Regulating Pulse Width Modulators

FEATURES

- 8 to 35V Operation
- 5.1V Reference Trimmed to $\pm 1 \%$
- 100 Hz to 500 kHz Oscillator Range
- Separate Oscillator Sync Terminal
- Adjustable Deadtime Control
- Internal Soft-Start
- Pulse-by-Pulse Shutdown
- Input Undervoltage Lockout with Hysteresis
- Latching PWM to Prevent Multiple Pulses
- Dual Source/Sink Output Drivers

BLOCK DIAGRAM

Abstract

ABSOLUTE MAXIMUM RATINGS(Note 1) Supply Voltage, (+VIN). +40 V Collector Supply Voltage (V_{C}) . +40 V Logic Inputs . 0.3 V to +5.5 V Analog Inputs . -0.3 V to $+\mathrm{V}_{\text {IN }}$ Output Current, Source or Sink 500mA Reference Output Current . 50mA Oscillator Charging Current . 5 mA Power Dissipation at $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$ (Note 2) \ldots. Power Dissipation at $\mathrm{T}_{\mathrm{C}}=+25^{\circ} \mathrm{C}$ (Note 2) 2000mW Operating Junction Temperature $-55^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$ Storage Temperature Range $-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$ Lead Temperature (Soldering, 10 seconds) $+300^{\circ} \mathrm{C}$ Note 1: Values beyond which damage may occur. Note 2: Consult packaging Section of Databook for thermal limitations and considerations of package.

CONNECTION DIAGRAMS

RECOMMENDED OPERATING CONDITIONS (Note 3)

Input Voltage (+ V_{IN}) . +8 V to +35 V
Collector Supply Voltage (V_{C}) +4.5 V to +35 V
Sink/Source Load Current (steady state) 0 to 100 mA
Sink/Source Load Current (peak) 0 to 400mA
Reference Load Current . 0 to 20mA
Oscillator Frequency Range 100Hz to 400 kHz
Oscillator Timing Resistor $2 \mathrm{k} \Omega$ to 150k
Oscillator Timing Capacitor $001 \mu \mathrm{~F}$ to . $01 \mu \mathrm{~F}$
Dead Time Resistor Range . 0 to 500Ω
Operating Ambient Temperature Range
UC1525A, UC1527A $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
UC2525A, UC2527A $-25^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
UC3525A, UC3527A . $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
Note 3: Range over which the device is functional and parameter limits are guaranteed.

PLCC-20, LCC-20 (TOP VIEW) Q, L Package

PACKAGE PIN FUNCTION	
FUNCTION	PIN
N/C	1
Inv. Input	2
N.I. Input	3
SYNC	4
OSC. output	5
N/C	6
C_{T}	7
RT	8
Discharge	9
Softstart	10
N/C	11
Compensation	12
Shutdown	13
Output A	14
Ground	15
N/C	16
V_{C}	17
Output B	18
$+\mathrm{V}_{\text {IN }}$	19
$V_{\text {REF }}$	20

ELECTRICAL CHARACTERISTICS: $+\mathrm{V}_{\mathbb{I}}=20 \mathrm{~V}$, and over operating temperature, unless otherwise specified, $\mathrm{T}_{\mathrm{A}}=\mathrm{T}_{\mathrm{J}}$.

PARAMETER	TEST CONDITIONS	UC1525A/UC2525A UC1527A/UC2527A			$\begin{aligned} & \text { UC3525A } \\ & \text { UC3527A } \end{aligned}$			UNITS
		MIN	TYP	MAX	MIN	TYP	MAX	
Reference Section								
Output Voltage	$\mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C}$	5.05	5.10	5.15	5.00	5.10	5.20	V
Line Regulation	$\mathrm{V}_{\mathrm{IN}}=8$ to 35 V		10	20		10	20	mV
Load Regulation	$\mathrm{L}_{\mathrm{L}}=0$ to 20 mA		20	50		20	50	mV
Temperature Stability (Note 5)	Over Operating Range		20	50		20	50	
Total Output Variation (Note 5)	Line, Load, and Temperature	5.00		5.20	4.95		5.25	V
Shorter Circuit Current	$\mathrm{V}_{\text {REF }}=0, \mathrm{~T}_{J}=25^{\circ} \mathrm{C}$		80	100		80	100	mA
Output Noise Voltage (Note 5)	$10 \mathrm{~Hz} \leq 10 \mathrm{kHz}, \mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C}$		40	200		40	200	$\mu \mathrm{Vrms}$
Long Term Stability (Note 5)	$\mathrm{T}_{\mathrm{J}}=125^{\circ} \mathrm{C}$		20	50		20	50	mV
Oscillator Sectior(Note 6)								
Initial Accuracy (Notes 5 \& 6)	$\mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C}$		± 2	± 6		± 2	± 6	\%
Voltage Stability (Notes 5 \& 6)	$\mathrm{V}_{\text {IN }}=8$ to 35 V		± 0.3	± 1		± 1	± 2	\%
Temperature Stability (Note 5)	Over Operating Range		± 3	± 6		± 3	± 6	\%
Minimum Frequency	$\mathrm{R}_{\mathrm{T}}=200 \mathrm{k} \Omega, \mathrm{C}_{\mathrm{T}}=0.1 \mu \mathrm{~F}$			120			120	Hz
Maximum Frequency	$\mathrm{R}_{\mathrm{T}}=2 \mathrm{k} \Omega, \mathrm{C}_{\mathrm{T}}=470 \mathrm{pF}$	400			400			kHz
Current Mirror	$\mathrm{I}_{\mathrm{RT}}=2 \mathrm{~mA}$	1.7	2.0	2.2	1.7	2.0	2.2	mA
Clock Amplitude (Notes 5 \& 6)		3.0	3.5		3.0	3.5		V
Clock Width (Notes 5 \& 6)	$\mathrm{T}_{J}=25^{\circ} \mathrm{C}$	0.3	0.5	1.0	0.3	0.5	1.0	us
Sync Threshold		1.2	2.0	2.8	1.2	2.0	2.8	V
Sync Input Current	Sync Voltage $=3.5 \mathrm{~V}$		1.0	2.5		1.0	2.5	mA
Error Amplifier Sectio($/$ cm $=5.1 \mathrm{~V}$)								
Input Offset Voltage			0.5	5		2	10	mV
Input Bias Current			1	10		1	10	$\mu \mathrm{A}$
Input Offset Current				1			1	$\mu \mathrm{A}$
DC Open Loop Gain	$\mathrm{R}_{\mathrm{L}} \geq 10 \mathrm{M} \Omega$	60	75		60	75		dB
Gain-Bandwidth Product (Note 5)	$A_{V}=0 \mathrm{~dB}, \mathrm{~T}_{J}=25^{\circ} \mathrm{C}$	1	2		1	2		MHz
DC Transconductance (Notes 5 \& 7)	$\mathrm{T}_{J}=25^{\circ} \mathrm{C}, 30 \mathrm{k} \Omega \leq \mathrm{R}_{\mathrm{L}} \leq 1 \mathrm{M} \Omega$	1.1	1.5		1.1	1.5		mS
Output Low Level			0.2	0.5		0.2	0.5	V
Output High Level		3.8	5.6		3.8	5.6		V
Common Mode Rejection	$\mathrm{V}_{\mathrm{CM}}=1.5$ to 5.2 V	60	75		60	75		dB
Supply Voltage Rejection	$\mathrm{V}_{\text {IN }}=8$ to 35 V	50	60		50	60		dB

Note 5: These parameters, although ensured over the recommended operating conditions, are not 100% tested in production.
Note 6: Tested at fosc $=40 \mathrm{kHz}\left(\mathrm{R}_{\mathrm{T}}=3.6 \mathrm{k} \Omega, \mathrm{C}_{\mathrm{T}}=0.01 \mu \mathrm{~F}, \mathrm{R}_{\mathrm{D}}=0 \Omega\right)$. Approximate oscillator frequency is defined by:

$$
f=\frac{1}{C_{T}\left(0.7 R_{T}+3 \mathrm{R}_{D}\right)}
$$

Note 7: DC transconductance (gm_{m} relates to DC open-loop voltage gain (Av) according to the following equation: $\mathrm{Av}_{\mathrm{v}}=\mathrm{gm}_{\mathrm{M}} \mathrm{R}_{\mathrm{L}}$ where R_{L} is the resistance from pin 9 to ground. The minimum g_{M} specification is used to calculate minimum A_{v} when the error amplifier output is loaded.

ELECTRICAL CHARACTERISTICS:+ $\mathrm{V}_{\mathrm{V}}=20 \mathrm{~V}$, and over operating temperature, unless otherwise specified, $\mathrm{T}_{\mathrm{A}}=\mathrm{T}_{\mathrm{J}}$.

PARAMETER	TEST CONDITIONS	UC1525A/UC2525A UC1527A/UC2527A			$\begin{aligned} & \text { UC3525A } \\ & \text { UC3527A } \end{aligned}$			UNITS
		MIN	TYP	MAX	MIN	TYP	MAX	
PWM Comparator								
Minimum Duty-Cycle				0			0	\%
Maximum Duty-Cycle (Note 6)		45	49		45	49		\%
Input Threshold (Note 6)	Zero Duty-Cycle	0.7	0.9		0.7	0.9		V
	Maximum Duty-Cycle		3.3	3.6		3.3	3.6	V
Input Bias Current (Note 5)			. 05	1.0		. 05	1.0	$\mu \mathrm{A}$
Shutdown Section								
Soft Start Current	$\mathrm{V}_{\mathrm{SD}}=0 \mathrm{~V}, \mathrm{~V}_{\text {SS }}=0 \mathrm{~V}$	25	50	80	25	50	80	$\mu \mathrm{A}$
Soft Start Low Level	$\mathrm{V}_{\mathrm{SD}}=2.5 \mathrm{~V}$		0.4	0.7		0.4	0.7	V
Shutdown Threshold	To outputs, $\mathrm{V}_{S S}=5.1 \mathrm{~V}, \mathrm{~T}_{J}=25^{\circ} \mathrm{C}$	0.6	0.8	1.0	0.6	0.8	1.0	V
Shutdown Input Current	$\mathrm{V}_{\mathrm{SD}}=2.5 \mathrm{~V}$		0.4	1.0		0.4	1.0	mA
Shutdown Delay (Note 5)	$\mathrm{V}_{\mathrm{SD}}=2.5 \mathrm{~V}, \mathrm{~T}_{J}=25^{\circ} \mathrm{C}$		0.2	0.5		0.2	0.5	$\mu \mathrm{S}$
Output DriversEach Output) ($\mathrm{V}_{\mathrm{C}}=20 \mathrm{~V}$)								
Output Low Level	$\mathrm{I}_{\text {SINK }}=20 \mathrm{~mA}$		0.2	0.4		0.2	0.4	V
	$\mathrm{ISINK}=100 \mathrm{~mA}$		1.0	2.0		1.0	2.0	V
Output High Level	$I_{\text {SOURCE }}=20 \mathrm{~mA}$	18	19		18	19		V
	$\mathrm{I}_{\text {SOURCE }}=100 \mathrm{~mA}$	17	18		17	18		V
Under-Voltage Lockout	$\mathrm{V}_{\text {COMP }}$ and $\mathrm{V}_{\text {SS }}=$ High	6	7	8	6	7	8	V
V_{C} OFF Current (Note 7)	$\mathrm{V}_{\mathrm{C}}=35 \mathrm{~V}$			200			200	$\mu \mathrm{A}$
Rise Time (Note 5)	$\mathrm{C}_{\mathrm{L}}=1 \mathrm{nF}, \mathrm{T}_{J}=25^{\circ} \mathrm{C}$		100	600		100	600	ns
Fall Time (Note 5)	$\mathrm{C}_{\mathrm{L}}=1 \mathrm{nF}, \mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C}$		50	300		50	300	ns
Total Standby Current								
Supply Current	$\mathrm{V}_{\mathrm{IN}}=35 \mathrm{~V}$		14	20		14	20	mA

Note 5: These parameters, although ensured over the recommended operating conditions, are not 100% tested in production.
Note 6: Tested at $\mathrm{f}_{\mathrm{OSC}}=40 \mathrm{kHz}\left(\mathrm{R}_{\mathrm{T}}=3.6 \mathrm{k} \Omega, \mathrm{C}_{\mathrm{T}}=0.01 \mu \mathrm{~F}, \mathrm{R}_{\mathrm{D}}=0 \Omega\right)$
Note 7: Collector off-state quiescent current measured at pin 13 with outputs low for UC1525A and high for UC1527A.

PRINCIPLES OF OPERATION AND TYPICAL CHARACTERISTICS

UC1525A output circuit (1/2 circuit shown).

For single-ended supplies, the driver outputs are grounded. The V_{C} terminal is switched to ground by the totem-pole source transistors on alternate oscillator cycles.

The low source impedance of the output drivers provides rapid charging of power FET Input capacitance while minimizing external components.

Output Current, Source Or Sink - (A)
UC1525A output saturation characteristics.

In conventional push-pull bipolar designs, forward base drive is controlled by R1-R3. Rapid turn-off times for the power devices are achieved with speed-up capacitors C1 and C2.

Low power transformers can be driven by the UC1525A. Automatic reset occurs during dead time, when both ends of the primary winding are switched to ground.

UC1525A oscillator schematic.

PRINCIPLES OF OPERATION AND TYPICAL CHARACTERISTIC SHUTDOWN OPTIONS

(See Block Diagram)

Since both the compensation and soft-start terminals (Pins 9 and 8) have current source pull-ups, either can readily accept a pull-down signal which only has to sink a maximum of $100 \mu \mathrm{~A}$ to turn off the outputs. This is subject to the added requirement of discharging whatever external capacitance may be attached to these pins.
An alternate approach is the use of the shutdown circuitry of Pin 10 which has been improved to enhance the available shutdown options. Activating this circuit by applying a positive signal on Pin 10 performs two functions; the

Oscillator Charge Time vs R_{T} and C_{T}.

PWM latch is immediately set providing the fastest turn-off signal to the outputs; and a $150 \mu \mathrm{~A}$-current sink begins to discharge the external soft-start capacitor. If the shutdown command is short, the PWM signal is terminated without significant discharge of the soft-start capacitor, thus, allowing, for example, a convenient implementation of pulse-by-pulse current limiting. Holding Pin 10 high for a longer duration, however, will ultimately discharge this external capacitor, recycling slow turn-on upon release.
Pin 10 should not be left floating as noise pickup could conceivably interrupt normal operation.

Oscillator Discharge Time vs R_{D} and C_{T}.

Maximum value R_{D} vs minimum value R_{T}.

R_{L} is impedance from pin 9 to ground. Values below $30 \mathrm{k} \Omega$ will begin to limit the maximum duty cycle.

Error amplifier voltage gain and phase vs frequency.

Lab test fixture.

PACKAGE OPTION ADDENDUM
www.ti.com
2-May-2005

PACKAGING INFORMATION

Orderable Device	Status ${ }^{(1)}$	Package Type	Package Drawing		Package Qty	Eco Plan ${ }^{(2)}$	Lead/Ball Finish	MSL Peak Temp ${ }^{(3)}$
5962-89511012A	ACTIVE	LCCC	FK	20	1	TBD	POST-PLATE	Level-NC-NC-NC
5962-89511032A	ACTIVE	LCCC	FK	20	1	TBD	POST-PLATE	Level-NC-NC-NC
5962-8951103EA	ACTIVE	CDIP	J	16	1	TBD	A42 SNPB	Level-NC-NC-NC
5962-89511042A	ACTIVE	LCCC	FK	20	1	TBD	POST-PLATE	Level-NC-NC-NC
5962-8951104EA	ACTIVE	CDIP	J	16	1	TBD	A42 SNPB	Level-NC-NC-NC
UC1525AJ	ACTIVE	CDIP	J	16	1	TBD	A42 SNPB	Level-NC-NC-NC
UC1525AJ883B	ACTIVE	CDIP	J	16	1	TBD	A42 SNPB	Level-NC-NC-NC
UC1525AL	ACTIVE	LCCC	FK	20	1	TBD	POST-PLATE	Level-NC-NC-NC
UC1525AL/81197	ACTIVE	LCCC	FK	20		TBD	Call TI	Call TI
UC1525AL883B	ACTIVE	LCCC	FK	20	1	TBD	POST-PLATE	Level-NC-NC-NC
UC1527AJ	ACTIVE	CDIP	J	16	1	TBD	A42 SNPB	Level-NC-NC-NC
UC1527AJ883B	ACTIVE	CDIP	J	16	1	TBD	A42 SNPB	Level-NC-NC-NC
UC1527AL883B	ACTIVE	LCCC	FK	20	1	TBD	POST-PLATE	Level-NC-NC-NC
UC2525ADW	ACTIVE	SOIC	DW	16	40	TBD	CU NIPDAU	Level-2-220C-1 YEAR
UC2525ADWTR	ACTIVE	SOIC	DW	16	2000	TBD	CU NIPDAU	Level-2-220C-1 YEAR
UC2525AJ	ACTIVE	CDIP	J	16	1	TBD	A42 SNPB	Level-NC-NC-NC
UC2525AJ/81046	ACTIVE	CDIP	J	16	1	TBD	A42 SNPB	Level-NC-NC-NC
UC2525AN	ACTIVE	PDIP	N	16	25	TBD	CU NIPDAU	Level-NA-NA-NA
UC2525AQ	ACTIVE	PLCC	FN	20	46	TBD	Call TI	Level-2-220C-1 YEAR
UC2525AQTR	ACTIVE	PLCC	FN	20	1000	TBD	Call TI	Level-2-220C-1 YEAR
UC2525BDW	ACTIVE	SOIC	DW	16	40	TBD	CU NIPDAU	Level-2-220C-1 YEAR
UC2525BJ	ACTIVE	CDIP	J	16	1	TBD	A42 SNPB	Level-NC-NC-NC
UC2525BN	ACTIVE	PDIP	N	16	25	TBD	CU NIPDAU	Level-NA-NA-NA
UC2527AN	ACTIVE	PDIP	N	16	25	TBD	CU NIPDAU	Level-NA-NA-NA
UC3525ADW	ACTIVE	SOIC	DW	16	40	TBD	CU NIPDAU	Level-2-220C-1 YEAR
UC3525ADWTR	ACTIVE	SOIC	DW	16	2000	TBD	CU NIPDAU	Level-2-220C-1 YEAR
UC3525AJ	ACTIVE	CDIP	J	16	1	TBD	A42 SNPB	Level-NC-NC-NC
UC3525AN	ACTIVE	PDIP	N	16	25	TBD	CU NIPDAU	Level-NA-NA-NA
UC3525AQ	ACTIVE	PLCC	FN	20	46	TBD	Call TI	Level-2-220C-1 YEAR
UC3525AQTR	ACTIVE	PLCC	FN	20	1000	TBD	Call TI	Level-2-220C-1 YEAR
UC3527AJ	ACTIVE	CDIP	J	16	1	TBD	A42 SNPB	Level-NC-NC-NC
UC3527AN	ACTIVE	PDIP	N	16	25	TBD	CU NIPDAU	Level-NA-NA-NA

${ }^{(1)}$ The marketing status values are defined as follows:
ACTIVE: Product device recommended for new designs.
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.
OBSOLETE: TI has discontinued the production of the device.

[^0]at high temperatures, TI Pb -Free products are suitable for use in specified lead-free processes.
Green (RoHS \& no $\mathbf{S b} / \mathbf{B r}$): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame retardants (Br or Sb do not exceed 0.1% by weight in homogeneous material)
${ }^{(3)}$ MSL, Peak Temp. -- The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.

Important Information and Disclaimer:The information provided on this page represents Tl's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

DIM PINS **	14	16	18	20
A	0.300 $(7,62)$ BSC			
B MAX	0.785 $(19,94)$.840 $(21,34)$	0.960 $(24,38)$	1.060 $(26,92)$
B MIN	-	-	-	-
C MAX	0.300 $(7,62)$	0.300 $(7,62)$	0.310 $(7,87)$	0.300 $(7,62)$
C MIN	0.245 $(6,22)$	0.245 $(6,22)$	0.220 $(5,59)$	0.245 $(6,22)$

NOTES: A. All linear dimensions are in inches (millimeters).
B. This drawing is subject to change without notice.
C. This package is hermetically sealed with a ceramic lid using glass frit.
D. Index point is provided on cap for terminal identification only on press ceramic glass frit seal only.
E. Falls within MIL STD 1835 GDIP1-T14, GDIP1-T16, GDIP1-T18 and GDIP1-T20.

FK (S-CQCC-N**)

NOTES: A. All linear dimensions are in inches (millimeters).
B. This drawing is subject to change without notice.
C. This package can be hermetically sealed with a metal lid.
D. The terminals are gold plated.
E. Falls within JEDEC MS-004

N (R-PDIP-T**)
PLASTIC DUAL-IN-LINE PACKAGE
16 PINS SHOWN

NOTES: A. All linear dimensions are in inches (millimeters).
B. This drawing is subject to change without notice.
C) Falls within JEDEC MS-001, except 18 and 20 pin minimum body length (Dim A).

D The 20 pin end lead shoulder width is a vendor option, either half or full width.

NOTES: A. All linear dimensions are in inches (millimeters).
B. This drawing is subject to change without notice.
C. Falls within JEDEC MS-018

DW (R-PDSO-G16)

PLASTIC SMALL-OUTLINE PACKAGE

NOTES: A. All linear dimensions are in inches (millimeters).
B. This drawing is subject to change without notice.
C. Body dimensions do not include mold flash or protrusion not to exceed $0.006(0,15)$.
D. Falls within JEDEC MS-013 variation AA.

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications, enhancements, improvements, and other changes to its products and services at any time and to discontinue any product or service without notice. Customers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All products are sold subject to Tl's terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with Tl's standard warranty. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by government requirements, testing of all parameters of each product is not necessarily performed.

TI assumes no liability for applications assistance or customer product design. Customers are responsible for their products and applications using TI components. To minimize the risks associated with customer products and applications, customers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right, copyright, mask work right, or other TI intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information published by TI regarding third-party products or services does not constitute a license from TI to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI .

Reproduction of information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alteration is an unfair and deceptive business practice. Tl is not responsible or liable for such altered documentation.

Resale of Tl products or services with statements different from or beyond the parameters stated by TI for that product or service voids all express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. Tl is not responsible or liable for any such statements.

Following are URLs where you can obtain information on other Texas Instruments products and application solutions:

Products

Applications

Amplifiers	amplifier.ti.com	Audio	www.ti.com/audio
Data Converters	dataconverter.ti.com	Automotive	www.ti.com/automotive
DSP	dsp.ti.com	Broadband	www.ti.com/broadband
Interface	interface.ti.com	Digital Control	www.ti.com/digitalcontrol
Logic	logic.ti.com	Military	www.ti.com/military
Power Mgmt	power.ti.com	Optical Networking	www.ti.com/opticalnetwork
Microcontrollers	microcontroller.ti.com	Security	www.ti.com/security
		Telephony	www.ti.com/telephony
		Video \& Imaging	www.ti.com/video
		Wireless	www.ti.com/wireless

Mailing Address: Texas Instruments
Post Office Box 655303 Dallas, Texas 75265

Copyright © 2005, Texas Instruments Incorporated

[^0]: ${ }^{(2)}$ Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS) or Green (RoHS \& no $\mathrm{Sb} / \mathrm{Br}$) - please check http://www.ti.com/productcontent for the latest availability information and additional product content details.
 TBD: The Pb-Free/Green conversion plan has not been defined.
 Pb -Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements for all 6 substances, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered

