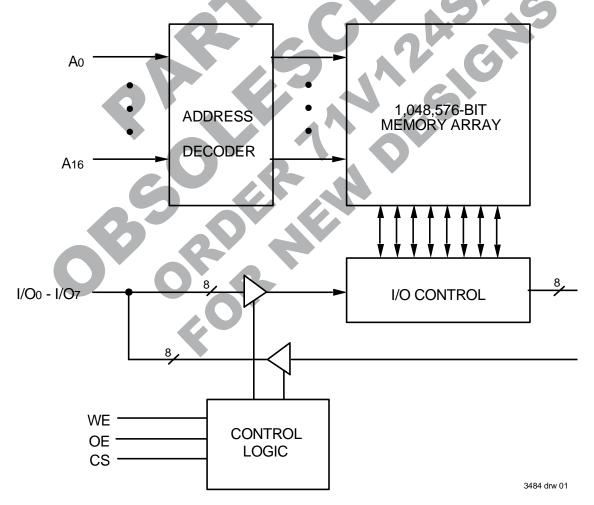


3.3V CMOS Static RAM 1 Meg (128K x 8-Bit) Revolutionary Pinout

IDT71V124

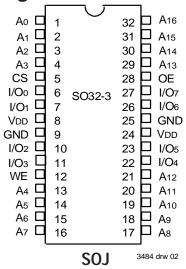
Features

- 128K x 8 advanced high-speed CMOS static RAM
- JEDEC revolutionary pinout (center power/GND) for reduced noise
- Commercial (0°C to +70°C) and Industrial (-40°C to +85°C) temperature options
- Equal access and cycle times
 Industrial and Commercial: 15/20ns
- One Chip Select plus one Output Enable pin
- Bidirectional inputs and outputs directly LVTTL-compatible
- Low power consumption via chip deselect
- Available in 32-pin 400 mil Plastic SOJ.


Description

The IDT71V124 is a 1,048,576-bit high-speed static RAM organized as 128K x 8. It is fabricated using IDT's high-performance, high-reliability CMOS technology. This state-of-the-art technology, combined with innovative circuit design techniques, provides a cost-effective solution for high-speed memory needs. The JEDEC center power/GND pinout reduces noise generation and improves system performance.

The IDT71V124 has an output enable pin which operates as fast as 7ns, with address access times as fast as 15ns available. All bidirectional inputs and outputs of the IDT71V124 are LVTTL-compatible and operation is from a single 3.3V supply. Fully static asynchronous circuitry is used; no clocks or refreshes are required for operation.


The IDT71V124 is packaged in 32-pin 400 mil Plastic SOJ.

Functional Block Diagram

AUGUST 2000

Pin Configuration

Truth Table (1,2)

<u>cs</u>	ŌĒ	WE	l/O	Function
L	L	Н	DATAout	Read Data
L	Х	L	DATAIN	Write Data
L	Н	Н	High-Z	Output Disabled
Н	Х	Х	High-Z	Deselected – Standby (ISB)
VHC ⁽³⁾	Χ	Χ	High-Z	Deselected – Standby (IsB1)

Top View

3484 tbl 01 NOTES:

- 1. $H = V_{IH}$, $L = V_{IL}$, x = Don't care.
- 2. VLC = 0.2V, VHC = VDD 0.2V.
- 3. Other inputs $\geq V_{HC}$ or $\leq V_{LC}$.

Capacitance

 $(TA = +25^{\circ}C, f = 1.0MHz, SOJ package)$

Symbol	Parameter ⁽¹⁾	Conditions	Max.	Unit
Cin	Input Capacitance	VIN = 3dV	8	pF
Cvo	I/O Capacitance	Vout = 3dV	8	pF

NOTE:

1. This parameter is guaranteed by device characterization, but is not production

Absolute Maximum Ratings⁽¹⁾

Symbol	Rating	Value	Unit
VTERM ⁽²⁾	Terminal Voltage with Respect to GND	-0.5 to +4.1 ⁽²⁾	V
Та	Operating Temperature	0 to +70	۰C
TBIAS	Temperature Under Bias	–55 to +125	۰C
Tstg	Storage Temperature	–55 to +125	۰C
PT	Power Dissipation	0.5	W
ЮИТ	DC Output Current	50	mA

NOTES:

- 1. Stresses greater than those listed under ABSOLUTE MAXIMUM RATINGS may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect reliabilty.
- VTERM must not exceed VDD + 0.5V.

Recommended Operating Temperature and Supply Voltage

þ	Grade	Temperature	GND	V _{DD}
	Commercial	0°C to +70°C	0V	See Below
L	Industrial	-40°C to +85°C	0V	See Below

3484 tol 02a

3484 tbl 02

Recommended DC Operating **Conditions**

Symbol	Parameter	Min.	Тур.	Max.	Unit
VDD	Supply Voltage	3.0	3.3	3.6	٧
GND	Ground	0	0	0	٧
VIH	Input High Voltage	2.0	_	V _{DD} +0.3	٧
VIL	Input Low Voltage	-0.3 ⁽¹⁾	_	0.8	V

1. VIL (min.) = -1V for pulse width less than 5ns, once per cycle.

3484 tbl 04

DC Electrical Characteristics

(VDD = 3.3V ± 10%, Commercial and Industrial Temperature Ranges)

		IDT71V124		IV124	
Symbol	Parameter	Test Condition	Min.	Max.	Unit
Iu	Input Leakage Current	VDD = Max., VIN = GND to VDD	-	5	μΑ
ILO	Output Leakage Current	$V_{DD} = Max., \overline{CS} = V_{IH}, V_{OUT} = GND to V_{DD}$		5	μA
Vol	Output Low Voltage	Iol = 8mA, Vdd = Min.		0.4	V
Vон	Output High Voltage	IOH = -8mA, $VDD = Min$.	2.4		V

NOTE:

3484 tbl 05

3484 tbl 06

3484 drw 04

DC Electrical Characteristics(1)

 $(VDD = 3.3V \pm 10\%, VLC = 0.2V, VHC = VDD - 0.2V)$

		71V1:	71V124S15		71V124S20	
Symbol	Parameter	Com'l.	Ind.	Com'l.	Ind.	Unit
Icc	Dynamic Operating Current $\overline{CS} \leq VIL$, Outputs Open, $VDD = Max.$, $f = fMax^{(2)}$	100	120	95	115	mA
ISB	Standby Power Supply Current (TTL Level) $\overline{CS} \ge V_{IH}, Outputs Open, V_{DD} = Max., f = f_{MAX}^{(2)}$	35	40	30	35	mA
ISB1	Full Standby Power Supply Current (CMOS Level) $\overline{\text{CS}} \geq \text{VHc}$, Outputs Open, VDD = Max., f = $0^{(2)}$ VIN $\leq \text{VLC}$ or VIN $\geq \text{VHC}$	5	7	5	7	mA

NOTES:

1. All values are maximum guaranteed values.

2. fmax = 1/trc (all address inputs are cycling at fmax); f = 0 means no address input lines are changing.

AC Test Conditions

Input Pulse Levels		GND to 3.0V
Input Rise/Fall Times	4	3ns
Input Timing Reference Levels		1.5V
Output Reference Levels		1.5V
AC Test Load		See Figure 1 and 2

3484 tbl 07

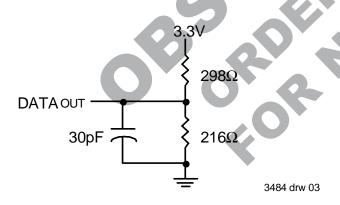
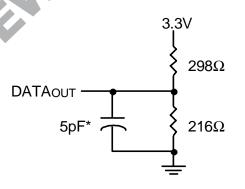
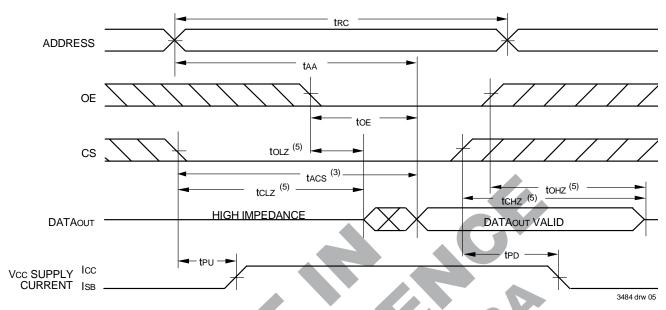



Figure 1. AC Test Load

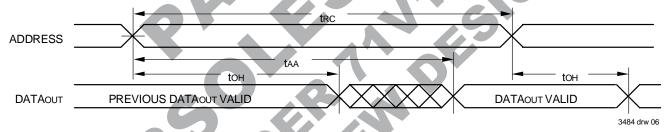
 ${}^{\star}\mbox{Including jig}$ and scope capacitance.

Figure 2. AC Test Load (for tclz, tolz, tchz, tohz, tow, and twhz)

AC Electrical Characteristics (VDD = 3.3V ± 10%, Commercial and Industrial Ranges)

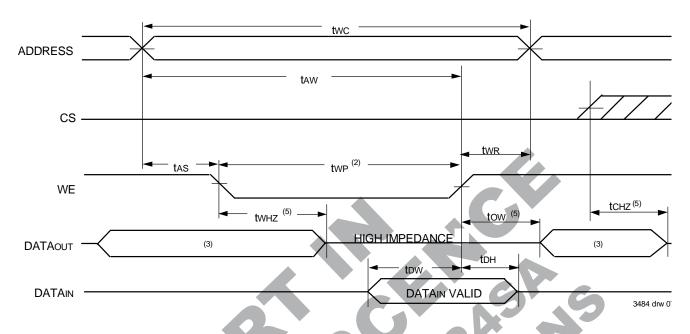

			24S15	71V124S20		
Symbol	Parameter	Min.	Max.	Min.	Max.	Unit
READ CYCLE						
trc	Read Cycle Time	15		20		ns
taa	Address Access Time	_	15		20	ns
tacs	Chip Select Access Time		15		20	ns
ta_z ⁽¹⁾	Chip Select to Output in Low-Z	3		3		ns
tснz ⁽¹⁾	Chip Deselect to Output in High-Z	0	7	0	8	ns
toe	Output Enable to Output Valid	7-1	7		8	ns
tolz(1)	Output Enable to Output in Low-Z	0	_	0	_	ns
tонz ⁽¹⁾	Output Disable to Output in High-Z	0	5	0	7	ns
toн	Output Hold from Address Change	4	5	4		ns
tpu ⁽¹⁾	Chip Select to Power-Up Time	0	-	0	_	ns
tPD ⁽¹⁾	Chip Deselect to Power-Down Time		15		20	ns
WRITE CYCL	E					
twc	Write Cycle Time	15		20		ns
taw	Address Valid to End of Write	12	_	15	_	ns
tcw	Chip Select to End of Write	12		15		ns
tas	Address Set-up Time	0		0		ns
twp	Write Pulse Width	12		15		ns
twr	Write Recovery Time	0		0		ns
tow	Data Valid to End of Write	8		9		ns
tон	Data Hold Time	0		0		ns
tow ⁽¹⁾	Output Active from End of Write	3		4	_	ns
twhz ⁽¹⁾	Write Enable to Output in High-Z	0	5	0	8	ns

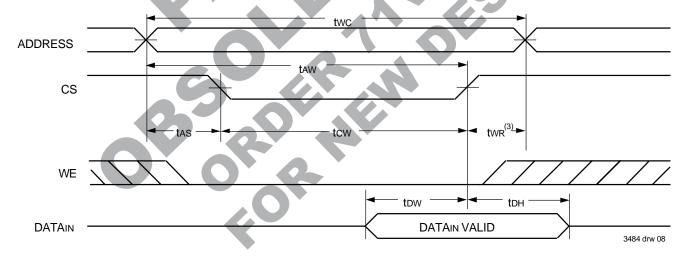
NOTE:


3484 tbl 08

^{1.} This parameter guaranteed with the AC load (Figure 2) by device characterization, but is not production tested.

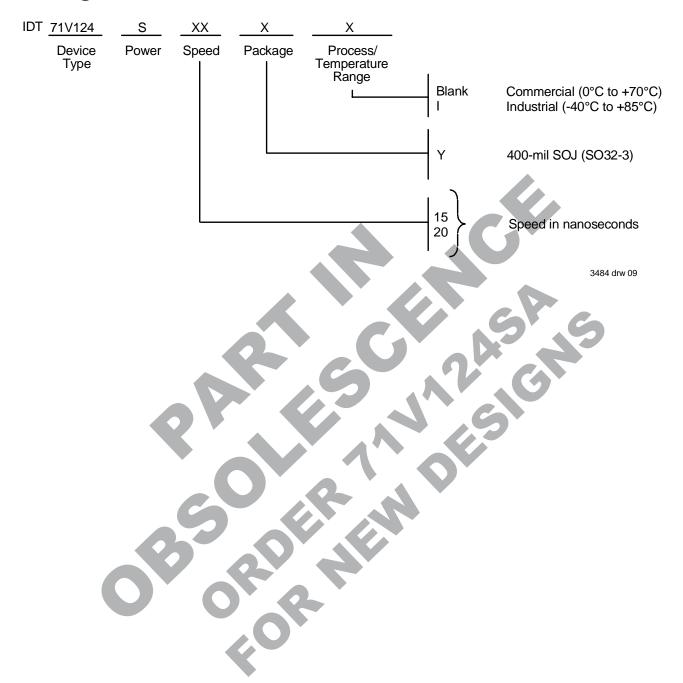
Timing Waveform of Read Cycle No. 1(1)


Timing Waveform of Read Cycle No. 2^(1,2,4)


NOTES:

- 1. WE is HIGH for Read Cycle.
- 2. Device is continuously selected, \overline{CS} is LOW.
- 3. Address must be valid prior to or coincident with the later of $\overline{\text{CS}}$ transition LOW; otherwise tax is the limiting parameter.
- 4. OE is LOW.
- 5. Transition is measured ±200mV from steady state.

Timing Waveform of Write Cycle No.1 (WE Controlled Timing)(1,2,4)


Timing Waveform of Write Cycle No. 2 (CS Controlled Timing)(1,4)

NOTES:

- 1. A write occurs during the overlap of a LOW $\overline{\text{CS}}$ and a LOW $\overline{\text{WE}}$.
- 2. \overline{OE} is continuously HIGH. During a \overline{WE} controlled write cycle with \overline{OE} LOW, twp must be greater than or equal to twHz + tow to allow the I/O drivers to turn off and data to be placed on the bus for the required tow. If \overline{OE} is HIGH during a \overline{WE} controlled write cycle, this requirement does not apply and the minimum write pulse is the specified twp.
- 3. During this period, I/O pins are in the output state, and input signals must not be applied.
- 4. If the CS LOW transition occurs simultaneously with or after the WE LOW transition, the outputs remain in a high impedance state. CS must be active during the tcw write period.
- 5. Transition is measured ±200mV from steady state.

Ordering Information

Datasheet Document History

11/1/99		Updated to new format
	Pg. 2	Expressed commercial and industrial temperature ranges on DC Electrical table
	Pg. 2	Added Recommended Operating Temperature and Supply Voltage table
	Pg. 4	Expressed commercial and industrial ranges on AC Electrical table
	Pg. 4	Revised footnotes and notes on AC Electrical table
	Pg. 6	Revised footnotes on Write Cycle No. 1 diagram
	Pg. 8	Added datasheet document history
08/30/00	-	Part in obsolescence; order part 71V124SA. See PDN# S-0004

 ${\it CORPORATE\, HEADQUARTERS}$

6024 Silver Creek Valley Road San Jose, CA 95138 for SALES: 800-345-7015 or 408-284-8200 fax: 408-284-2775

fax: 408-284-2775 www.idt.com

The IDT logo is a registered trademark of Integrated Device Technology, Inc.

for Tech Support: ipchelp@idt.com 800-345-7015