1-Mbit (256K x 4) Static RAM

Features

- Pin- and function-compatible with CY7C106B/CY7C1006B
- · High speed
 - t_{AA} = 10 ns
- CMOS for optimum speed/power
- Low active power
 - I_{CC} = 60 mA @ 10 ns
- Low CMOS standby power
 - $I_{SB2} = 3.0 \text{ mA}$
- Data Retention at 2.0V
- Automatic power-down when deselected
- · TTL-compatible inputs and outputs
- · Available in Pb-Free packages

Functional Description[1]

The CY7C106D and CY7C1006D are high-performance CMOS static RAMs organized as 262,144 words by 4 bits. Easy memory expansion is provided by an active LOW Chip Enable (CE), an active LOW Output Enable (OE), and tri-state drivers. These devices have an automatic power-down feature that reduces power consumption by more than 65% when the devices are deselected.

Writing to the devices is accomplished by taking Chip Enable (CE) and Write Enable (WE) inputs LOW. Data on the four I/O pins (I/O $_0$ through I/O $_3$) is then written into the location specified on the address pins (A $_0$ through A $_{17}$).

Reading from the devices is accomplished by taking Chip Enable (\overline{OE}) and Output Enable (\overline{OE}) LOW while forcing Write Enable (WE) HIGH. Under these conditions, the contents of the memory location specified by the address pins will appear on the four I/O pins.

The four input/output pins (I/O $_0$ through I/O $_3$) are placed in a high-impedance state when the <u>devi</u>ces are deselected (CE HIGH), the <u>outputs are</u> disabled (OE HIGH), or during a write operation (CE and WE LOW).

The CY7C106D is available in a standard 400-mil-wide Pb-Free SOJ; the CY7C1006D is available in a standard 300-mil-wide Pb-Free SOJ.

Note:

1. For guidelines on SRAM system design, please refer to the 'System Design Guidelines' Cypress application note, available on the internet at www.cypress.com.

Selection Guide

	CY7C106D-10 CY7C1006D-10	CY7C106D-12 CY7C1006D-12
Maximum Access Time (ns)	10	12
Maximum Operating Current (mA)	60	50
Maximum Standby Current (mA)	3	3

Maximum Ratings

(Above which the useful life may be impaired. For user guidelines, not tested.)

Storage Temperature-65°C to +150°C

Ambient Temperature with

Power Applied......–55°C to +125°C

Supply Voltage on V_{CC} Relative to $GND^{[2]}$ -0.5V to +7.0V

DC Voltage Applied to Outputs in High-Z State $^{[2]}$ -0.5V to V_{CC} + 0.5V

DC Input Voltage^[2].....-0.5V to V_{CC} + 0.5V

Current into Outputs (LOW)	. 20 mA
Static Discharge Voltage > (per MIL-STD-883, Method 3015)	2001V
Latch-up Current>	200 mA

Operating Range

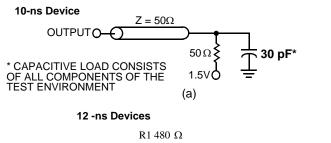
Range	Ambient Temperature	V _{CC}
Commercial	0°C to +70°C	5V ± 10%
Industrial	–45°C to +85°C	

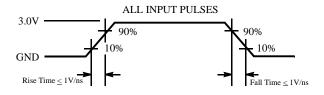
Electrical Characteristics Over the Operating Range

			7C106D-10 7C1006D-10			7C106D-12 7C1006D-12	
Parameter	Description	Test Conditions	Min.	Max.	Min.	Max.	Unit
V _{OH}	Output HIGH Voltage	$V_{CC} = Min., I_{OH} = -4.0 \text{ mA}$	2.4		2.4		V
V _{OL}	Output LOW Voltage	$V_{CC} = Min., I_{OL} = 8.0 \text{ mA}$		0.4		0.4	V
V _{IH}	Input HIGH Voltage		2.0	V _{CC} + 0.3	2.0	V _{CC} + 0.3	V
V _{IL}	Input LOW Voltage ^[2]		-0.5	0.8	-0.5	0.8	V
I _{IX}	Input Load Current	$GND \le V_1 \le V_{CC}$	-1	+1	-1	+1	μΑ
l _{OZ}	Output Leakage Current	$\begin{aligned} &GND \leq V_I \leq V_{CC}, \\ &Output \ Disabled \end{aligned}$	-1	+1	–1	+1	μΑ
los	Output Short Circuit Current ^[3]	V _{CC} = Max., V _{OUT} = GND		-300		-300	mA
Icc	V _{CC} Operating Supply Current	$V_{CC} = Max.$, $I_{OUT} = 0 \text{ mA}$, $f = f_{MAX} = 1/t_{RC}$		60		50	mA
I _{SB1}	Automatic CE Power-Down Current —TTL Inputs	$\begin{aligned} &\text{Max. } V_{CC}, \overline{CE} \geq V_{IH}, \\ &V_{IN} \geq V_{IH} \text{ or } V_{IN} \leq V_{IL}, \\ &f = f_{MAX} \end{aligned}$		10		10	mA
I _{SB2}	Automatic CE Power-Down Current —CMOS Inputs	$\begin{aligned} &\text{Max. V}_{CC}, \overline{\text{CE}} \geq \text{V}_{CC} - 0.3\text{V}, \\ &\text{V}_{\text{IN}} \geq \text{V}_{CC} - 0.3\text{V} \\ &\text{or V}_{\text{IN}} \leq 0.3\text{V}, \text{f=0} \end{aligned}$		3		3	mA

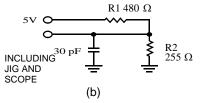
Capacitance^[4]

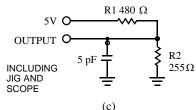
Parameter	Description	Test Conditions	Max.	Unit
C _{IN} : Addresses	Input Capacitance	$T_A = 25^{\circ}C, f = 1 \text{ MHz},$	7	pF
C _{IN} : Controls		$V_{CC} = 5.0V$	10	pF
C _{OUT}	Output Capacitance		10	pF


Thermal Resistance^[4]


Parameter	Description	Test Conditions	All-Packages	Unit
Θ_{JA}	Thermal Resistance (Junction to Ambient) ^[4]	Still Air, soldered on a 3 x 4.5 inch, two-layer printed circuit board	TBD	°C/W
Θ _{JC}	Thermal Resistance (Junction to Case) ^[4]		TBD	°C/W

^{2.} V_{IL} (min.) = -2.0V and V_{IH}(max) = V_{CC} + 2V for pulse durations of less than 20 ns.
3. Not more than 1 output should be shorted at one time. Duration of the short circuit should not exceed 30 seconds.




AC Test Loads and Waveforms

High-Z Characteristics

THÉVENIN EQUIVALENT Equivalent to: 167Ω 1.73V

Switching Characteristics Over the Operating Range^[5]

ļ		7C106D-10 7C1006D-10		7C106D-12 7C1006D-12		
Parameter	Description	Min.	Max.	Min.	Max.	Unit
Read Cycl	e	<u> </u>				
t _{power} [6]	V _{CC} (typical) to the first access	100		100		μS
t _{RC}	Read Cycle Time	10		12		ns
t _{AA}	Address to Data Valid		10		12	ns
t _{OHA}	Data Hold from Address Change	3		3		ns
t _{ACE}	CE LOW to Data Valid		10		12	ns
t _{DOE}	OE LOW to Data Valid		5		6	ns
t _{LZOE}	OE LOW to Low Z	0		0		ns
t _{HZOE}	OE HIGH to High Z ^[7, 8]		5		6	ns
t _{LZCE}	CE LOW to Low Z ^[8]	3		3		ns
t _{HZCE}	CE HIGH to High Z ^[7, 8]		5		6	ns
t _{PU}	CE LOW to Power-Up	0		0		ns
t _{PD}	CE HIGH to Power-Down		10		12	ns
Write Cycl	e ^[9, 10]					
t _{WC}	Write Cycle Time	10		12		ns
t _{SCE}	CE LOW to Write End	8		10		ns
t _{AW}	Address Set-Up to Write End	7		10		ns
t _{HA}	Address Hold from Write End	0		0		ns

Notes:

- 4. Tested initially and after any design or process changes that may affect these parameters.
- 5. Test conditions assume signal transition time of 3 ns or less, timing reference levels of 1.5V, input pulse levels of 0 to 3.0V, and output loading of the specified I_{OL}/I_{OH} and 30-pF load capacitance.

- Io_I/Io_H and 30-pF load capacitance.

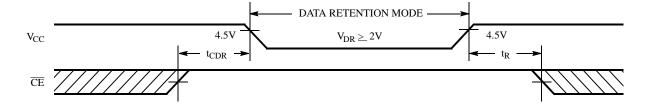
 6. tpOWER gives the minimum amount of time that the power supply should be at typical V_{CC} values until the first memory access can be performed.

 7. t_{HZOE}, t_{HZOE}, t_{HZOE}, and t_{HZWE} are specified with a load capacitance of 5 pF as in part (b) of AC Test Loads. Transition is measured ±200 mV from steady-state voltage.

 8. At any given temperature and voltage condition, t_{HZCE} is less than t_{LZOE}, t_{HZOE} is less than t_{LZOE}, and t_{HZWE} is less than t_{LZWE} for any given device.

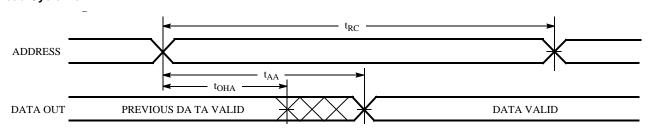
 9. The internal write time of the memory is defined by the overlap of CE and WE LOW. CE and WE must be LOW to initiate a write, and the transition of either of these signals can terminate the write. The input data set-up and hold timing should be referenced to the leading edge of the signal that terminates the write.

 10. The minimum write cycle time for Write Cycle No. 3 (WE controlled, OE LOW) is the sum of t_{HZWE} and t_{SD}.


Switching Characteristics Over the Operating Range^[5]

		7C106D-10 7C1006D-10		7C106D-12 7C1006D-12		
Parameter	Description	Min.	Max.	Min. Max.		Unit
t _{SA}	Address Set-Up to Write Start	0		0		ns
t _{PWE}	WE Pulse Width	7		10		ns
t _{SD}	Data Set-Up to Write End	6		7		ns
t _{HD}	Data Hold from Write End	0		0		ns
t _{LZWE}	WE HIGH to Low Z ^[8]	3		2		ns
t _{HZWE}	WE LOW to High Z ^[7, 8]		6		6	ns

Data Retention Characteristics Over the Operating Range

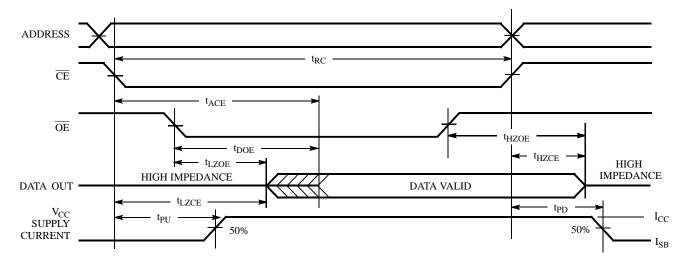

Parameter	Description		Conditions	Min.	Max.	Unit
V_{DR}	V _{CC} for Data Retention			2.0		V
1	Data Retention Current	Non-L, Com'l / Ind'l	$V_{CC} = V_{DR} = 2.0V$,		3	mA
CCDR	Lata Retention Current	L-Version Only	$\overrightarrow{CE} \ge V_{CC} - 0.3V$, $V_{IN} \ge V_{CC} - 0.3V$ or $V_{IN} \le 0.3V$		1.2	mA
t _{CDR} ^[4]	Chip Deselect to Data Retention Time		$V_{IN} \le V_{CC} = 0.3 \text{ V}$	0		ns
t _R ^[11, 12]	Operation Recovery Time			t _{RC}		ns

Data Retention Waveform

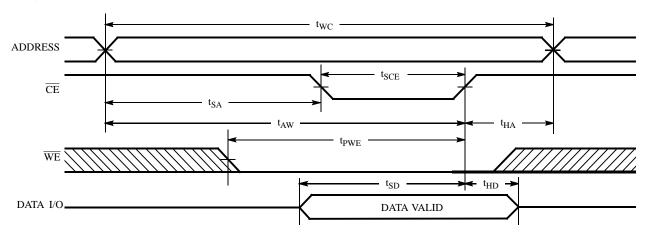
Switching Waveforms

Read Cycle No.1^[13, 14]

Notes:


- 11. Full device operation requires linear V_{CC} ramp from V_{DR} to $V_{CC(min.)} \ge 50 \,\mu s$ or stable at $V_{CC(min.)} \ge 50 \,\mu s$.
- 12. $t_r \le 3$ ns for all speeds.
- 13. <u>Devi</u>ce is continuously selected, <u>OE</u> and <u>CE</u> = V_{IL}.

 14. WE is HIGH for read cycle.

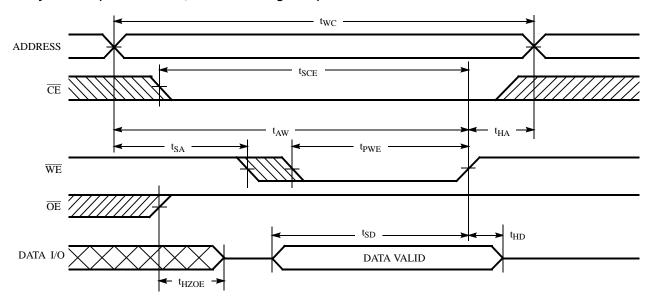


Switching Waveforms (continued)

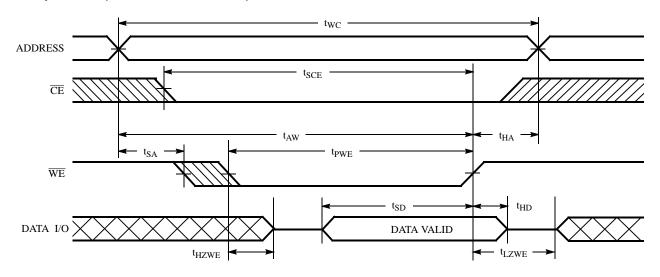
Read Cycle No. 2 (OE Controlled)[14, 15]

Write Cycle No. 1 (CE Controlled)[16, 17]

15. Address valid prior to or coincident with $\overline{\text{CE}}$ transition LOW.


16. If $\overline{\text{CE}}$ goes HIGH simultaneously with $\overline{\text{WE}}$ going HIGH, the output remains in a high-impedance state.

17. Data I/O is high impedance if $\overline{\text{OE}} = V_{\text{IH}}$.



Switching Waveforms (continued)

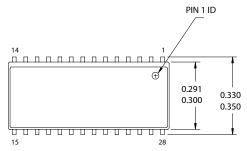
Write Cycle No. 2 (WE Controlled, OE HIGH During Write)[16, 17]

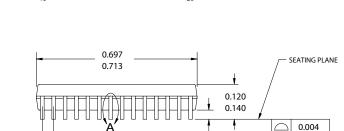
Write Cycle No. 3 ($\overline{\text{WE}}$ Controlled, $\overline{\text{OE}}$ LOW)[10, 17]

Truth Table

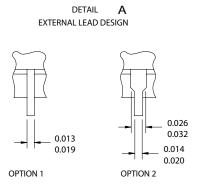
CE	OE	WE	Input/Output	Mode	Power
Н	Х	Х	High Z	Power-Down	Standby (I _{SB})
L	L	Н	Data Out	Read	Active (I _{CC})
L	Х	L	Data In	Write	Active (I _{CC})
L	Н	Н	High Z	Selected, Outputs Disabled	Active (I _{CC})

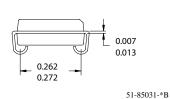
Ordering Information


Speed (ns)	Ordering Code	Package Name	Package Type	Operating Range
10	CY7C106D-10VXC	V28	28-Lead (400-Mil) Molded SOJ (Pb-Free)	Commercial
	CY7C1006D-10VXC	V21	28-Lead (300-Mil) Molded SOJ (Pb-Free)	
	CY7C106D-10VXI	V28	28-Lead (400-Mil) Molded SOJ (Pb-Free)	Industrial
	CY7C1006D-10VXI	V21	28-Lead (300-Mil) Molded SOJ (Pb-Free)	
12	CY7C106D-12VXC	V28	28-Lead (400-Mil) Molded SOJ (Pb-Free)	Commercial
	CY7C1006D-12VXC	V21	28-Lead (300-Mil) Molded SOJ (Pb-Free)	
	CY7C106D-12VXI	V28	28-Lead (400-Mil) Molded SOJ (Pb-Free)	Industrial
	CY7C1006D-12VXI	V21	28-Lead (300-Mil) Molded SOJ (Pb-Free)	

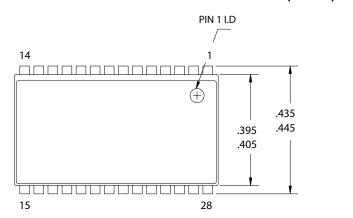

Shaded areas contain advance information. Please contact your local Cypress sales representative for availability of these parts.

Package Diagrams

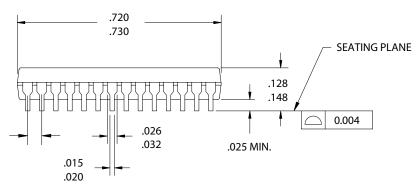

28-Lead (300-Mil) Molded SOJ V21


DIMENSIONS IN INCHES MIN. MAX.

0.025 MIN.


0.050

TYP.


Package Diagrams (continued)

28-Lead (400-Mil) Molded SOJ V28

DIMENSIONS IN INCHES

MIN. MAX.

All product and company names mentioned in this document may be the trademarks of their respective holders.

Document History Page

Document Title: CY7C106D, CY7C1006D 1-Mbit (256K x 4) Static RAM (Preliminary) Document Number: 38-05459						
REV.	ECN NO.	Issue Date	Orig. of Change	Description of Change		
**	201560	See ECN	SWI	Advance information data sheet for C9 IPP		
*A	233693	See ECN	RKF	I _{CC} ,I _{SB1} ,I _{SB2} Specs are modified as per EROS (Spec # 01-2165) Pb-free offering in the 'ordering information'		
*B	262950	See ECN	RKF	Added T _{power} Spec in Switching Characteristics table Shaded 'Ordering Information'		
*C	307596	See ECN	RKF	Reduced Speed bins to -10 and -12 ns		