DATA SHEET

MOS INTEGRATED CIRCUIT μ**PD44165082, 44165182, 44165362**

18M-BIT QDR[™]II SRAM 2-WORD BURST OPERATION

Description

The μ PD44165082 is a 2,097,152-word by 8-bit, the μ PD44165182 is a 1,048,576-word by 18-bit and the μ PD44165362 is a 524,288-word by 36-bit synchronous quad data rate static RAM fabricated with advanced CMOS technology using full CMOS six-transistor memory cell.

The μ PD44165082, μ PD44165182 and μ PD44165362 integrate unique synchronous peripheral circuitry and a burst counter. All input registers controlled by an input clock pair (K and /K) are latched on the positive edge of K and /K.

These products are suitable for application which require synchronous operation, high speed, low voltage, high density and wide bit configuration.

These products are packaged in 165-pin PLASTIC BGA.

Features

- 1.8 ± 0.1 V power supply and HSTL I/O
- DLL circuitry for wide output data valid window and future frequency scaling
- · Separate independent read and write data ports with concurrent transactions
- 100% bus utilization DDR READ and WRITE operation
- Two-tick burst for low DDR transaction size
- Two input clocks (K and /K) for precise DDR timing at clock rising edges only
- Two output clocks (C and /C) for precise flight time and clock skew matching-clock and data delivered together to receiving device
- Internally self-timed write control
- Clock-stop capability with μ s restart
- User programmable impedance output
- Fast clock cycle time : 5.0 ns (200 MHz), 6.0 ns (167 MHz), 7.5 ns (133 MHz)
- Simple control logic for easy depth expansion
- JTAG boundary scan

The information in this document is subject to change without notice. Before using this document, please confirm that this is the latest version. Not all products and/or types are available in every country. Please check with an NEC Electronics sales representative for availability and additional information.

Document No. M15824EJ8V0DS00 (8th edition) Date Published April 2007 NS CP(N) Printed in Japan

The mark <R> shows major revised points. © NEC Electronics Corporation 2001 The revised points can be easily searched by copying an "<R>" in the PDF file and specifying it in the "Find what:" field.

Ordering Information

Part number	Cycle	Clock	Organization	Core Supply	I/O	Package
	Time	Frequency	(word x bit)	Voltage	Interface	
	ns	MHz		V		
μPD44165082F5-E50-EQ1	5.0	200	2 M x 8-bit	1.8 ± 0.1	HSTL	165-pin PLASTIC
μPD44165082F5-E60-EQ1	6.0	167				BGA (13 x 15)
μPD44165082F5-E75-EQ1	7.5	133				
μPD44165182F5-E50-EQ1	5.0	200	1 M x 18-bit			
μPD44165182F5-E60-EQ1	6.0	167				
μPD44165182F5-E75-EQ1	7.5	133				
μPD44165362F5-E50-EQ1	5.0	200	512 K x 36-bit			
μPD44165362F5-E60-EQ1	6.0	167				
μPD44165362F5-E75-EQ1	7.5	133				

Pin Configurations

/xxx indicates active low signal.

165-pin PLASTIC BGA (13 x 15) (Top View) [μΡD44165082F5-EQ1]

	1	2	3	4	5	6	7	8	9	10	11
A	/CQ	Vss	A	/W	/NW1	/ K	NC	/R	Α	Vss	CQ
в	NC	NC	NC	Α	NC	к	/NW0	Α	NC	NC	Q3
С	NC	NC	NC	Vss	Α	Α	Α	Vss	NC	NC	D3
D	NC	D4	NC	Vss	Vss	Vss	Vss	Vss	NC	NC	NC
Е	NC	NC	Q4	VDDQ	Vss	Vss	Vss	VDDQ	NC	D2	Q2
F	NC	NC	NC	VDDQ	VDD	Vss	VDD	VDDQ	NC	NC	NC
G	NC	D5	Q5	VDDQ	VDD	Vss	VDD	VDDQ	NC	NC	NC
н	/DLL	Vref	VDDQ	VDDQ	VDD	Vss	VDD	VDDQ	VDDQ	VREF	ZQ
J	NC	NC	NC	VDDQ	VDD	Vss	VDD	VDDQ	NC	Q1	D1
к	NC	NC	NC	VDDQ	VDD	Vss	VDD	VDDQ	NC	NC	NC
L	NC	Q6	D6	VDDQ	Vss	Vss	Vss	VDDQ	NC	NC	Q0
м	NC	NC	NC	Vss	Vss	Vss	Vss	Vss	NC	NC	D0
Ν	NC	D7	NC	Vss	Α	Α	А	Vss	NC	NC	NC
Ρ	NC	NC	Q7	Α	Α	С	Α	Α	NC	NC	NC
R	TDO	тск	Α	Α	Α	/C	Α	Α	Α	TMS	TDI

А	: Address inputs	TMS	: IEEE 1149.1 Test input
D0 to D7	: Data inputs	TDI	: IEEE 1149.1 Test input
Q0 to Q7	: Data outputs	TCK	: IEEE 1149.1 Clock input
/R	: Read input	TDO	: IEEE 1149.1 Test output
/W	: Write input	VREF	: HSTL input reference input
/NW0, /NW1	: Nibble Write data select	Vdd	: Power Supply
K, /K	: Input clock	VddQ	: Power Supply
C, /C	: Output clock	Vss	: Ground
CQ, /CQ	: Echo clock	NC	: No connection
ZQ	: Output impedance matching		
/DLL	: DLL disable		

Remark Refer to Package Drawing for the index mark.

165-pin PLASTIC BGA (13 x 15) (Top View) [μPD44165182F5-EQ1]

_	1	2	3	4	5	6	7	8	9	10	11
Α	/CQ	Vss	NC	/ W	/BW1	/K	NC	/R	A	Vss	CQ
в	NC	Q9	D9	Α	NC	к	/BW0	Α	NC	NC	Q8
с	NC	NC	D10	Vss	Α	Α	Α	Vss	NC	Q7	D8
D	NC	D11	Q10	Vss	Vss	Vss	Vss	Vss	NC	NC	D7
Е	NC	NC	Q11	VDDQ	Vss	Vss	Vss	VDDQ	NC	D6	Q6
F	NC	Q12	D12	VDDQ	VDD	Vss	VDD	VDDQ	NC	NC	Q5
G	NC	D13	Q13	VDDQ	VDD	Vss	VDD	VDDQ	NC	NC	D5
н	/DLL	VREF	VDDQ	VDDQ	VDD	Vss	VDD	VDDQ	VDDQ	VREF	ZQ
J	NC	NC	D14	VDDQ	VDD	Vss	VDD	VDDQ	NC	Q4	D4
к	NC	NC	Q14	VDDQ	VDD	Vss	VDD	VDDQ	NC	D3	Q3
L	NC	Q15	D15	VDDQ	Vss	Vss	Vss	VDDQ	NC	NC	Q2
М	NC	NC	D16	Vss	Vss	Vss	Vss	Vss	NC	Q1	D2
N	NC	D17	Q16	Vss	Α	Α	Α	Vss	NC	NC	D1
Ρ	NC	NC	Q17	Α	Α	С	Α	Α	NC	D0	Q0
R	TDO	тск	Α	Α	Α	/C	Α	Α	Α	TMS	TDI

А	: Address inputs	TMS	: IEEE 1149.1 Test input
D0 to D17	: Data inputs	TDI	: IEEE 1149.1 Test input
Q0 to Q17	: Data outputs	ТСК	: IEEE 1149.1 Clock input
/R	: Read input	TDO	: IEEE 1149.1 Test output
/W	: Write input	VREF	: HSTL input reference input
/BW0, /BW1	: Byte Write data select	Vdd	: Power Supply
K, /K	: Input clock	VddQ	: Power Supply
C, /C	: Output clock	Vss	: Ground
CQ, /CQ	: Echo clock	NC	: No connection
ZQ	: Output impedance matching		
/DLL	: DLL disable		

Remark Refer to **Package Drawing** for the index mark.

165-pin PLASTIC BGA (13 x 15) (Top View) [μΡD44165362F5-EQ1]

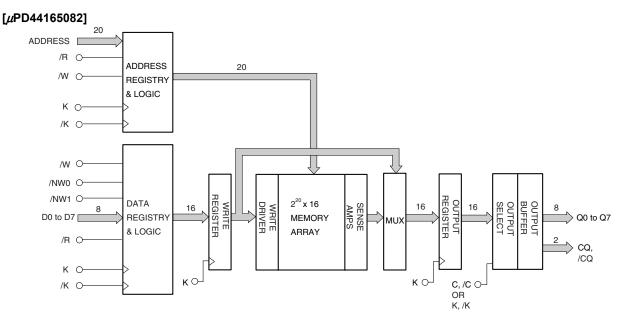
	1	2	3	4	5	6	7	8	9	10	11
Α	/CQ	Vss	NC	/ W	/BW2	/K	/BW1	/R	NC	Vss	CQ
в	Q27	Q18	D18	A	/BW3	к	/BW0	Α	D17	Q17	Q8
с	D27	Q28	D19	Vss	Α	Α	Α	Vss	D16	Q7	D8
D	D28	D20	Q19	Vss	Vss	Vss	Vss	Vss	Q16	D15	D7
Е	Q29	D29	Q20	VDDQ	Vss	Vss	Vss	VDDQ	Q15	D6	Q6
F	Q30	Q21	D21	VDDQ	VDD	Vss	VDD	VDDQ	D14	Q14	Q5
G	D30	D22	Q22	VDDQ	VDD	Vss	VDD	VDDQ	Q13	D13	D5
н	/DLL	VREF	VDDQ	VDDQ	VDD	Vss	VDD	VDDQ	VDDQ	VREF	ZQ
J	D31	Q31	D23	VDDQ	VDD	Vss	VDD	VDDQ	D12	Q4	D4
к	Q32	D32	Q23	VDDQ	VDD	Vss	VDD	VDDQ	Q12	D3	Q3
L	Q33	Q24	D24	VDDQ	Vss	Vss	Vss	VDDQ	D11	Q11	Q2
м	D33	Q34	D25	Vss	Vss	Vss	Vss	Vss	D10	Q1	D2
N	D34	D26	Q25	Vss	Α	Α	Α	Vss	Q10	D9	D1
Ρ	Q35	D35	Q26	Α	Α	С	Α	Α	Q9	D0	Q0
R	TDO	тск	Α	Α	Α	/C	Α	Α	Α	TMS	TDI

А	: Address inputs	TMS	: IEEE 1149.1 Test input
D0 to D35	: Data inputs	TDI	: IEEE 1149.1 Test input
Q0 to Q35	: Data outputs	TCK	: IEEE 1149.1 Clock input
/R	: Read input	TDO	: IEEE 1149.1 Test output
/W	: Write input	Vref	: HSTL input reference input
/BW0 to /BW3	: Byte Write data select	Vdd	: Power Supply
K, /K	: Input clock	VddQ	: Power Supply
C, /C	: Output clock	Vss	: Ground
CQ, /CQ	: Echo clock	NC	: No connection
ZQ	: Output impedance matching		
/DLL	: DLL disable		

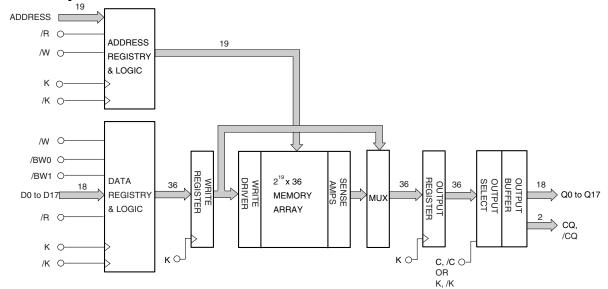
Remark Refer to **Package Drawing** for the index mark.

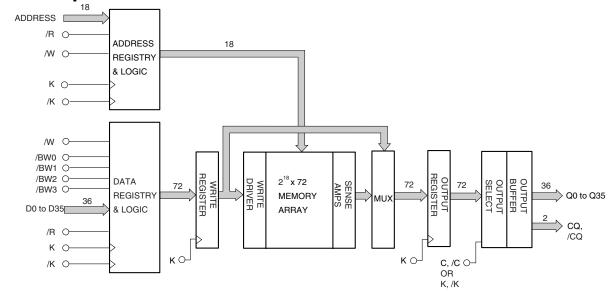
Pin Identification

Symbol	Description
A	Synchronous Address Inputs: These inputs are registered and must meet the setup and hold times around the rising edge of K for READ cycles and must meet the setup and hold times around the rising edge of /K for WRITE cycles. Balls 9A, 3A, 10A, and 2A are reserved for the next higher-order address inputs on future devices. All transactions operate on a burst of two words (one clock period of bus activity). These inputs are ignored when device is deselected.
D0 to Dxx	Synchronous Data Inputs: Input data must meet setup and hold times around the rising edges of K and /K during WRITE operations. See Pin Configurations for ball site location of individual signals. x8 device uses D0 to D7. x18 device uses D0 to D17. x36 device uses D0 to D35.
Q0 to Qxx	Synchronous Data Outputs: Output data is synchronized to the respective C and /C or to K and /K rising edges if C and /C are tied HIGH. This bus operates in response to /R commands. See Pin Configurations for ball site location of individual signals. x8 device uses Q0 to Q7. x18 device uses Q0 to Q17. x36 device uses Q0 to Q35.
/R	Synchronous Read: When LOW this input causes the address inputs to be registered and a READ cycle to be initiated. This input must meet setup and hold times around the rising edge of K.
/W	Synchronous Write: When LOW this input causes the address inputs to be registered and a WRITE cycle to be initiated. This input must meet setup and hold times around the rising edge of K.
/BWx /NWx	Synchronous Byte Writes (Nibble Writes on x8): When LOW these inputs cause their respective byte or nibble to be registered and written during WRITE cycles. These signals must meet setup and hold times around the rising edges of K and /K for each of the two rising edges comprising the WRITE cycle. See Pin Configurations for signal to data relationships.
K, /K	Input Clock: This input clock pair registers address and control inputs on the rising edge of K, and registers data on the rising edge of K and the rising edge of /K. /K is ideally 180 degrees out of phase with K. All synchronous inputs must meet setup and hold times around the clock rising edges.
C, /C	Output Clock: This clock pair provides a user controlled means of tuning device output data. The rising edge or /C is used as the output timing reference for first output data. The rising edge of C is used as the output reference for second output data. Ideally, /C is 180 degrees out of phase with C. C and /C may be tied HIGH to force the use of K and /K as the output reference clocks instead of having to provide C and /C clocks. If tied HIGH, C and /C must remain HIGH and not be toggled during device operation.
CQ, /CQ	Synchronous Echo Clock Outputs. The rising edges of these outputs are tightly matched to the synchronous data outputs and can be used as a data valid indication. These signals run freely and do not stop when C tristates.
ZQ	Output Impedance Matching Input: This input is used to tune the device outputs to the system data bus impedance. Q, CQ and /CQ output impedance are set to 0.2 x RQ, where RQ is a resistor from this bump to ground. This pin cannot be connected directly to GND or left unconnected. Also, in this product, there is no function to minimize the output impedance by connecting ZQ directly to V _{DDQ} . The output impedance is adjusted every 1,024 cycles upon power-up to account for drifts in supply voltage and temperature. After replacement for a resistor, the new output impedance is reset by implementing power-on and DLL lock time (TKC lock) again.
/DLL	DLL Disable: When LOW, this input causes the DLL to be bypassed for stable low frequency operation. The AC/DC characteristics cannot be guaranteed. For normal operation, /DLL must be HIGH.
TMS TDI	IEEE 1149.1 Test Inputs: 1.8V I/O levels. These balls may be left Not Connected if the JTAG function is no used in the circuit.
ТСК	IEEE 1149.1 Clock Input: 1.8V I/O levels. This pin must be tied to Vss if the JTAG function is not used in the circuit.
TDO	IEEE 1149.1 Test Output: 1.8V I/O level.
VREF	HSTL Input Reference Voltage: Nominally VDDQ/2. Provides a reference voltage for the input buffers.
Vdd	Power Supply: 1.8V nominal. See Recommended DC Operating Conditions and DC Characteristics for range.
VddQ	Power Supply: Isolated Output Buffer Supply. Nominally 1.5V. 1.8V is also permissible. See Recommended DC Operating Conditions and DC Characteristics for range.
Vss	Power Supply: Ground
NC	No Connect: These signals are internally connected and appear in the JTAG scan chain as the logic leve applied to the ball sites.


<R>

<R>


<R>


Block Diagrams

[*µ*PD44165182]

[*µ*PD44165362]

Data Sheet M15824EJ8V0DS

Truth Table

Operation	CLK	/R	/W	D or Q				
WRITE cycle	$L\toH$	Х	L	Data in				
Load address, input write data on				Input data D _A (A+0) D _A (A+1)				
consecutive K and /K rising edge				Input clock K(t)↑ /K(t)↑				
READ cycle	$L\toH$	L	Х	Data out				
Load address, output data on				Output data QA (A+0) QA (A+1)				
consecutive C and /C rising edge				Output clock $/C(t+1)\uparrow$ $C(t+2)\uparrow$				
NOP (No operation)	$L\toH$	Н	Н	D = X, Q = High-Z				
STANDBY(Clock stopped)	Stopped	х	Х	Previous state				

Remarks 1. H : High level, L : Low level, \times : don't care, \uparrow : rising edge.

- 2. Data inputs are registered at K and /K rising edges. Data outputs are delivered at C and /C rising edges except if C and /C are HIGH then Data outputs are delivered at K and /K rising edges.
- All control inputs in the truth table must meet setup/hold times around the rising edge (LOW to HIGH) of K. All control inputs are registered during the rising edge of K.
- 4. This device contains circuitry that will ensure the outputs will be in high impedance during power-up.
- 5. Refer to state diagram and timing diagrams for clarification.
- **6.** It is recommended that K = /(/K) = C = /(/C) when clock is stopped. This is not essential but permits most rapid restart by overcoming transmission line charging symmetrically.

Byte Write Operation

[*µ*PD44165082]

Operation	К	/K	/NW0	/NW1
Write D0 to D7	$L\toH$	_	0	0
	_	$L\toH$	0	0
Write D0 to D3	$L\toH$	_	0	1
	_	$L\toH$	0	1
Write D4 to D7	$L\toH$	-	1	0
	_	$L\toH$	1	0
Write nothing	$L\toH$	-	1	1
	_	$L\toH$	1	1

Remarks 1. H : High level, L : Low level, \rightarrow : rising edge.

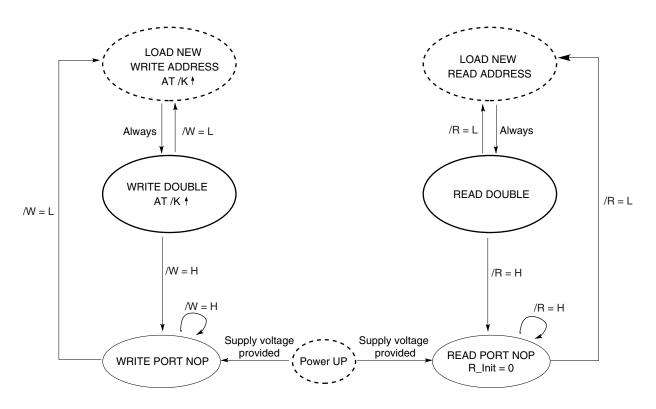
2. Assumes a WRITE cycle was initiated. /NW0 and /NW1 can be altered for any portion of the BURST WRITE operation provided that the setup and hold requirements are satisfied.

[*µ*PD44165182]

Operation	К	/K	/BW0	/BW1
Write D0 to D17	$L\toH$	_	0	0
	_	$L\toH$	0	0
Write D0 to D8	$L\toH$	_	0	1
	_	$L\toH$	0	1
Write D9 to D17	$L\toH$	_	1	0
	_	$L\toH$	1	0
Write nothing	$L\toH$	_	1	1
	-	$L\toH$	1	1

Remarks 1. H : High level, L : Low level, \rightarrow : rising edge.

2. Assumes a WRITE cycle was initiated. /BW0 and /BW1 can be altered for any portion of the BURST WRITE operation provided that the setup and hold requirements are satisfied.


[µPD44165362]

Operation	К	/K	/BW0	/BW1	/BW2	/BW3
Write D0 to D35	$L\toH$	-	0	0	0	0
	-	$L\toH$	0	0	0	0
Write D0 to D8	$L\toH$	_	0	1	1	1
	Ι	$L\toH$	0	1	1	1
Write D9 to D17	$L\toH$	_	1	0	1	1
	I	$L\toH$	1	0	1	1
Write D18 to D26	$L\toH$	_	1	1	0	1
	Ι	$L\toH$	1	1	0	1
Write D27 to D35	$L\toH$	_	1	1	1	0
	I	$L\toH$	1	1	1	0
Write nothing	$L\toH$	_	1	1	1	1
	_	$L\toH$	1	1	1	1

Remarks 1. H : High level, L : Low level, \rightarrow : rising edge.

 Assumes a WRITE cycle was initiated. /BW0 to /BW3 can be altered for any portion of the BURST WRITE operation provided that the setup and hold requirements are satisfied.

Bus Cycle State Diagram

Remarks 1. The address is concatenated with 1 additional internal LSB to facilitate burst operation. The address order is always fixed as: xxx...xxx+0, xxx...xxx+1. Bus cycle is terminated at the end of this sequence (burst count = 2).

- **2.** Read and write state machines can be active simultaneously.
- 3. State machine control timing sequence is controlled by K.

<R>

Electrical Specifications

Absolute Maximum Ratings

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Supply voltage	Vdd		-0.5		+2.9	V
Output supply voltage	VddQ		-0.5		Vdd	V
Input voltage	Vin		-0.5		Vdd + 0.5 (2.9 V MAX.)	V
Input / Output voltage	Vi/o		-0.5		VDDQ + 0.5 (2.9 V MAX.)	V
Operating ambient temperature	Та		0		70	°C
Storage temperature	Tstg		-55		+125	°C

Caution Exposing the device to stress above those listed in Absolute Maximum Ratings could cause permanent damage. The device is not meant to be operated under conditions outside the limits described in the operational section of this specification. Exposure to Absolute Maximum Rating conditions for extended periods may affect device reliability.

Recommended DC Operating Conditions (T_A = 0 to 70 °C)

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit	Note
Supply voltage	Vdd		1.7		1.9	V	
Output supply voltage	VddQ		1.4		Vdd	V	1
High level input voltage	VIH (DC)		Vref + 0.1		VDDQ + 0.3	V	1, 2
Low level input voltage	VIL (DC)		-0.3		Vref – 0.1	V	1, 2
Clock input voltage	VIN		-0.3		VDDQ + 0.3	V	1, 2
Reference voltage	VREF		0.68		0.95	V	3

Notes 1. During normal operation, $V {\tt DD} Q$ must not exceed $V {\tt DD}.$

2. Power-up: VIH \leq VDDQ + 0.3 V and VDD \leq 1.7 V and VDDQ \leq 1.4 V for t \leq 200 ms

3. Between the Power-On and Power-Off, VREF must not exceed VDD.

Recommended AC Operating Conditions (TA = 0 to 70 °C)

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit	Note
High level input voltage	VIH (AC)		Vref + 0.2		_	V	1
Low level input voltage	VIL (AC)		-		Vref – 0.2	V	1

Note 1. Overshoot: $V_{IH (AC)} \le V_{DD} + 0.7 V$ for $t \le TKHKH/2$

Undershoot: VIL (AC) ≥ -0.5 V for t \le TKHKH/2

Control input signals may not have pulse widths less than TKHKL (MIN.) or operate at cycle rates less than TKHKH (MIN.).

DC Characteristics (T_A = 0 to 70°C, V_{DD} = $1.8 \pm 0.1 \text{ V}$)

Parameter	Symbol	Test condition		MIN.	TYP.	MA	X.	Unit	Note
						x8, x18	x36		
Input leakage current	L			-2	-	+	2	μA	
I/O leakage current	Ilo			-2	-	+	2	μA	
Operating supply current	ldd	$VIN \leq VIL \text{ or } VIN \geq VIH,$	-E50			610	700	mA	
(Read Write cycle)		II/O = 0 mA	-E60			530	600		
		Cycle = MAX.	-E75			470	530		
Standby supply current	ISB1	$VIN \leq VIL \text{ or } VIN \geq VIH,$	-E50			27	'0	mA	
(NOP)		II/O = 0 mA	-E60			25	50		
		Cycle = MAX.	-E75			23	30		
High level output voltage	VOH(Low)	Іон ≤ 0.1 mA		VDDQ - 0.2	-	VDI	DQ	V	3,4
	Vон	Note1		VDDQ/2 - 0.12	-	VDDQ/2	+ 0.12		3,4
Low level output voltage	VOL(Low)	lo∟ ≤ 0.1 mA		Vss	-	0.	2	V	3,4
	Vol	Note2		VDDQ/2 - 0.12	-	VDDQ/2	+ 0.12		3,4

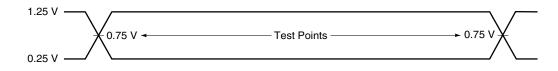
Notes 1. Outputs are impedance-controlled. | IoH | = (VDDQ/2)/(RQ/5) for values of 175 $\Omega \le RQ \le 350 \Omega$.

2. Outputs are impedance-controlled. IoL = $(V_{DD}Q/2)/(RQ/5)$ for values of 175 $\Omega \le RQ \le 350 \Omega$.

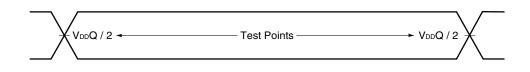
- 3. AC load current is higher than the shown DC values.
- 4. HSTL outputs meet JEDEC HSTL Class I standards.

Capacitance (T_A = 25 °C, f = 1MHz)

<R>

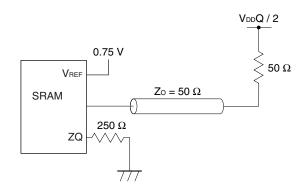

Parameter	Symbol	Test conditions	MIN.	TYP.	MAX.	Unit
Input capacitance(Address, Control)	CIN	VIN = 0 V		4	5	pF
Input / Output capacitance(D, Q)	Ci/o	V1/0 = 0 V		6	7	pF
Clock Input capacitance	Cclk	Vclk = 0 V		5	6	pF

Remark These parameters are periodically sampled and not 100% tested.


AC Characteristics (T_A = 0 to 70 °C, V_{DD} = 1.8 ± 0.1 V)

AC Test Conditions

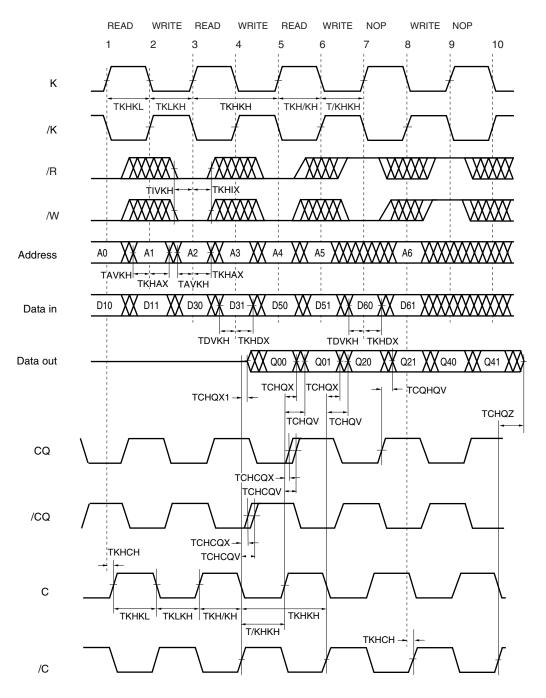
Input waveform (Rise / Fall time ≤ 0.3 ns)



Output waveform

Output load condition

Figure 1. External load at test



Read and Write Cycle

Param	eter	Symbol	-E		-E(-E7		Unit	Note
			(200 MIN.	MAX.	(167 I MIN.	MAX.	(133 N MIN.	MAX.	-	
Clock			IVIIIN.	WIAA.	WIIN.	MAA.	WIIN.	WIAA.		
Average Clock cycle	time (K. /K. C. /C)	ТКНКН	5.0	8.4	6.0	8.4	7.5	8.4	ns	1
Clock phase jitter (K,	, ,	TKC var	_	0.2	_	0.2	-	0.2	ns	2
Clock HIGH time (K,		TKHKL	2.0	-	2.4	-	3.0	-	ns	
Clock LOW time (K, /		TKLKH	2.0	_	2.4	_	3.0	_	ns	
Clock HIGH to /Clock		TKH/KH	2.2	_	2.7	_	3.38	_	ns	
(K→/K, C→/C)										
/Clock HIGH to Clock	HIGH	T/KHKH	2.2	_	2.7	_	3.38	_	ns	
(/K→K, /C→C)									_	
Clock to data clock	167 to 200 MHz	ТКНСН	0	2.3	_	_	_	_	ns	
(K→C, /K→/C)	133 to 167 MHz		0	2.8	0	2.8	_	_	1	
· · · ·	< 133 MHz		0	3.55	0	3.55	0	3.55	1	
DLL lock time (K, C)		TKC lock	1,024	_	1,024	_	1,024	_	Cycle	3
K static to DLL reset		TKC reset	30	_	30	_	30	_	ns	
Output Times										
C, /C HIGH to output	valid	TCHQV	_	0.45	_	0.5	_	0.5	ns	
C, /C HIGH to output	hold	TCHQX	-0.45	_	-0.5	_	-0.5	_	ns	
C, /C HIGH to echo c	lock valid	TCHCQV	_	0.45	_	0.5	_	0.5	ns	
C, /C HIGH to echo c		TCHCQX	-0.45	_	-0.5	_	-0.5	_	ns	
CQ, /CQ HIGH to out	tput valid	TCQHQV	_	0.35	_	0.4	_	0.4	ns	4
CQ, /CQ HIGH to out	tput hold	TCQHQX	-0.35	_	-0.4	_	-0.4	_	ns	4
C HIGH to output Hig	jh-Z	TCHQZ	_	0.45	_	0.5	_	0.5	ns	
C HIGH to output Lov	N-Z	TCHQX1	-0.45	_	-0.5	_	-0.5	_	ns	
				•		•	•			
Setup Times										
Address valid to K ris	ing edge	TAVKH	0.4	_	0.5	_	0.5	_	ns	5
Control inputs (/R, /W	/) valid to K rising	TIVKH	0.4	_	0.5	_	0.5	_	ns	5
edge	, <u> </u>									
Data inputs and write	data select	TDVKH	0.4	-	0.5	-	0.5	-	ns	5
inputs (/BWx, /NWx)	valid to K, /K									
rising edge										
Hold Times								-	_	
K rising edge to addr	ess hold	TKHAX	0.4	-	0.5	-	0.5	-	ns	5
K rising edge to conti	rol inputs (/R, /W)	ТКНІХ	0.4	-	0.5	-	0.5	_	ns	5
hold										
K, /K rising edge to d		TKHDX	0.4	-	0.5	-	0.5	-	ns	5
write data select inpu	its (/BWx, /NWx)									
hold										

- <R> Notes 1. The device can operate at a clock frequency slower than TKHKH (MAX.) without the DLL circuit being used, if /DLL = low level. The AC/DC characteristics cannot be guaranteed, however.
 - 2. Clock phase jitter is the variance from clock rising edge to the next expected clock rising edge.
 - VDD slew rate must be less than 0.1 V DC per 50 ns for DLL lock retention.
 DLL lock time begins once VDD and input clock are stable.
 It is recommended that the device is kept inactive during these cycles.
 - **4.** Echo clock is very tightly controlled to data valid / data hold. By design, there is a ± 0.1 ns variation from echo clock to data. The data sheet parameters reflect tester guardbands and test setup variations.
 - **5.** This is a synchronous device. All addresses, data and control lines must meet the specified setup and hold times for all latching clock edges.
 - Remarks 1. This parameter is sampled.
 - **2.** Test conditions as specified with the output loading as shown in AC Test Conditions unless otherwise noted.
 - 3. Control input signals may not be operated with pulse widths less than TKHKL (MIN.).
 - 4. If C, /C are tied HIGH, K, /K become the references for C, /C timing parameters.
 - **5.** VDDQ is 1.5 V DC.

Read and Write Timing

Remarks 1. Q00 refers to output from address A0+0.

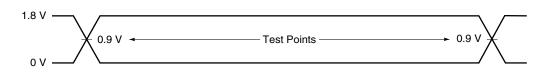
Q01 refers to output from the next internal burst address following A0, i.e., A0+1.

- 2. Outputs are disable (high impedance) one clock cycle after a NOP.
- In this example, if address A0=A1, data Q00=D10, Q01=D11.
 Write data is forwarded immediately as read results.

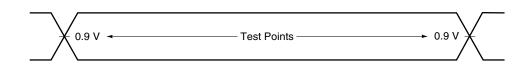
JTAG Specification

These products support a limited set of JTAG functions as in IEEE standard 1149.1.

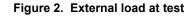
Test Access Port (TAP) Pins

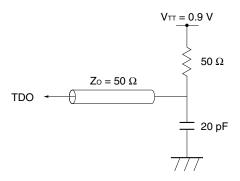

Pin name	Pin assignments	Description
тск	2R	Test Clock Input. All input are captured on the rising edge of TCK and all outputs propagate from the falling edge of TCK.
TMS	10R	Test Mode Select. This is the command input for the TAP controller state machine.
TDI	11R	Test Data Input. This is the input side of the serial registers placed between TDI and TDO. The register placed between TDI and TDO is determined by the state of the TAP controller state machine and the instruction that is currently loaded in the TAP instruction.
TDO	1R	Test Data Output. Output changes in response to the falling edge of TCK. This is the output side of the serial registers placed between TDI and TDO.

Remark The device does not have TRST (TAP reset). The Test-Logic Reset state is entered while TMS is held high for five rising edges of TCK. The TAP controller state is also reset on the SRAM POWER-UP.


Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit	Note
JTAG Input leakage current	Iц	$0 \ V \leq V_{\text{IN}} \leq V_{\text{DD}}$	-5.0	_	+5.0	μA	
JTAG I/O leakage current	Ilo	$0 \ V \leq V_{\text{IN}} \leq V_{\text{DD}} Q \ ,$	-5.0	_	+5.0	μA	
		Outputs disabled					
JTAG input high voltage	Vін		1.3	_	VDD + 0.3	V	
JTAG input low voltage	VIL		-0.3	_	+0.5	V	
JTAG output high voltage	Voh1	Іонс = 100 <i>μ</i> А	1.6	_	_	V	
	Voh2	Іонт = 2 mA	1.4	-	-	V	
JTAG output low voltage	Vol1	IOLC = 100 μA	-	-	0.2	V	
	Vol2	IOLT = 2 mA	_	_	0.4	V	

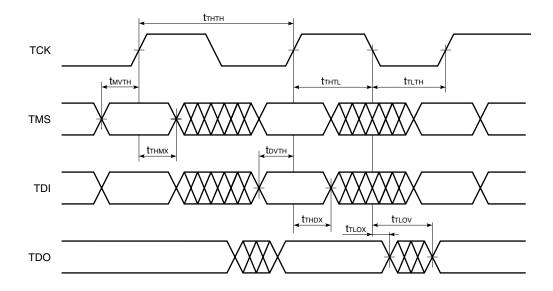
JTAG AC Test Conditions


Input waveform (Rise / Fall time ≤ 1 ns)



Output waveform

Output load



JTAG AC Characteristics (T_A = 0 to 70 °C)

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit	Note
Clock							
Clock cycle time	tтнтн		100	_	Ι	ns	
Clock frequency	f⊤⊧		-	_	10	MHz	
Clock high time	tтнт∟		40	-	Ι	ns	
Clock low time	tт∟тн		40	_	-	ns	
Output time	1.				_		
TCK low to TDO unknown	t _{TLOX}		0	_	_	ns	
TCK low to TDO valid	tτ∟ον		-	-	20	ns	
	_						
Setup time			_			-	
TMS setup time	tмvтн		10	-	-	ns	
TDI valid to TCK high	tovтн		10	_	Ι	ns	
Capture setup time	tcs		10	-	-	ns	
Hold time	1						
TMS hold time	tтнмх		10	-	-	ns	
TCK high to TDI invalid	tтнdx		10	-	-	ns	
Capture hold time	tсн		10	_	-	ns	

JTAG Timing Diagram

Scan Register Definition (1)

Register name	Description
Instruction register	The instruction register holds the instructions that are executed by the TAP controller when it is moved into the run-test/idle or the various data register state. The register can be loaded when it is placed between the TDI and TDO pins. The instruction register is automatically preloaded with the IDCODE instruction at power-up whenever the controller is placed in test-logic-reset state.
Bypass register	The bypass register is a single bit register that can be placed between TDI and TDO. It allows serial test data to be passed through the RAMs TAP to another device in the scan chain with as little delay as possible.
ID register	The ID Register is a 32 bit register that is loaded with a device and vendor specific 32 bit code when the controller is put in capture-DR state with the IDCODE command loaded in the instruction register. The register is then placed between the TDI and TDO pins when the controller is moved into shift-DR state.
Boundary register	The boundary register, under the control of the TAP controller, is loaded with the contents of the RAMs I/O ring when the controller is in capture-DR state and then is placed between the TDI and TDO pins when the controller is moved to shift-DR state. Several TAP instructions can be used to activate the boundary register. The Scan Exit Order tables describe which device bump connects to each boundary register location. The first column defines the bit's position in the boundary register. The second column is the name of the input or I/O at the bump and the third column is the bump number.

Scan Register Definition (2)

Register name	Bit size	Unit
Instruction register	3	bit
Bypass register	1	bit
ID register	32	bit
Boundary register	107	bit

ID Register Definition

Part number	Organization	ID [31:28] vendor revision no.	ID [27:12] part no.	ID [11:1] vendor ID no.	ID [0] fix bit
μPD44165082	2M x 8	XXXX	0000 0000 0000 1100	0000010000	1
μPD44165182	1M x 18	XXXX	0000 0000 0000 1101	0000010000	1
μPD44165362	512K x 36	XXXX	0000 0000 0000 1110	00000010000	1

SCAN Exit Order

NEC

Bit	Signal name			Bump
no.	x8 x18 x36			ID.
1		/C		6R
2		С		6P
3		А		6N
4		А		7P
5		А		7N
6		А		7R
7		А		8R
8		А		8P
9		А		9R
10	NC	Q0	Q0	11P
11	NC	D0	D0	10P
12	NC	NC	D9	10N
13	NC	NC	Q9	9P
14	NC	Q1	Q1	10M
15	NC	D1	D1	11N
16	NC	NC	D10	9M
17	NC	NC	Q10	9N
18	Q0	Q2	Q2	11L
19	D0	D2	D2	11M
20	NC	NC	D11	9L
21	NC	NC	Q11	10L
22	NC	Q3	Q3	11K
23	NC	D3	D3	10K
24	NC	NC	D12	9J
25	NC	NC	Q12	9K
26	Q1	Q4	Q4	10J
27	D1	D4	D4	11J
28	ZQ			11H
29	NC	NC	D13	10G
30	NC	NC	Q13	9G
31	NC	Q5	Q5	11F
32	NC	D5	D5	11G
33	NC	NC	D14	9F
34	NC	NC	Q14	10F
35	Q2	Q6	Q6	11E
36	D2	D6	D6	10E

Bit	Signal name			Bump
no.	x8 x18 x36			ID
37	NC	NC	D15	10D
38	NC	NC	Q15	9E
39	NC	Q7	Q7	3∟ 10C
40	NC	D7	D7	11D
40	NC	NC	D16	9C
41	NC	NC	Q16	90 9D
42	Q3	Q8	Q10 Q8	9D 11B
44	D3	D8	D8	11C
45	NC	NC	D17	9B
46	NC	NC	Q17	10B
47		CQ		11A
48		-		Internal
49	A	A	NC	9A
50		A		8B
51		A		7C
52		A		6C
53		/R		8A
54	NC	NC	/BW1	7A
55	/NW0 /BW0 /BW0			7B
56		К		6B
57		/K		6A
58	NC	NC	/BW3	5B
59	/NW1	/BW1	/BW2	5A
60		/W		4A
61		А		5C
62		А		4B
63	A NC NC			3A
64	/DLL			1H
65	/CQ			1A
66	NC	Q9	Q18	2B
67	NC	D9	D18	3B
68	NC	NC	D27	1C
69	NC	NC	Q27	1B
70	NC	Q10	Q19	3D
71	NC	D10	D19	3C
72	NC	NC	D28	1D

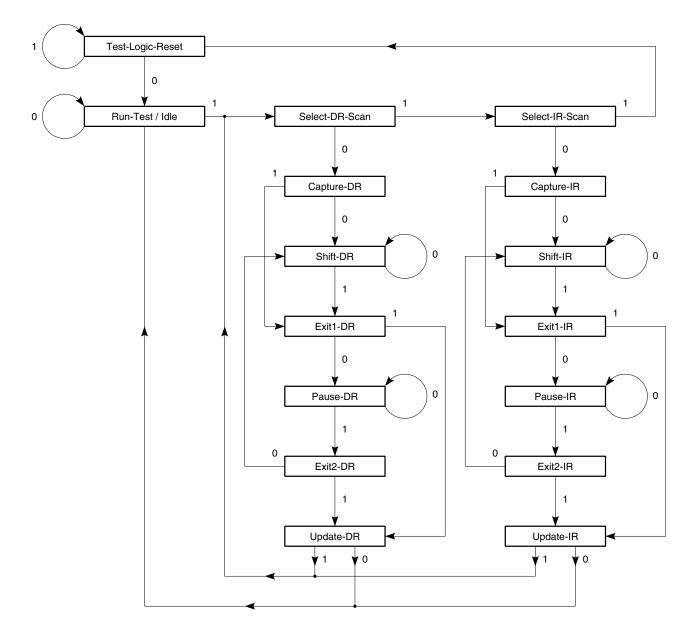
no.x8x18x36ID73NCNCQ282C74Q4Q11Q203E75D4D11D202D76NCNCD292E77NCNCQ212F78NCQ12Q213F80NCD12D213F81NCNCQ301F82Q5Q13Q223G83D5D13D222G84NCNCQ311J85NCQ14Q233K86NCQ14Q233K87NCD14D233J88NCNCQ321K90Q6Q15Q242L91D6D15D243L92NCNCQ331M93NCNCQ331M94NCQ16Q253N95NCD16D253M96NCNCQ342N97NCNCQ352P101NCNCQ352P101NCNCQ351P99D7D17D262N101NCNCQ351P102AXX103AXX104AAA105AXX <th>Bit</th> <th colspan="3">Signal name</th> <th>Bump</th>	Bit	Signal name			Bump
73NCNCQ282C74Q4Q11Q203E75D4D11D202D76NCNCD292E77NCNCQ291E78NCQ12Q213F79NCD12D213F80NCNCD301G81NCNCQ301F82Q5Q13Q223G83D5D13D222G84NCNCQ311J85NCNCQ312J86NCQ14Q233K87NCD14D233J88NCNCQ321K90Q6Q15Q242L91D6D15D243L92NCNCQ331M93NCNCQ331M94NCQ16Q253N95NCD16D253M96NCNCQ342N97NCNCQ352P98Q7Q17Q263P99D7D17D262N99D7D17Q263R99D7D17Q263P99D7D17Q263R103AXX104AXX105AX <td></td> <td colspan="3"></td> <td></td>					
74Q4Q11Q203E75D4D11D202D76NCNCD292E77NCNCQ291E78NCQ12Q212F79NCD12D213F80NCNCD301G81NCNCQ301F82Q5Q13Q223G83D5D13D222G84NCNCQ311J85NCQ14Q233K86NCQ14Q233J88NCNCD322K90Q6Q15Q242L91D6D15D243L92NCNCQ331L93NCNCQ331L94NCQ16Q253M95NCD16D253M96NCNCQ342M97NCNCQ351P98Q7Q17Q263P99D7D17D262N101NCNCQ351P102AXX103A4R104A4P105A5P106A5P107Q5SP108A4P					
75D4D11D202D76NCNCD292E77NCNCQ291E78NCQ12Q212F79NCD12D213F80NCNCD301G81NCNCQ301F82Q5Q13Q223G83D5D13D222G84NCNCQ311J85NCNCQ312J86NCQ14Q233K87NCD14D233J88NCNCD322K90Q6Q15Q242L91D6D15D243L92NCNCQ331L93NCNCQ331L94NCQ16Q253M95NCD16D253M96NCNCQ342M97NCNCQ351P98Q7Q17Q263P99D7D17D262N100NCNCQ351P101NCNCQ351P102AX3R103A4R104A4P105A5P106A5P107D4SP					
76 NC NC D29 2E 77 NC NC Q29 1E 78 NC Q12 Q21 2F 79 NC D12 D21 3F 80 NC NC D30 1G 81 NC NC Q30 1F 82 Q5 Q13 Q22 3G 83 D5 D13 D22 2G 84 NC NC Q31 1J 85 NC NC Q31 2J 86 NC Q14 Q23 3K 87 NC D14 D23 3J 88 NC NC Q32 1K 90 Q6 Q15 Q24 2L 91 D6 D15 D24 3L 92 NC NC Q33 1L 93 NC NC Q33 1L 94 NC Q16 Q25 3M 95 NC					
77 NC NC Q29 1E 78 NC Q12 Q21 2F 79 NC D12 D21 3F 80 NC NC D30 1G 81 NC NC Q30 1F 82 Q5 Q13 Q22 3G 83 D5 D13 D22 2G 84 NC NC Q31 1J 85 NC NC Q31 2J 86 NC Q14 Q23 3K 87 NC D14 D23 3J 88 NC NC D32 2K 89 NC NC D32 2K 90 Q6 Q15 Q24 2L 91 D6 D15 D24 3L 92 NC NC Q33 1L 94 NC Q16 Q25 3N 95 NC NC D34 1N					
78 NC Q12 Q21 2F 79 NC D12 D21 3F 80 NC NC D30 1G 81 NC NC Q30 1F 82 Q5 Q13 Q22 3G 83 D5 D13 D22 2G 84 NC NC D31 1J 85 NC NC Q31 2J 86 NC Q14 Q23 3K 87 NC D14 D23 3J 88 NC NC D32 2K 89 NC NC Q32 1K 90 Q6 Q15 Q24 2L 91 D6 D15 D24 3L 92 NC NC Q33 1L 93 NC NC Q33 1L 94 NC Q16 Q25 3M 95 NC NC D34 1N 97 NC					
79 NC D12 D21 3F 80 NC NC D30 1G 81 NC NC Q30 1F 82 Q5 Q13 Q22 3G 83 D5 D13 D22 2G 84 NC NC D31 1J 85 NC NC Q31 2J 86 NC Q14 Q23 3K 87 NC D14 D23 3J 88 NC NC D32 2K 89 NC NC D32 2K 90 Q6 Q15 Q24 2L 91 D6 D15 D24 3L 92 NC NC Q33 1L 93 NC NC Q33 1L 94 NC Q16 Q25 3M 95 NC D16 D25 3M 96 NC NC Q34 1N 97 NC					1E
80 NC NC D30 1G 81 NC NC Q30 1F 82 Q5 Q13 Q22 3G 83 D5 D13 D22 2G 84 NC NC D31 1J 85 NC NC Q31 2J 86 NC Q14 Q23 3K 87 NC D14 D23 3J 88 NC NC D32 2K 89 NC NC Q32 1K 90 Q6 Q15 Q24 2L 91 D6 D15 D24 3L 92 NC NC Q33 1L 93 NC NC Q33 1L 94 NC Q16 Q25 3M 95 NC NC D34 1N 97 NC NC Q34 2M </td <td>78</td> <td>NC</td> <td>Q12</td> <td>Q21</td> <td>2F</td>	78	NC	Q12	Q21	2F
81 NC NC Q30 1F 82 Q5 Q13 Q22 3G 83 D5 D13 D22 2G 84 NC NC D31 1J 85 NC NC Q31 2J 86 NC Q14 Q23 3K 87 NC D14 D23 3J 88 NC NC D32 2K 89 NC NC Q32 1K 90 Q6 Q15 Q24 2L 91 D6 D15 D24 3L 92 NC NC Q33 1L 92 NC NC Q33 1L 94 NC Q16 Q25 3M 95 NC D16 D25 3M 95 NC NC Q34 1N 97 NC NC Q35 2P 91 NC NC Q35 2P 1	79	NC	D12	D21	3F
82 Q5 Q13 Q22 3G 83 D5 D13 D22 2G 84 NC NC D31 1J 85 NC NC Q31 2J 86 NC Q14 Q23 3K 87 NC D14 D23 3J 88 NC NC D32 2K 89 NC NC Q32 1K 90 Q6 Q15 Q24 2L 91 D6 D15 D24 3L 92 NC NC Q33 1L 93 NC NC Q33 1L 94 NC Q16 Q25 3N 95 NC D16 D25 3M 96 NC NC Q34 1N 97 NC NC Q34 2M 98 Q7 Q17 Q26 3P 99 D7 D17 D26 2N 100 NC <td>80</td> <td>NC</td> <td>NC</td> <td>D30</td> <td>1G</td>	80	NC	NC	D30	1G
83 D5 D13 D22 2G 84 NC NC D31 1J 85 NC NC Q31 2J 86 NC Q14 Q23 3K 87 NC D14 D23 3J 88 NC NC D32 2K 89 NC NC Q32 1K 90 Q6 Q15 Q24 2L 91 D6 D15 D24 3L 92 NC NC Q33 1L 93 NC NC Q33 1L 94 NC Q16 Q25 3M 95 NC D16 D25 3M 95 NC D16 D25 3M 95 NC NC Q34 1N 97 NC NC Q35 2P 99 D7 D17 D26 2N	81	NC	NC	Q30	1F
84 NC NC D31 1J 85 NC NC Q31 2J 86 NC Q14 Q23 3K 87 NC D14 D23 3J 88 NC NC D32 2K 89 NC NC D32 2K 90 Q6 Q15 Q24 2L 91 D6 D15 D24 3L 92 NC NC Q33 1K 93 NC NC Q33 1L 94 NC Q16 Q25 3N 95 NC D16 D25 3M 96 NC NC Q34 2M 97 NC NC Q34 2M 98 Q7 Q17 Q26 3P 99 D7 D17 D26 2N 100 NC NC Q35 1P	82	Q5	Q13	Q22	3G
85 NC NC Q31 $2J$ 86 NC Q14 Q23 $3K$ 87 NC D14 D23 $3J$ 88 NC NC D32 $2K$ 89 NC NC Q32 $1K$ 90 Q6 Q15 Q24 $2L$ 91 D6 D15 D24 $3L$ 92 NC NC D33 $1M$ 93 NC NC D33 $1M$ 93 NC NC Q33 $1L$ 94 NC Q16 Q25 $3M$ 95 NC D16 D25 $3M$ 96 NC NC Q34 $2M$ 97 NC NC Q35 $2P$ 99 D7 D17 D26 $2N$ 100 NC NC Q35 $1P$ 102 A <td>83</td> <td>D5</td> <td>D13</td> <td>D22</td> <td>2G</td>	83	D5	D13	D22	2G
86 NC Q14 Q23 $3K$ 87 NC D14 D23 $3J$ 88 NC NC D32 $2K$ 89 NC NC Q32 $1K$ 90 Q6 Q15 Q24 $2L$ 91 D6 D15 D24 $3L$ 92 NC NC Q33 $1M$ 93 NC NC Q33 $1L$ 94 NC Q16 Q25 $3M$ 95 NC D16 D25 $3M$ 96 NC NC Q34 $2M$ 97 NC D16 D25 $3M$ 96 NC NC Q34 $2M$ 97 NC NC Q34 $2M$ 98 Q7 Q17 Q26 $3P$ 99 D7 D17 D26 $2N$ 100 NC <td>84</td> <td>NC</td> <td>NC</td> <td>D31</td> <td>1J</td>	84	NC	NC	D31	1J
87 NC D14 D23 $3J$ 88 NC NC D32 $2K$ 89 NC NC Q32 $1K$ 90 Q6 Q15 Q24 $2L$ 91 D6 D15 D24 $3L$ 92 NC NC D33 $1M$ 93 NC NC D33 $1L$ 94 NC Q16 Q25 $3N$ 95 NC D16 D25 $3M$ 96 NC NC Q34 $1N$ 97 NC NC Q34 $2M$ 96 NC NC Q34 $2M$ 97 NC NC Q34 $2M$ 98 Q7 Q17 Q26 $3P$ 99 D7 D17 D26 $2N$ 100 NC NC Q35 $1P$ 101 NC NC Q35 $1P$ 102 A A $4R$ <td>85</td> <td>NC</td> <td>NC</td> <td>Q31</td> <td>2J</td>	85	NC	NC	Q31	2J
88 NC NC D32 2K 89 NC NC Q32 1K 90 Q6 Q15 Q24 2L 91 D6 D15 D24 3L 92 NC NC Q33 1M 93 NC NC Q33 1L 94 NC Q16 Q25 3N 95 NC D16 D25 3M 96 NC D16 D25 3M 96 NC NC D34 1N 97 NC NC Q34 2M 98 Q7 Q17 Q26 3P 99 D7 D17 D26 2N 100 NC NC Q35 1P 101 NC NC Q35 1P 102 A X 4R 103 A 4P 104 A A <td>86</td> <td>NC</td> <td>Q14</td> <td>Q23</td> <td>ЗK</td>	86	NC	Q14	Q23	ЗK
89 NC NC Q32 1K 90 Q6 Q15 Q24 2L 91 D6 D15 D24 3L 92 NC NC D33 1M 93 NC NC Q33 1L 94 NC Q16 Q25 3N 95 NC D16 D25 3M 96 NC NC D34 1N 97 NC D16 D25 3M 96 NC NC Q34 2M 97 NC NC Q34 2M 98 Q7 Q17 Q26 3P 99 D7 D17 D26 2N 100 NC NC Q35 1P 101 NC NC Q35 1P 102 A X 4R 103 A A P 104	87	NC	D14	D23	ЗJ
90 Q6 Q15 Q24 2L 91 D6 D15 D24 3L 92 NC NC D33 1M 93 NC NC Q33 1L 94 NC Q16 Q25 3N 95 NC D16 D25 3M 96 NC NC Q34 2M 97 NC NC D34 1N 97 NC NC Q34 2M 98 Q7 Q17 Q26 3P 99 D7 D17 D26 2N 100 NC NC Q35 1P 101 NC NC Q35 1P 102 A 3R 3R 3R 103 A 4P 4P 4P 105 A 5P 5P 5N	88	NC	NC	D32	2K
91 D6 D15 D24 3L 92 NC NC D33 1M 93 NC NC Q33 1L 94 NC Q16 Q25 3N 95 NC D16 D25 3M 96 NC NC Q34 1N 97 NC NC D34 1N 97 NC NC Q34 2M 98 Q7 Q17 Q26 3P 99 D7 D17 D26 2N 100 NC NC Q35 1P 101 NC NC Q35 1P 102 A XR 3R 103 A A 4P 104 A A 5P 106 A 5 N 5N	89	NC	NC	Q32	1K
92 NC NC D33 1M 93 NC NC Q33 1L 94 NC Q16 Q25 3N 95 NC D16 D25 3M 96 NC NC Q34 1N 97 NC NC Q34 2M 98 Q7 Q17 Q26 3P 99 D7 D17 D26 2N 100 NC NC D35 2P 101 NC NC Q35 1P 102 A 3R 3R 103 A 4R 4P 104 A 5P 5P 106 A 5N 5N	90	Q6	Q15	Q24	2L
93 NC NC Q33 1L 94 NC Q16 Q25 3N 95 NC D16 D25 3M 96 NC NC D34 1N 97 NC NC D34 2M 98 Q7 Q17 Q26 3P 99 D7 D17 D26 2N 100 NC NC D35 2P 101 NC NC Q35 1P 102 A X 3R 103 A A 4P 104 A 5P 106 A 5N	91	D6	D15	D24	3L
94 NC Q16 Q25 3N 95 NC D16 D25 3M 96 NC NC D34 1N 97 NC NC Q34 2M 98 Q7 Q17 Q26 3P 99 D7 D17 D26 2N 100 NC NC D35 2P 101 NC NC Q35 1P 102 $- 4$ 3R 3R 103 A 4 4P 104 A 5P 5P 106 A 5N 5N	92	NC	NC	D33	1M
95 NC D16 D25 3M 96 NC NC D34 1N 97 NC NC Q34 2M 98 Q7 Q17 Q26 3P 99 D7 D17 D26 2N 100 NC NC D35 2P 101 NC NC Q35 1P 102 A 3R 3R 103 A 4R 104 A 5P 106 A 5N	93	NC	NC	Q33	1L
96 NC NC D34 1N 97 NC NC Q34 2M 98 Q7 Q17 Q26 3P 99 D7 D17 D26 2N 100 NC NC D35 2P 101 NC NC Q35 1P 102 A 3R 3R 103 A 4R 104 A 5P 105 A 5P 106 A 5N	94	NC	Q16	Q25	3N
97 NC NC Q34 2M 98 Q7 Q17 Q26 3P 99 D7 D17 D26 2N 100 NC NC D35 2P 101 NC NC Q35 1P 102 A 3R 3R 103 A 4R 104 A 5P 106 A 5N	95	NC	D16	D25	3M
98 Q7 Q17 Q26 3P 99 D7 D17 D26 2N 100 NC NC D35 2P 101 NC NC Q35 1P 102 A 3R 3R 103 A 4R 104 A 5P 106 A 5N	96	NC	NC	D34	1N
99 D7 D17 D26 2N 100 NC NC D35 2P 101 NC NC Q35 1P 102 A 3R 103 A 4R 104 A 5P 106 A 5N	97	NC	NC	Q34	2M
100 NC NC D35 2P 101 NC NC Q35 1P 102 A 3R 103 A 4R 104 A 4P 105 A 5P 106 A 5N	98	Q7	Q17	Q26	3P
101 NC NC Q35 1P 102 A 3R 103 A 4R 104 A 4P 105 A 5P 106 A 5N	99	D7	D17	D26	2N
102 A 3R 103 A 4R 104 A 4P 105 A 5P 106 A 5N	100	NC	NC	D35	2P
103 A 4R 104 A 4P 105 A 5P 106 A 5N	101	NC	NC	Q35	1P
104 A 4P 105 A 5P 106 A 5N	102	I			3R
105 A 5P 106 A 5N	103	A			4R
106 A 5N	104	А			4P
	105	А			5P
	106	А			5N
	107	А			5R

JTAG Instructions

Instructions	Description			
EXTEST	The EXTEST instruction allows circuitry external to the component package to be tested. Boundary-			
	scan register cells at output pins are used to apply test vectors, while those at input pins capture test			
	results. Typically, the first test vector to be applied using the EXTEST instruction will be shifted into the			
	boundary scan register using the PRELOAD instruction. Thus, during the update-IR state of EXTEST,			
	the output driver is turned on and the PRELOAD data is driven onto the output pins.			
IDCODE	The IDCODE instruction causes the ID ROM to be loaded into the ID register when the controller is in			
	capture-DR mode and places the ID register between the TDI and TDO pins in shift-DR mode. The			
	IDCODE instruction is the default instruction loaded in at power up and any time the controller is placed			
	in the test-logic-reset state.			
BYPASS	The BYPASS instruction is loaded in the instruction register when the bypass register is placed between			
	TDI and TDO. This occurs when the TAP controller is moved to the shift-DR state. This allows the			
	board level scan path to be shortened to facilitate testing of other devices in the scan path.			
SAMPLE / PRELOAD	SAMPLE / PRELOAD is a Standard 1149.1 mandatory public instruction. When the SAMPLE /			
	PRELOAD instruction is loaded in the instruction register, moving the TAP controller into the capture-DR			
	state loads the data in the RAMs input and Q pins into the boundary scan register. Because the RAM			
	clock(s) are independent from the TAP clock (TCK) it is possible for the TAP to attempt to capture the			
	I/O ring contents while the input buffers are in transition (i.e., in a metastable state). Although allowing			
	the TAP to sample metastable input will not harm the device, repeatable results cannot be expected.			
	RAM input signals must be stabilized for long enough to meet the TAPs input data capture setup plus			
	hold time (tcs plus tch). The RAMs clock inputs need not be paused for any other TAP operation except			
	capturing the I/O ring contents into the boundary scan register. Moving the controller to shift-DR state			
	then places the boundary scan register between the TDI and TDO pins.			
SAMPLE-Z	If the SAMPLE-Z instruction is loaded in the instruction register, all RAM Q pins are forced to an inactive			
	drive state (high impedance) and the boundary register is connected between TDI and TDO when the			
	TAP controller is moved to the shift-DR state.			

JTAG Instruction Coding

IR2	IR1	IR0	Instruction	Note
0	0	0	EXTEST	
0	0	1	IDCODE	
0	1	0	SAMPLE-Z	1
0	1	1	RESERVED	2
1	0	0	SAMPLE / PRELOAD	
1	0	1	RESERVED	2
1	1	0	RESERVED	2
1	1	1	BYPASS	

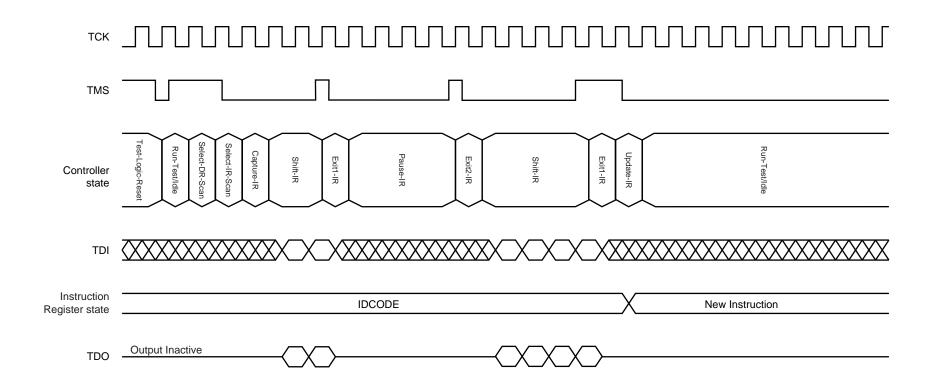

Note 1. TRISTATE all Q pins and CAPTURE the pad values into a SERIAL SCAN LATCH.

<R>

2. Do not use this instruction code because the vendor uses it to evaluate this product.

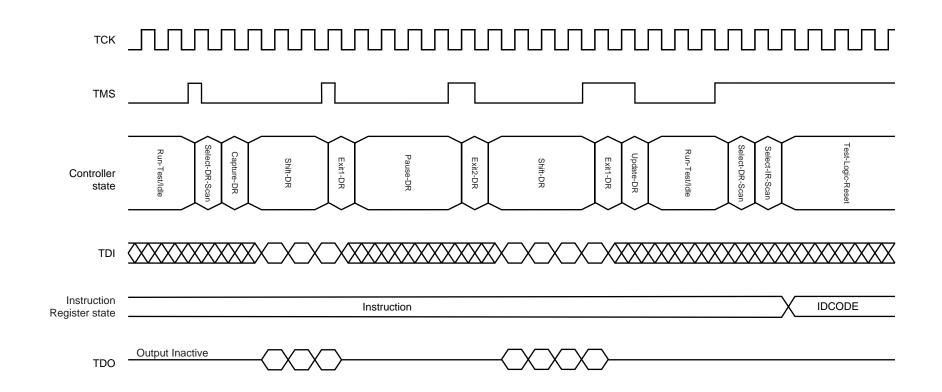
NEC

TAP Controller State Diagram

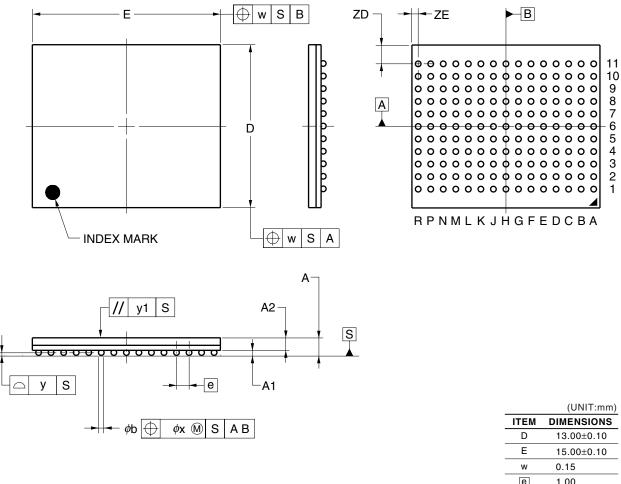

Disabling the Test Access Port

It is possible to use this device without utilizing the TAP. To disable the TAP Controller without interfering with normal operation of the device, TCK must be tied to Vss to preclude mid level inputs.

TDI and TMS are designed so an undriven input will produce a response identical to the application of a logic 1, and may be left unconnected. But they may also be tied to VDD through a 1 k Ω resistor.


TDO should be left unconnected.

Test Logic Operation (Instruction Scan)


24

Test Logic (Data Scan)

<R> Package Drawing

165-PIN PLASTIC BGA (13x15)

E	15.00±0.10
w	0.15
е	1.00
А	1.40±0.11
A1	0.40±0.05
A2	1.00
b	0.50±0.05
x	0.08
У	0.10
y1	0.20
ZD	1.50
ZE	0.50
P	165F5-100-EQ1-1

Recommended Soldering Condition

Please consult with our sales offices for soldering conditions of these products.

Types of Surface Mount Devices

μPD44165082F5-EQ1: 165-pin PLASTIC BGA (13 x 15) μPD44165182F5-EQ1: 165-pin PLASTIC BGA (13 x 15) μPD44165362F5-EQ1: 165-pin PLASTIC BGA (13 x 15)

Revision History

Edition/	Pa	ge	Type of	Location	Description
Date	This	Previous	revision		(Previous edition \rightarrow This edition)
	edition	edition			
8th edition/	p.6	p.6	Modification	Pin Identification ZQ, /DLL, NC	Text has been modified.
Apr. 2007	p.11	p.11	Addition	Recommended DC Operating Conditions	Note 3 has been added.
	p.12	p.12	Modification	DC Characteristics	Note 4 has been modified.
	p.15	p.15	Modification	Read and Write Cycle	Note 1 has been modified.
	p.22	p.22	Addition	JTAG Instruction Coding	Note 2 has been added.
	p.26	p.26	Modification	Package Drawing	Package Drawing has been modified.

NEC

[MEMO]

[MEMO]

– NOTES FOR CMOS DEVICES –

(1) VOLTAGE APPLICATION WAVEFORM AT INPUT PIN

Waveform distortion due to input noise or a reflected wave may cause malfunction. If the input of the CMOS device stays in the area between V_{IL} (MAX) and V_{IH} (MIN) due to noise, etc., the device may malfunction. Take care to prevent chattering noise from entering the device when the input level is fixed, and also in the transition period when the input level passes through the area between V_{IL} (MAX) and V_{IH} (MIN).

② HANDLING OF UNUSED INPUT PINS

Unconnected CMOS device inputs can be cause of malfunction. If an input pin is unconnected, it is possible that an internal input level may be generated due to noise, etc., causing malfunction. CMOS devices behave differently than Bipolar or NMOS devices. Input levels of CMOS devices must be fixed high or low by using pull-up or pull-down circuitry. Each unused pin should be connected to VDD or GND via a resistor if there is a possibility that it will be an output pin. All handling related to unused pins must be judged separately for each device and according to related specifications governing the device.

③ PRECAUTION AGAINST ESD

A strong electric field, when exposed to a MOS device, can cause destruction of the gate oxide and ultimately degrade the device operation. Steps must be taken to stop generation of static electricity as much as possible, and quickly dissipate it when it has occurred. Environmental control must be adequate. When it is dry, a humidifier should be used. It is recommended to avoid using insulators that easily build up static electricity. Semiconductor devices must be stored and transported in an anti-static container, static shielding bag or conductive material. All test and measurement tools including work benches and floors should be grounded. The operator should be grounded using a wrist strap. Semiconductor devices must have hands. Similar precautions need to be taken for PW boards with mounted semiconductor devices.

④ STATUS BEFORE INITIALIZATION

Power-on does not necessarily define the initial status of a MOS device. Immediately after the power source is turned ON, devices with reset functions have not yet been initialized. Hence, power-on does not guarantee output pin levels, I/O settings or contents of registers. A device is not initialized until the reset signal is received. A reset operation must be executed immediately after power-on for devices with reset functions.

5 POWER ON/OFF SEQUENCE

In the case of a device that uses different power supplies for the internal operation and external interface, as a rule, switch on the external power supply after switching on the internal power supply. When switching the power supply off, as a rule, switch off the external power supply and then the internal power supply. Use of the reverse power on/off sequences may result in the application of an overvoltage to the internal elements of the device, causing malfunction and degradation of internal elements due to the passage of an abnormal current.

The correct power on/off sequence must be judged separately for each device and according to related specifications governing the device.

6 INPUT OF SIGNAL DURING POWER OFF STATE

Do not input signals or an I/O pull-up power supply while the device is not powered. The current injection that results from input of such a signal or I/O pull-up power supply may cause malfunction and the abnormal current that passes in the device at this time may cause degradation of internal elements. Input of signals during the power off state must be judged separately for each device and according to related specifications governing the device.

QDR RAMs and Quad Data Rate RAMs comprise a new series of products developed by Cypress Semiconductor, Renesas, IDT, NEC Electronics, and Samsung.

- The information in this document is current as of April, 2007. The information is subject to change without notice. For actual design-in, refer to the latest publications of NEC Electronics data sheets or data books, etc., for the most up-to-date specifications of NEC Electronics products. Not all products and/or types are available in every country. Please check with an NEC Electronics sales representative for availability and additional information.
- No part of this document may be copied or reproduced in any form or by any means without the prior written consent of NEC Electronics. NEC Electronics assumes no responsibility for any errors that may appear in this document.
- NEC Electronics does not assume any liability for infringement of patents, copyrights or other intellectual property rights of third parties by or arising from the use of NEC Electronics products listed in this document or any other liability arising from the use of such products. No license, express, implied or otherwise, is granted under any patents, copyrights or other intellectual property rights of NEC Electronics or others.
- Descriptions of circuits, software and other related information in this document are provided for illustrative purposes in semiconductor product operation and application examples. The incorporation of these circuits, software and information in the design of a customer's equipment shall be done under the full responsibility of the customer. NEC Electronics assumes no responsibility for any losses incurred by customers or third parties arising from the use of these circuits, software and information.
- While NEC Electronics endeavors to enhance the quality, reliability and safety of NEC Electronics products, customers agree and acknowledge that the possibility of defects thereof cannot be eliminated entirely. To minimize risks of damage to property or injury (including death) to persons arising from defects in NEC Electronics products, customers must incorporate sufficient safety measures in their design, such as redundancy, fire-containment and anti-failure features.
- NEC Electronics products are classified into the following three quality grades: "Standard", "Special" and "Specific".

The "Specific" quality grade applies only to NEC Electronics products developed based on a customerdesignated "quality assurance program" for a specific application. The recommended applications of an NEC Electronics product depend on its quality grade, as indicated below. Customers must check the quality grade of each NEC Electronics product before using it in a particular application.

- "Standard": Computers, office equipment, communications equipment, test and measurement equipment, audio and visual equipment, home electronic appliances, machine tools, personal electronic equipment and industrial robots.
- "Special": Transportation equipment (automobiles, trains, ships, etc.), traffic control systems, anti-disaster systems, anti-crime systems, safety equipment and medical equipment (not specifically designed for life support).
- "Specific": Aircraft, aerospace equipment, submersible repeaters, nuclear reactor control systems, life support systems and medical equipment for life support, etc.

The quality grade of NEC Electronics products is "Standard" unless otherwise expressly specified in NEC Electronics data sheets or data books, etc. If customers wish to use NEC Electronics products in applications not intended by NEC Electronics, they must contact an NEC Electronics sales representative in advance to determine NEC Electronics' willingness to support a given application.

(Note)

- (1) "NEC Electronics" as used in this statement means NEC Electronics Corporation and also includes its majority-owned subsidiaries.
- (2) "NEC Electronics products" means any product developed or manufactured by or for NEC Electronics (as defined above).