
5164 HIGH SPEED 8192 x 8-BIT STATIC RAM

	5164-20	5164-25	5164-30	5164-35
Max Access Time (ns)	20	25	30	35
Max Active Current (mA)	120	110	100	100
Max Standby Current (mA)	30	30	30	30

- Static Operation
 - No Clock/Refresh Required
- Equal Access and Cycle Times — Simplifies System Design
- Single +5V Supply
- **2V Data Retention Option Available**
- **■** Power Down Mode
- **TTL Compatible**
- **■** Common Data Input and Output
- 28-Pin 300 Mil Plastic Package

The 5164 is a 65,536-bit high speed static RAM configured as 8K x 8. Easy memory expansion is available with two chip enables (CS1 and CS2) and an Output Enable (OE).

The power down feature contributes greatly to system reliability. The device's power consumption is reduced when in this low power standby mode. In fact, 85% system power reduction is achievable in large systems where a majority of the devices are deselected.

A ₀ -A ₁₂	Address	WE	Write Enable
1/01-1/08	Data Input/Output	ŌĒ	Output Enable
CS ₁	Chip Select	GND	Ground
CS ₂	Chip Select	٧ _{CC}	Power

May 1990 Order Number: 240674-002

Device Operation

The 5164 has three control inputs: Two Chip Selects ($\overline{CS1}$, CS2) and Write Enable (\overline{WE}). \overline{WE} is the data control pin and should be used to gate data at the I/O pins. When \overline{CS}_1 and \overline{WE} inputs are LOW and CS2 is HIGH, data is written into the memory and reading is accomplished when \overline{CS}_1 and \overline{OE} are active LOW, CS2 active HIGH and \overline{WE} remains inactive or HIGH.

Standby Power

The 5164 is placed in a standby or reduced power consumption mode by applying a high (V_{IH}) to the \overline{CS}_1 input or low (V_{IL}) to the CS_2 input. When in standby mode, the device is deselected and the outputs are in a high impedance state, independent of the \overline{WE} input.

Table 1. Mode Selection Truth Table

CS ₁	CS ₂	WE	ŌĒ	Mode	1/0	Power
Н	Х	Х	х	Standby	High Z	Standby
Х	Ł	Х	Х	Standby	High Z	Standby
L	Н	L	х	Write	D _{IN}	Active
L	Н	Н	L	Read	D _{OUT}	Active
L	Н	Н	Н	Read	High Z	Active

ABSOLUTE MAXIMUM RATINGS

NOTICE: This is a production data sheet. The specifications are subject to change without notice.

*WARNING: Stressing the device beyond the "Absolute Maximum Ratings" may cause permanent damage. These are stress ratings only. Operation beyond the "Operating Conditions" is not recommended and extended exposure beyond the "Operating Conditions" may affect device reliability.

RECOMMENDED OPERATING CONDITIONS

(Voltage referenced to VSS, TA = 0°C to 70°C)

Symbol	Parameter	Min	Тур	Max	Unit	
V _C C	Supply Voltage	4.5	5.0	5.5	V	
V _{SS}	Ground	0	0	0	V	
V _{IH}	Input High Voltage	2.2		V _{CC} + 0.5	V	
V _{IL}	Input Low Voltage	-0.5		0.8	V	

NOTE

CAPACITANCE ($T_A = 25^{\circ}C$, f = 1.0 MHz)

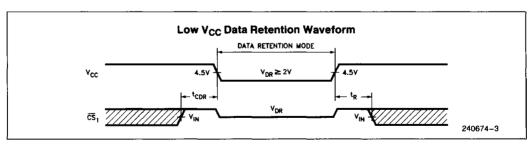
Symbol	Parameter	Min	Max	Unit
C _{IN1}	Input Capacitance (V _{IN} = 0V)	·	7	pF
C _{OUT}	Output Capacitance (V _{OUT} = 0V)		7	pF

NOTE:

This parameter is sampled and not 100% tested.

^{1.} During transitions, the inputs may undershoot to -2.0V for periods less than 20 ns.

4


D.C. AND OPERATING CHARACTERISTICS

(Recommended Operating Conditions unless otherwise noted)

Symbol	Parameter	Min	Max	Units	Test Conditions
lcc	Operating Current		100	mA	$V_{CC} = Max, \overline{CS}_1 = V_{ L}$ $CS_2 = V_{ H}, Outputs Open,$ $T_{CYCLE} = Min$
I _{SB}	Standby Current		30	mA	V_{CC} = Min to Max \overline{CS}_1 = V _{IH} or CS ₂ = V _{IL}
SB1			7	mA	$\begin{split} \overline{CS}_1 &\geq V_{CC} - 0.2V, \\ V_{IN} &\geq V_{CC} - 0.2V \text{ or } \\ V_{IN} &\leq 0.2V, V_{CC} = \text{Max} \end{split}$
lu	Input Load Current	-10	10	μΑ	V _{CC} = Max V _{IN} = GND to V _{CC}
ILO	Output Leakage	-10	10	μА	$\overline{CS}_1 = V_{IH}, V_{CC} = Max$ $V_{OUT} = GND \text{ to } V_{CC}$
V _{OH}	Output High Voltage	2.4		٧	I _{OH} = -4 mA
V _{OL}	Output Low Voltage		0.4	V	$I_{OL} = 8 \text{ mA}$

DATA RETENTION ELECTRICAL CHARACTERISTICS

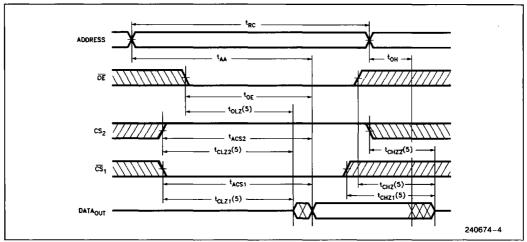
Symbol	Parameter	Min	Тур	Max	Units	Test Conditions		
V _{CDR}	Voltage for Data Retention	2			V			
ICCDR	Data Retention Current		95	500	μΑ	V _{CC} = 2V	$\overline{CS}_1 \ge V_{CC} - 0.2V$ $V_{IN} \ge V_{CC} - 0.2V$	
			350	750	μΑ	V _{CC} = 3V	$\begin{array}{c} V_{IN} \geq V_{CC} - 0.2V \\ \text{or } \leq 0.2V \end{array}$	
[‡] CDR	Chip Deselect to Data Retention Time	0			ns			
.t _R	Operation Recovery Time	t _{RC}			ns			

A.C. TEST CONDITIONS

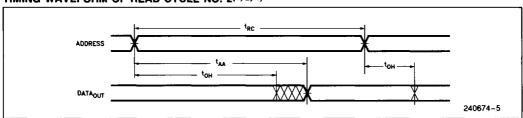
A.C. CHARACTERISTICS ($T_A = 0$ °C to 70°C, $V_{CC} = 5V \pm 10$ %)

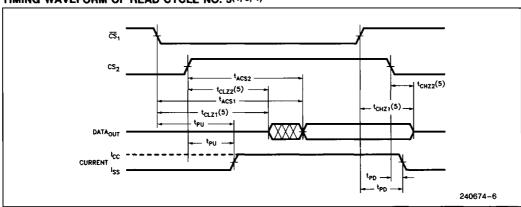
READ CYCLE

Cumbal	Parameter	5164-20		5164-25		5164-30		5164-35		
Symbol		Min	Max	Min	Max	Min	Max	Min	Max	Unit
t _{RC}	Read Cycle Time	20		25		30		35		ns
t _{AA}	Address Access Time		20		25		30		35	ns
t _{ACS1}	Chip Select 1 Access Time		20		25		30		35	ns
t _{ACS2}	Chip Select 2 Access Time		20		25		30		35	ns
t _{OE}	Output Enable to Output Valid		15		15		20		20	ns
tон	Output Hold from Address Change	3		3		3		3		ns
t _{CLZ1}	Chip Select 1 to Output in Low Z	5		5		5		5		ns
t _{CLZ2}	Chip Select 2 to Output in Low Z	5		5		5		5		ns
t _{CHZ1}	Chip Select 1 to Output in High Z		15		15		20		20	ns
t _{CHZ2}	Chip Select 2 to Output in High Z		15		15		20		20	ns
toLZ	Output Enable to Output in Low Z	0		0		0		0		ns
t _{OHZ}	Output Enable to Output in High Z		10		10		15	•	20	ns
t _{PU}	Chip Selection to Power Up Time	0		0		0		0		ns
t _{PD}	Chip Deselection to Power Down Time		20		25		30		35	ns


NOTES:

^{1.} All Read Cycle timings are referenced from the last valid address to the first transitioning address.


^{2.} At any given temperature and voltage, t_{CHZ}(Max) is less than t_{CLZ}(Min), both for a given device and from device to device.


TIMING WAVEFORM OF READ CYCLE NO. 1(1)

TIMING WAVEFORM OF READ CYCLE NO. 2(1, 2, 4)

TIMING WAVEFORM OF READ CYCLE NO. 3(1, 3, 4)

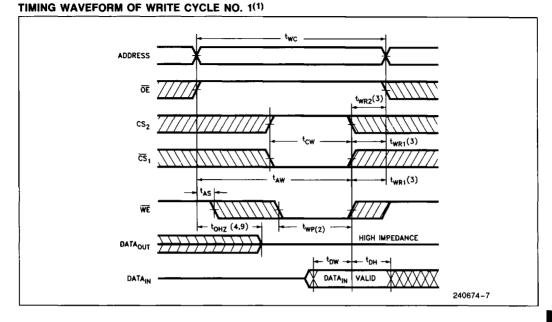
NOTES:

- 1. WE is HIGH for Read Cycle.

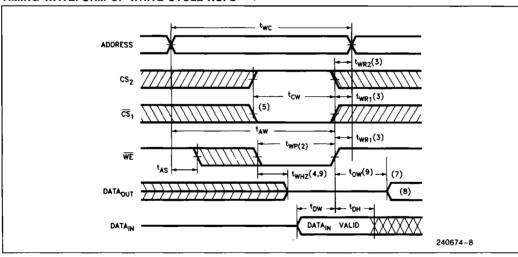
 2. Device is continuously selected, $\overline{CS}_1 = V_{IL}$, $CS_2 = V_{IH}$.

 3. Address valid prior to or coincident with \overline{CS}_1 transition low and CS_2 transition high.

 4. $\overline{CE} = V_{IL}$
- 5. Transition is measured ±500 mV from steady state.

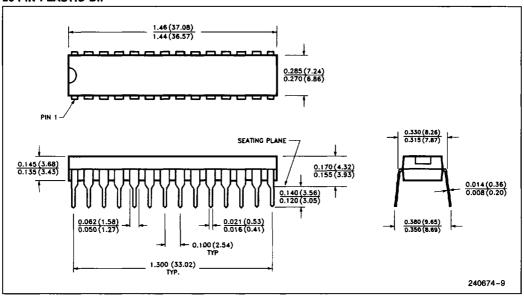


A.C. CHARACTERISTICS (Continued)


WRITE CYCLE

Symbol	Parameter	516	4-20	5164-25		5164-30		5164-35		Units
Symbol		Min	Max	Min	Max	Min	Max	Min	Max	Oilles
twc	Write Cycle Time	20		25		30		35		ns
t _{CW1}	Chip Selection 1 to End of Write	15		20		25		30		ns
t _{CW2}	Chip Selection 2 to End of Write	15		20		25		30		ns
t _{AW}	Address Valid to End of Write	15		20		25		30		ns
t _{AS}	Address Set-Up Time	0		0		0		0		ns
t _{WP}	Write Pulse Width	15		20		25		25		ns
twR	Write Recovery Time	0		0		0		0		ns
t _{DW}	Data Valid to End of Write	15		15		15		15		ns
t _{DH}	Data Hold Time	0		0		0		0		ns
t _{WHZ}	Write Enable to Output in High Z	0	12	0	15	0	15	0	15	ns
tow	Output Active from End of Write	0		0		0		0		ns

TIMING WAVEFORM OF WRITE CYCLE NO. 2(1,6)



- 1. WE must be high during all address transitions.
- 2. A write occurs during the overlap (twp) of a low CS₁ and a high CS₂.
- 3. twR1.2 is measured from the earlier of CS1 or WE going high or CS2 going low to the end of write cycle.
- 4. During this period, I/O pins are in the output state so that the input signals must not be applied.
- 5. If the CS1 low transition or CS2 high transition occurs simultaneously with the WE low transitions or after the WE transitions. sition, outputs remain in a high impedance state.

 6. \overline{OE} is continuously low ($\overline{OE} = V_{IL}$).
- 7. DATAQUT is the same phase of write data of this write cycle, as long as address does not change.
- 8. If CS₁ is low and CS₂ is high during this period, I/O pins are in the output state. Data input signals must not be applied.
- 9. Transition is measured ± 200 mV from steady state.

28-PIN PLASTIC DIP

