or GND	3 V to 3.6 V		750	μA	
Ci	$V_{I} = V_{CC} \text{ or } GND$	3.3 V			pF	
Co	$V_{O} = V_{CC} \text{ or } GND$	3.3 V			pF	

[†] For conditions shown as MIN or MAX, use the appropriate values under recommended operating conditions.

IMPORTANT NOTICE

Texas Instruments and its subsidiaries (TI) reserve the right to make changes to their products or to discontinue any product or service without notice, and advise customers to obtain the latest version of relevant information to verify, before placing orders, that information being relied on is current and complete. All products are sold subject to the terms and conditions of sale supplied at the time of order acknowledgement, including those pertaining to warranty, patent infringement, and limitation of liability.

TI warrants performance of its semiconductor products to the specifications applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques are utilized to the extent TI deems necessary to support this warranty. Specific testing of all parameters of each device is not necessarily performed, except those mandated by government requirements.

CERTAIN APPLICATIONS USING SEMICONDUCTOR PRODUCTS MAY INVOLVE POTENTIAL RISKS OF DEATH, PERSONAL INJURY, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE ("CRITICAL APPLICATIONS"). TI SEMICONDUCTOR PRODUCTS ARE NOT DESIGNED, AUTHORIZED, OR WARRANTED TO BE SUITABLE FOR USE IN LIFE-SUPPORT DEVICES OR SYSTEMS OR OTHER CRITICAL APPLICATIONS. INCLUSION OF TI PRODUCTS IN SUCH APPLICATIONS IS UNDERSTOOD TO BE FULLY AT THE CUSTOMER'S RISK.

In order to minimize risks associated with the customer's applications, adequate design and operating safeguards must be provided by the customer to minimize inherent or procedural hazards.

TI assumes no liability for applications assistance or customer product design. TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right of TI covering or relating to any combination, machine, or process in which such semiconductor products or services might be or are used. TI's publication of information regarding any third party's products or services does not constitute TI's approval, warranty or endorsement thereof.

Copyright © 1998, Texas Instruments Incorporated