OBSOLETE PRODUCT CEMENT OBSOLET S REPLAC contact our Techn ren wwi. inter or
$1-88$-NTERSL

Low Cost, Dual, Triple and Quad Video Op Amps

élantec.

This family of dual, triple, and quad operational amplifiers built using Elantec's Complementary Bipolar process offers unprecedented high frequency performance at a very low cost. They are suitable for any application such as consumer video, where traditional DC performance specifications are of secondary importance to the high frequency specifications. On $\pm 5 \mathrm{~V}$ supplies at a gain of +1 the EL2210, EL2310, and EL2410 will drive a 150Ω load to +2 V , -1 V with a bandwidth of 50 MHz and a channel-to-channel isolation of 60 dB or more. At a gain of +2 , the EL2211, EL2311, and EL2411 will drive a 150Ω load to $+2 \mathrm{~V},-1 \mathrm{~V}$ with a bandwidth of 100 MHz with the same channel-to-channel isolation. All four achieve 0.1 dB bandwidth at 5 MHz .

The power supply operating range is fixed at $\pm 5 \mathrm{~V}$ or $+10 / 0 \mathrm{~V}$. In single supply operation the inputs and outputs will operate to ground. Each amplifier draws only 7 mA of supply current.

Features

- Stable at gain of 2 and 100 MHz gain_bandwidth product (EL2211, EL2311, and EL2411)
- Stable at gain of 1 and 50MHz gain_bandwidth product (EL2210, EL2310, and EL2410)
- $130 \mathrm{~V} / \mu \mathrm{s}$ slew rate
- Drives 150Ω load to video levels
- Inputs and outputs operate at negative supply rail
- $\pm 5 \mathrm{~V}$ or +10 V supplies
- -60dB isolation at 4.2 MHz

Applications

- Consumer video amplifiers
- Active filters/integrators
- Cost-sensitive application
- Single supply amplifiers

Ordering Information

PART NUMBER	PACKAGE	TAPE \& REEL	PKG. NO.
EL2210CN	8-Pin PDIP	-	MDP0031
EL2210CS	8-Pin SO	-	MDP0027
EL2210CS-T7	8-Pin SO	$7 "$	MDP0027
EL2210CS-T13	8-Pin SO	$13 "$	MDP0027
EL2211CN	8-Pin PDIP	-	MDP0031
EL2211CS	8-Pin SO	-	MDP0027
EL2310CN	8-Pin PDIP	-	MDP0031
EL2310CS	8-Pin SO	-	MDP0027
EL2311CN	8-Pin PDIP	-	MDP0031
EL2311CS	8-Pin SO	-	MDP0027
EL2410CN	14-Pin PDIP	-	MDP0031
EL2410CS	14-Pin SO	-	MDP0027
EL2410CS-T7	14-Pin SO	$7 "$	MDP0027
EL2410CS-T13	14-Pin SO	$13 "$	MDP0027
EL2411CN	14-Pin PDIP	-	MDP0031
EL2411CS	14-Pin SO	-	MDP0027

Pinouts

Absolute Maximum Ratings $\left(\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\right)$
Total Voltage Supply .18V
Input Voltage $\pm V_{S}$
Differential Input Voltage . 6 V
Peak Output Current
75 mA (per amplifier)

Power Dissipation \qquad See Curves Storage Temperature Range $-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$ Operating Temperature Range $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ Die Junction Temperature . $+150^{\circ} \mathrm{C}$

CAUTION: Stresses above those listed in "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress only rating and operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied.

IMPORTANT NOTE: All parameters having Min/Max specifications are guaranteed. Typical values are for information purposes only. Unless otherwise noted, all tests are at the specified temperature and are pulsed tests, therefore: $T_{J}=T_{C}=T_{A}$

EL2210, EL2310, EL2410-DC Electrical Specifications $\quad V_{S}= \pm 5 \mathrm{~V}, R_{L}=1 \mathrm{k} \Omega, T_{A}=25^{\circ} \mathrm{C}$ unless otherwise noted.

PARAMETER	DESCRIPTION	CONDITIONS	MIN	TYP	MAX	UNIT
$\mathrm{V}_{\text {OS }}$	Input Offset Voltage			10	20	mV
		EL2310 only		10	25	mV
		EL2311 only		5	25	mV
TCV ${ }_{\text {OS }}$	Average Offset Voltage Drift (Note 1)			-25		$\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$
I_{B}	Input Bias Current		-15	-7	-3	$\mu \mathrm{A}$
los	Input Offset Current			0.5	1.5	$\mu \mathrm{A}$
TClos	Average Offset Current Drift (Note 1)			-7		$n \mathrm{n} /{ }^{\circ} \mathrm{C}$
$\mathrm{A}_{\mathrm{VOL}}$	Open-Loop Gain	$\mathrm{V}_{\text {OUT }}= \pm 2 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=1 \mathrm{k} \Omega$	160	250		V / V
		$\mathrm{V}_{\text {OUT }}=+2 \mathrm{~V} / 0 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=150 \Omega$	160	250		
PSRR	Power Supply Rejection	$\mathrm{V}_{\mathrm{S}}= \pm 4.5 \mathrm{~V}$ to $\pm 5.5 \mathrm{~V}$	50	60		dB
CMRR	Common Mode Rejection	$\mathrm{V}_{\mathrm{CM}}= \pm 2.4 \mathrm{~V}, \mathrm{~V}_{\text {OUT }}=0 \mathrm{~V}$	60	80		dB
CMIR	Common Mode Input Range	$\mathrm{V}_{\mathrm{S}}= \pm 5 \mathrm{~V}$		-5/+3		V
V OUT	Output Voltage Swing	$\mathrm{R}_{\mathrm{L}}=\mathrm{R}_{\mathrm{F}}=1 \mathrm{k} \Omega \mathrm{R}_{\mathrm{L}}$ to GND	-2.5	-3, 3	2.7	V
		$R_{L}=R_{F}=1 \mathrm{k} \Omega+150 \Omega$ to $G N D$	-0.45	-0.6, 2.9	2.5	
		$R_{L}=R_{F}=1 \mathrm{k} \Omega \mathrm{R}_{\mathrm{L}}$ to $V_{E E}$	-4.95		3	
ISC	Output Short Circuit Current	Output to GND (Note 1)	75	125		mA
Is	Supply Current	No Load (per channel)	5.5	6.8	10	mA
R_{IN}	Input Resistance	Differential		150		$\mathrm{k} \Omega$
		Common Mode		1.5		$\mathrm{M} \Omega$
$\mathrm{C}_{\text {IN }}$	Input Capacitance	$\mathrm{A}_{\mathrm{V}}=+1$ @ 10 MHz		1		pF
ROUT	Output Resistance			0.150		Ω
PSOR	Power Supply Operating Range	Dual Supply	± 4.5		± 6.5	V
		Single Supply	9		13	

NOTE:

1. A heat sink is required to keep junction temperature below absolute maximum when an output is shorted.

EL2210, EL2211, EL2310, EL2311, EL2410, EL2411

EL2211, EL2311, EL2411-DC Electrical Characteristics $V_{S}= \pm 5 \mathrm{~V}, R_{L}=1 \mathrm{k} \Omega, A_{V}=+2, T_{A}=25^{\circ} \mathrm{C}$ unless otherwise noted.

PARAMETER	DESCRIPTION	CONDITIONS	MIN	TYP	MAX	UNIT
$\mathrm{V}_{\text {OS }}$	Input Offset Voltage			5	12	mV
TCV ${ }_{\text {OS }}$	Average Offset Voltage Drift (Note 1)			-25		$\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$
I_{B}	Input Bias Current		-15	-7	-3	$\mu \mathrm{A}$
los	Input Offset Current			0.5	1.5	$\mu \mathrm{A}$
$\mathrm{TCl}_{\mathrm{OS}}$	Average Offset Current Drift (Note 1)			-7		$n \mathrm{~A} /{ }^{\circ} \mathrm{C}$
Avol	Open-Loop Gain	$\mathrm{V}_{\text {OUT }}= \pm 2 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=1 \mathrm{k} \Omega$	250	380		V / V
		$\mathrm{V}_{\text {OUT }}=+2 \mathrm{~V} / 0 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=150 \Omega$	250	380		
PSRR	Power Supply Rejection	$\mathrm{V}_{\mathrm{S}}= \pm 4.5 \mathrm{~V}$ to $\pm 5.5 \mathrm{~V}$	55	68		dB
CMRR	Common Mode Rejection	$\mathrm{V}_{\text {CM }}= \pm 2.5 \mathrm{~V}, \mathrm{~V}_{\text {OUT }}=0 \mathrm{~V}$	70	90		dB
CMIR	Common Mode Input Range	$\mathrm{V}_{S}= \pm 5 \mathrm{~V}$		-5/+3		V
$\mathrm{V}_{\text {OUT }}$	Output Voltage Swing	$R_{L}=R_{F}=1 \mathrm{k} \Omega \mathrm{R}_{\mathrm{L}}$ to GND	2.5	-3.5, 3.3	2.7	v
		$R_{L}=R_{F}=1 \mathrm{k} \Omega+150 \Omega$ to $G N D$	-0.45	-0.6, 2.9	2.5	
		$R_{L}=R_{F}=1 \mathrm{k} \Omega \mathrm{R}_{\mathrm{L}}$ to V_{EE}	-4.95		3	
Isc	Output Short Circuit Current	Output to GND (Note 1)	75	125		mA
Is	Supply Current	No Load	5.5	6.8	10	mA
$\mathrm{R}_{\text {IN }}$	Input Resistance	Differential		150		$\mathrm{k} \Omega$
		Common Mode		1.5		$\mathrm{M} \Omega$
$\mathrm{C}_{\text {IN }}$	Input Capacitance	$\mathrm{A}_{\mathrm{V}}=+1$ @ 10MHz		1		pF
ROUT	Output Resistance			0.150		Ω
PSOR	Power Supply Operating Range	Dual Supply	± 4.5		± 6.5	V
		Single Supply	9		13	

NOTE:

1. A heat-sink is required to keep junction temperature below absolute maximum when an output is shorted

EL2210, EL2310, EL2410-Closed-Loop AC Characteristics $\quad \mathrm{V}_{\mathrm{S}}= \pm 5 \mathrm{~V}$, AC Test Figure $1, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ unless otherwise noted.

PARAMETER	DESCRIPTION	CONDITIONS	MIN	TYP	MAX	UNIT
BW	-3 dB Bandwidth ($\mathrm{V}_{\text {OUT }}=0.4 \mathrm{~V}_{\text {PP }}$)	$\mathrm{A}_{\mathrm{V}}=+1$		110		MHz
BW	$\pm 0.1 \mathrm{~dB}$ Bandwidth ($\mathrm{V}_{\text {OUT }}=0.4 \mathrm{~V}_{\text {PP }}$)	$A_{V}=+1$		12		MHz
GBWP	Gain Bandwidth Product			55		MHz
PM	Phase Margin			60		${ }^{\circ} \mathrm{C}$
SR	Slew Rate		85	130		V/ $/ \mathrm{s}$
FBWP	Full Power Bandwidth (Note 1)		8	11		MHz
$\mathrm{t}_{\mathrm{R}}, \mathrm{t}_{\mathrm{F}}$	Rise Time, Fall Time	0.1V Step		2		ns
OS	Overshoot	0.1V Step		15		\%
$\mathrm{t}_{\text {PD }}$	Propagation Delay			3.5		ns
t_{s}	Settling to 0.1\% ($\mathrm{A}_{V}=1$)	$\mathrm{V}_{\mathrm{S}}= \pm 5 \mathrm{~V}, 2 \mathrm{~V}$ Step		80		ns
d_{G}	Differential Gain (Note 2)	NTSC/PAL		0.1		\%
d_{P}	Differential Phase (Note 2)	NTSC/PAL		0.2		${ }^{\circ} \mathrm{C}$
e_{N}	Input Noise Voltage	10kHz		15		$\mathrm{nV} / \sqrt{\mathrm{Hz}}$
in	Input Noise Current	10kHz		1.5		$\mathrm{pA} / \sqrt{\mathrm{Hz}}$

EL2210, EL2310, EL2410-Closed-Loop AC Characteristics $\quad V_{S}= \pm 5 \mathrm{~V}$, AC Test Figure $1, T_{A}=25^{\circ} \mathrm{C}$ unless otherwise noted.

PARAMETER	DESCRIPTION	CONDITIONS	MIN	TYP	MAX	UNIT
CS	Channel Separation	P $=5 \mathrm{MHz}$		55		dB

NOTES:

1. For $\mathrm{V}_{\mathrm{S}}= \pm 5 \mathrm{~V}, \mathrm{~V}_{\mathrm{OUT}}=4 \mathrm{~V}_{\mathrm{PP}}$. Full power bandwidth is based on slew rate measurement using: $\mathrm{FPBW}=\mathrm{SR} /\left(2 \mathrm{pi}{ }^{*} \mathrm{~V}_{\text {peak }}\right)$
2. Video performance measured at $V_{S}= \pm 5 \mathrm{~V}, A_{V}=+2$ with 2 times normal video level across $R_{L}=150 \Omega$

EL2211, EL2311, EL2411-Closed-Loop AC Characteristics $\quad V_{S}= \pm 5 \mathrm{~V}$, AC Test Figure $1, T_{A}=25^{\circ} \mathrm{C}$ unless otherwise noted.

PARAMETER	DESCRIPTION	CONDITIONS	MIN	TYP	MAX	UNIT
BW	-3 dB Bandwidth ($\mathrm{V}_{\text {OUT }}=0.4 \mathrm{~V}_{\mathrm{PP}}$)	$A_{V}=+2$		100		MHz
BW	$\pm 0.1 \mathrm{~dB}$ Bandwidth ($\mathrm{V}_{\text {OUT }}=0.4 \mathrm{~V}_{\text {PP }}$)	$\mathrm{A}_{\mathrm{V}}=+2$		8		MHz
GBWP	Gain Bandwidth Product			130		MHz
PM	Phase Margin			60		${ }^{\circ} \mathrm{C}$
SR	Slew Rate		100	140		V/us
FBWP	Full Power Bandwidth (Note 1)		8	11		MHz
$\mathrm{t}_{\mathrm{R}}, \mathrm{t}_{\mathrm{F}}$	Rise Time, Fall Time	0.1V Step		2.5		ns
OS	Overshoot	0.1V Step		6		\%
$t_{\text {PD }}$	Propagation Delay			3.5		ns
t_{s}	Settling to 0.1\% ($\mathrm{A}_{\mathrm{V}}=1$)	$\mathrm{V}_{\mathrm{S}}= \pm 5 \mathrm{~V}, 2 \mathrm{~V}$ Step		80		ns
d_{G}	Differential Gain (Note 2)	NTSC/PAL		0.04		\%
dp	Differential Phase (Note 2)	NTSC/PAL		0.15		${ }^{\circ} \mathrm{C}$
e_{N}	Input Noise Voltage	10 kHz		15		$\mathrm{nV} / \sqrt{ } \mathrm{Hz}$
in	Input Noise Current	10kHz		1.5		$\mathrm{pA} / \sqrt{ } \mathrm{Hz}$
CS	Channel Separation	$\mathrm{P}=5 \mathrm{MHz}$		55		dB

NOTES:

1. For $\mathrm{V}_{\mathrm{S}}= \pm 5 \mathrm{~V}, \mathrm{~V}_{\mathrm{OUT}}=4 \mathrm{~V}_{\mathrm{PP}}$. Full power bandwidth is based on slew rate measurement using: $\mathrm{FPBW}=\mathrm{SR} /\left(2\right.$ pi $\left.{ }^{*} \mathrm{~V}_{\text {peak }}\right)$
2. Video performance measured at $\mathrm{V}_{S}= \pm 5 \mathrm{~V}, A_{V}=+2$ with 2 times normal video level across $R_{L}=150 \Omega$.

Simplified Block Diagram

Typical Performance Curves

external pull-down resistor. If R_{L} were 150Ω then it and the 1250Ω internal resistor limit the maximum negative swing to

$$
V_{E E}=\frac{150}{1250+150}
$$

Or -0.53V
The negative swing can be increased by adding an external resistor of appropriate value from the output to the negative supply. The simplified block diagram shows an 820Ω external pull-down resistor. This resistor is in parallel with the internal 1250Ω resistor. This will increase the negative swing to

$$
V_{\mathrm{EE}}=150 \div \frac{1250 \times 820}{1250+820}+150
$$

Or -1.16V

Power Dissipation and Loading

Without any load and a 10 V supply difference the power dissipation is 70 mW per amplifier. At 12 V supply difference this increases to 105 mW per amplifier. At 12 V this translates to a junction temperature rise above ambient of $33^{\circ} \mathrm{C}$ for the dual and $40^{\circ} \mathrm{C}$ for the quad amplifier. When the amplifiers provide load current the power dissipation can rapidly rise.

In $\pm 5 \mathrm{~V}$ operation each output can drive a grounded 150Ω load to more than 2 V . This operating condition will not exceed the maximum junction temperature limit as long as the ambient temperature is below $85^{\circ} \mathrm{C}$, the device is soldered in place, and the extra pull-down resistor is 820Ω or more.

If the load is connected to the most negative voltage (ground in single supply operation) you can easily exceed the absolute maximum die temperature. For example the maximum die temperature should be $150^{\circ} \mathrm{C}$. At a maximum
expected ambient temperature of $85^{\circ} \mathrm{C}$, the total allowable power dissipation for the SO8 package would be:

$$
P_{D}=\frac{150-85}{160^{\circ} \mathrm{C} / \mathrm{W}}=361 \mathrm{~mW}
$$

At 12 V total supply voltage each amplifier draws a maximum of 10 mA and dissipates 12 V * $10 \mathrm{~mA}=120 \mathrm{~mW}$ or 240 mW for the dual amplifier. Which leaves 121 mW of increased power due to the load. If the load were 150Ω connected to the most negative voltage and the maximum voltage out were $\mathrm{V}_{\mathrm{S}^{-}}$ +1 V the load current would be 6.67 mA . Then an extra $146 \mathrm{~mW}((12 \mathrm{~V}-1 \mathrm{~V})$ * 6.67 mA * 2$)$ would be dissipated in the EL2210 or EL2211. The total dual amplifier power dissipation would be $146 \mathrm{~mW}+240 \mathrm{~mW}=386 \mathrm{~mW}$, more than the maximum 361 mW allowed. If the total supply difference were reduced to 10 V , the same calculations would yield 200 mW quiescent power dissipation and 120 mW due to loading. This results in a die temperature of $143^{\circ} \mathrm{C}\left(85^{\circ} \mathrm{C}+58^{\circ} \mathrm{C}\right)$.

In the above example, if the supplies were split $\pm 6 \mathrm{~V}$ and the 150Ω loads were connected to ground, the load induced power dissipation would drop to $66.7 \mathrm{~mW}(6.67 \mathrm{~mA}$ * $(6-1)$ * 2) and the die temperature would be below the rated maximum.

Video Performance

Following industry standard practices (see EL2044 applications section) these six devices exhibit good differential gain (dG) and good differential phase (dP) with $\pm 5 \mathrm{~V}$ supplies and an external 820Ω resistor to the negative supply, in a gain of 2 configuration. Driving 75Ω back terminated cables to standard video levels $(1.428 \mathrm{~V}$ at the amplifier) the EL2210, EL2310, and EL2410 have dG of 0.1% and dP of 0.2°. The EL2211, EL2311, and EL2411 have dG of 0.04% and $d P$ of 0.15°.

Due to the negative swing limitations described above, inverted video at a gain of 2 is just not practical. If swings below ground are required then changing the extra 820Ω resistor to 500Ω will allow reasonable dG and dP to approximately -0.75 mV . The EL2211, EL2311, and EL2411 will achieve approximately $0.1 \% / 0.4^{\circ}$ between OV and -0.75 V . Beyond -0.75 V dG and dP get worse by orders of magnitude.
Differential gain and differential phase are fairly constant for all loads above 150Ω. Differential phase performance will improve by a factor of 3 if the supply voltage is increased to $\pm 6 \mathrm{~V}$.

Output Drive Capability

None of these devices have short circuit protection. Each output is capable of more than 100 mA into a shorted output. Care must be used in the design to limit the output current with a series resistor.

Printed-Circuit Layout

The EL2210/EL2211/EL2310/EL2311/ EL2410/EL2411 are well behaved, and easy to apply in most applications. However, a few simple techniques will help assure rapid, high quality results. As with any high-frequency device, good PCB layout is necessary for optimum performance. Groundplane construction is highly recommended, as is good power supply bypassing. A $0.1 \mu \mathrm{~F}$ ceramic capacitor is recommended for bypassing both supplies. Lead lengths should be as short as possible, and bypass capacitors should be as close to the device pins as possible. For good AC performance, parasitic capacitances should be kept to a minimum at both inputs and at the output. Resistor values should be kept under $5 \mathrm{k} \Omega$ because of the RC time constants associated with the parasitic capacitance. Metal-film and carbon resistors are both acceptable, use of wire-wound resistors is not recommended because of their parasitic inductance. Similarly, capacitors should be low-inductance for best performance.

EL2210/EL2310/EL2410 Macromodel

* Revision A, June 1994
* Application Hints:
* A pull down resistor between the output and V - is recommended
* to allow output voltages to swing close to V-. See datasheet
* for recommended values.
*
* Connections:
*
*
*
*
*

.subckt EL2210/EL

q1 20324 qp q2 21225 qp q3 101026 qp q4 121011 qp q5 141013 qp q6 191920 qn q7 141921 qn q8 81415 qn q9 81617 qn 10
r1 2412350
r2 1225350
r3 826250
r4 811150
r5 813240
r6 204150
r7 214150
r8 1517700
r9 141250
r10 151640
r11 17115
r12 1019 10K
r13 142220
c1 2240.45 pF
c2 2219 1pF
d1 114 dcap
.model qn npn(bf=150 tf=0.05nS)
.model qp pnp(bf=90 tf=0.05nS)
.model dcap $\mathrm{d}(\mathrm{rs}=200 \mathrm{cjo}=1 \mathrm{e}-12 \mathrm{vj}=0.8 \mathrm{tt}=100 \mathrm{e}-9$) .ends

EL2211/EL2311/EL2411 Macromodel (Continued)

* Revision A, June 1994
* Application Hints:
* A pull down resistor between the output and V - is recommended
* to allow output voltages to swing close to V-. See datasheet
* for recommended values.
* Connections:
*
*
*
*
*

.subckt EL2211/EL
q1 20324 qp
q2 21225 qp q3 101026 qp q4 121011 qp q5 141013 qp q6 191920 qn q7 141921 qn q8 81415 qn q9 81617 qn 10
r1 2412175
r2 1225175
r3 826250
r4 811150
r5 813240
r6 204150
r7 214150
r8 1517700
r9 141250
r10 151640
r11 17115
r12 1019 10K
r13 142220
c1 2240.42 pF
c2 2219 1pF
d1 114 dcap
.model qn npn(bf=150 tf=0.05nS)
.model qp pnp(bf=90 tf=0.05nS)
.model dcap $\mathrm{d}(\mathrm{rs}=200 \mathrm{cjo}=1 \mathrm{e}-12 \mathrm{vj}=0.8 \mathrm{tt}=100 \mathrm{e}-9)$ ends

EL2211/EL2311/EL2411 Macromodel (Continued)

All Intersil U.S. products are manufactured, assembled and tested utilizing ISO9000 quality systems. Intersil Corporation's quality certifications can be viewed at www.intersil.com/design/quality

Intersil products are sold by description only. Intersil Corporation reserves the right to make changes in circuit design, software and/or specifications at any time without notice. Accordingly, the reader is cautioned to verify that data sheets are current before placing orders. Information furnished by Intersil is believed to be accurate and reliable. However, no responsibility is assumed by Intersil or its subsidiaries for its use; nor for any infringements of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of Intersil or its subsidiaries.

For information regarding Intersil Corporation and its products, see www.intersil.com

