Features

- $256 \mathrm{~K} \times 36,512 \mathrm{~K} \times 18$ memory configurations
- Supports high performance system speed - 100 MHz (7.5 ns Clock-to-Data Access)
- $\mathrm{ZBT}^{\text {TM }}$ Feature - No dead cycles between write and read cycles
- Internally synchronized output buffer enable eliminates the need to control $\overline{\mathrm{OE}}$
- Single R/ \bar{W} (READ/WRITE) control pin
- 4-word burst capability (Interleaved or linear)
- Individual byte write (BW1 - BW4) control (May tie active)
- Three chip enables for simple depth expansion
- 2.5 V power supply ($\pm 5 \%$)
- $2.5 \mathrm{~V}(\pm 5 \%)$ I/O Supply (VDDQ)
- Packaged in a JEDEC standard 100 -lead plastic thin quad flatpack (TQFP) and 119-lead ball grid array (BGA).

Description

The IDT71T657/59 are 2.5V high-speed 9,437,184-bit (9 Megabit) synchronous SRAMs organized as $256 \mathrm{~K} \times 36$ / 512 K x 18. They are designed to eliminate dead bus cycles when turning the bus around between reads and writes, or writes and reads. Thus they have been given the name $Z \mathrm{~B}^{T M}$, or Zero Bus Turnaround.

Address and control signals are applied to the SRAM during one clock cycle, and on the nextclock cycle the associated data cycle occurs, be it read or write.

The IDT71T657/59 contain address, data-in and control signal registers. The outputs are flow-through (no output data register). Output enable is the only asynchronous signal and can be used to disable the outputs at any giventime.

A Clock Enable ($\overline{\mathrm{CEN}}$) pin allows operation of the IDT71T657/59 to be suspended as long as necessary. All synchronous inputs are ignored when (CEN) is high and the internal device registers will hold their previous values.

There are three chip enable pins ($\overline{\mathrm{CE}} 1, \mathrm{CE} 2, \overline{\mathrm{CE}} 2$) that allow the user to deselect the device when desired. If any one of these three are not asserted when ADV/LD is low, no new memory operation can be initiated. However, any pending data transfers (reads or writes) will be completed. The data bus will tri-state one cycle afterchip is deselected or a write is initiated.

The IDT71T657/59 have an on-chip burst counter. In the burst mode, the IDT71T657/59 can provide four cycles of data for a single address presented to the SRAM. The order of the burst sequence is defined by the $\overline{\mathrm{LBO}}$ input pin. The $\overline{\mathrm{LBO}}$ pin selects between linear and interleaved burst sequence. The ADV/ $\overline{\mathrm{LD}}$ signal is used to load a new external address (ADV/ID=LOW) orincrementhe internal burstcounter (ADV/ $\overline{L D}=\mathrm{HIGH})$.

The IDT71T657/59 SRAMs utilize IDT's high-performance CMOS process, and are packaged in a JEDECStandard $14 \mathrm{~mm} \times 20 \mathrm{~mm}$ 100-lead plastic thin quad flatpack (TQFP) as well as a 119-lead ball grid array (BGA).

Pin Description Summary

A0-A18	Address Inputs	Input	Synchronous
$\overline{\mathrm{CE}} 1, \mathrm{CE} 2, \overline{\mathrm{CE}} 2$	Chip Enables	Input	Synchronous
$\overline{\mathrm{OE}}$	Output Enable	Input	Asynchronous
R/W	Read/Write Signal	Input	Synchronous
$\overline{C E N}$	Clock Enable	Input	Synchronous
$\overline{\mathrm{BW}} 1_{1}, \overline{\mathrm{BW}} 2_{2}, \overline{\mathrm{BW}}_{3}, \overline{\mathrm{BW}} 4_{4}$	Individual Byte Write Selects	Input	Synchronous
CLK	Clock	Input	N/A
ADV/LD	Advance burst address / Load new address	Input	Synchronous
$\overline{\mathrm{LBO}}$	Linear / Interleaved Burst Order	Input	Static
I/O-I/O31, I/OP1-I/OP4	Data Input / Output	I/0	Synchronous
Vdd, VddQ	Core Power, I/O Power	Supply	Static
Vss	Ground	Supply	Static

Pin Definitions ${ }^{(1)}$

Symbol	Pin Function	I/O	Active	Description
A0-A18	Address Inputs	1	N/A	Synchronous Address inputs. The address register is triggered by a combination of the rising edge of CLK, ADV/LD low, $\overline{\mathrm{CEN}}$ low, and true chip enables.
ADV/LD	Advance / Load	1	N/A	$A D V / \overline{L D}$ is a synchronous input that is used to load the internal registers with new address and control when it is sampled low at the rising edge of clock with the chip selected. When $A D V / \overline{\mathrm{D}}$ is low with the chip deselected, any burst in progress is terminated. When ADV/ID is sampled high then the internal burst counter is advanced for any burst that was in progress. The external addresses are ignored when ADV/ĪD is sampled high.
R / \bar{W}	Read / Write	1	N/A	$\mathrm{R} / \overline{\mathrm{W}}$ signal is a synchronous input that identifies whether the current load cycle initiated is a Read or Write access to the memory array. The data bus activity for the current cycle takes place one clock cycle later.
$\overline{C E N}$	Clock Enable	1	LOW	Synchronous Clock Enable Input. When $\overline{\mathrm{CEN}}$ is sampled high, all other synchronous inputs, including clock are ignored and outputs remain unchanged. The effect of CEN sampled high on the device outputs is as if the low to high clock transition did not occur. For normal operation, $\overline{\mathrm{CEN}}$ must be sampled low at rising edge of clock.
$\overline{\mathrm{BW}} 1-\overline{\mathrm{BW}} 4$	Individual Byte Write Enables	1	LOW	Synchronous byte write enables. Each 9-bit byte has its own active low byte write enable. On load write cycles (When R \bar{W} and $A D V / \overline{L D}$ are sampled low) the appropriate byte write signal ($\left(\overline{\mathrm{BW}}_{1}-\overline{\mathrm{BW}}_{4}\right)$ must be valid. The byte write signal must also be valid on each cycle of a burst write. Byte Write signals are ignored when R / \bar{W} is sampled high. The appropriate byte(s) of data are written into the device one cycle later. $\overline{\mathrm{BW}} 1-\overline{\mathrm{BW}} 4$ can all be tied low if always doing write to the entire 36 -bit word.
$\overline{\mathrm{CE}} 1, \overline{\mathrm{CE}}_{2}$	Chip Enables	1	LOW	Synchronous active low chip enable. $\overline{\mathrm{CE}} 1$ and $\overline{\mathrm{CE}} 2$ are used with CE 2 to enable the IDT71T657/59 ($\overline{\mathrm{CE}} 1$ or $\overline{\mathrm{CE}} 2$ sampled high or CE 2 sampled low) and $\mathrm{ADV} / \overline{\mathrm{D}}$ low at the rising edge of clock, initiates a deselect cycle. The ZBT ${ }^{T M}$ has a one cycle deselect, i.e., the data bus will tri-state one clock cycle after deselect is initiated.
CE2	Chip Enable	1	HIGH	Synchronous active high chip enable. CE_{2} is used with $\overline{\mathrm{CE}}_{1}$ and $\overline{\mathrm{CE}}_{2}$ to enable the chip. CE 2 has inverted polarity but otherwise identical to $\overline{\mathrm{CE}} 1$ and $\overline{\mathrm{CE}} 2$.
CLK	Clock	1	N/A	This is the clock input to the IDT71T657/59. Except for $\overline{\mathrm{E}}$, all timing references for the device are made with respect to the rising edge of CLK.
$\begin{aligned} & \text { I/OO-I/O31 } \\ & \text { I/OP1-I/Op4 } \end{aligned}$	Data Input/Output	1/0	N/A	Data input/output (I/O) pins. The data input path is registered, triggered by the rising edge of CLK. The data output path is flow-through (no output register).
$\overline{\text { LBO }}$	Linear Burst Order	1	LOW	Burst order selection input. When $\overline{\mathrm{LBO}}$ is high the Interleaved burst sequence is selected. When $\overline{\mathrm{LBO}}$ is low the Linear burst sequence is selected. $\overline{\mathrm{LBO}}$ is a static input, and it must not change during device operation.
$\overline{\mathrm{OE}}$	Output Enable	I	LOW	Asynchronous output enable. $\overline{\mathrm{OE}}$ must be low to read data from the IDT71T657/59. When $\overline{\mathrm{OE}}$ is HIGH the I/O pins are in a high-impedance state. $\overline{\mathrm{OE}}$ does not need to be actively controlled for read and write cycles. In normal operation, $\overline{\mathrm{E}}$ can be tied low.
Vod	Power Supply	N/A	N/A	2.5 V core power supply.
VDDQ	Power Supply	N/A	N/A	2.5V I/O Supply.
Vss	Ground	N/A	N/A	Ground.

NOTE:

1. All synchronous inputs must meet specified setup and hold times with respect to CLK.

Functional Block Diagram for 256K x 36 Configuration

Functional Block Diagram for 512K x 18 Configuration

Recommended DC Operating

 Conditions| Symbol | Parameter | Min. | Typ. | Max. | Unit |
| :---: | :--- | :---: | :---: | :---: | :---: |
| VDD | Core Supply Voltage | 2.375 | 2.5 | 2.625 | V |
| VDDQ | I/O Supply Voltage | 2.375 | 2.5 | 2.625 | V |
| VSS | Ground | 0 | 0 | 0 | V |
| VIH | Input High Voltage - Inputs | 1.7 | - | VDD +0.3 | V |
| VIH | Input High Voltage $-\mathrm{I} / \mathrm{O}$ | 1.7 | - | VDDQ $+0.3^{(2)}$ | V |
| VIL | Input Low Voltage | $-0.3^{(1)}$ | - | 0.7 | V |

NOTE:

1. $\mathrm{VIL}(\min)=.-0.8 \mathrm{~V}$ for pulse width less than $\mathrm{tcyc} / 2$, once per cycle.

Recommended Operating

 Temperature Supply Voltage| Grade | Temperature | Vss | VdD | VdDQ |
| :---: | :---: | :---: | :---: | :---: |
| Commercial | $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$ | 0 V | $2.5 \mathrm{~V} \pm 5 \%$ | $2.5 \mathrm{~V} \pm 5 \%$ |

Pin Configuration-256K x 36

Top View TQFP
NOTES:

1. Pins 14,64 , and 66 do not have to be connected directly to Vss as long as the input voltage is \leq VIL.
2. Pin 16 does not have to be connected directly to $V_{D D}$ as long as the input voltage is $\geq \mathrm{V}_{\mathrm{IH}}$.
3. Pin 84 is reserved for a future 16M.
4. $\mathrm{DNU}=$ Do not use

Pin Configuration - 512K x 18

NOTES:

1. Pins 14,64 , and 66 do not have to be connected directly to Vss as long as the input voltage is \leq VIL.
2. Pin 16 does not have to be connected directly to VDD as long as the input voltage is $\geq \mathrm{VIH}$.
3. Pin 84 is reserved for a future 16 M .
4. $\mathrm{DNU}=\mathrm{Do}$ not use.

Absolute Maximum Ratings ${ }^{(1)}$

Symbol	Rating	Commercial	Unit
VTERM $^{(2)}$	Terminal Voltage with Respect to GND	-0.5 to +3.6	V
VTERM $^{(3,6)}$	Terminal Voltage with Respect to GND	-0.5 to VDD	V
VTERM $^{(4,6)}$	Terminal Voltage with Respect to GND	-0.5 to VdD +0.5	V
VTERM $^{(5,6)}$	Terminal Voltage with Respect to GND	-0.5 to VDDQ +0.5	V
TA	Operating Temperature	0 to +70	${ }^{\circ} \mathrm{C}$
TbIAS	Temperature Under Bias	-55 to +125	${ }^{\circ} \mathrm{C}$
TSTG	Storage Temperature	-55 to +125	${ }^{\circ} \mathrm{C}$
PT	Power Dissipation	2.0	W
IOUT	DC Output Current	50	mA

NOTES:

1. Stresses greater than those listed under ABSOLUTE MAXIMUM RATINGS may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect reliability.
2. VDD terminals only.
3. VDDQ terminals only.
4. Input terminals only.
5. I/O terminals only.
6. This is a steady-state DC parameter that applies after the power supply has reached its nominal operating value. Power sequencing is not necessary; however, the voltage on any input or I/O pin cannot exceed VDDQ during power supply ramp up.

Capacitance

(TA $=+25^{\circ} \mathrm{C}, \mathrm{f}=1.0 \mathrm{MHz}$, TQFP Package)

Symbol	Parameter $^{(1)}$	Conditions	Max.	Unit
CIN	Input Capacitance	VIN $=3 \mathrm{dV}$	5	pF
C/IO	I/O Capacitance	Vout $=3 \mathrm{dV}$	7	pF

NOTE:

1. This parameter is guaranteed by device characterization, but not production tested.

Pin Configuration-256K $\times \mathbf{3 6}$ BGA ${ }^{(1,2,3,4)}$

Pin Configurations - 512K $\times 18$ BGA ${ }^{(1,2,3,4)}$

Top View
NOTES:

1. R5 and J 5 do not have to be directly connected to Vss as long as the input voltage is $\leq \mathrm{VIL}$.
2. J 3 does not have to be directly connected directly to VDD as long as the input voltage is $\geq \mathrm{V} \mathrm{V}$.
3. A 4 is reserved for future 16 M .
4. $D N U=$ Do not use.

Synchronous Truth Table ${ }^{(1)}$

$\overline{\text { CEN }}$	$\mathrm{R} / \overline{\mathrm{W}}$	$\overline{\mathrm{C}} \mathrm{E}_{1}, \overline{\mathrm{C} E} 2^{(5)}$	ADV/LD	$\overline{\mathrm{BW}} \mathrm{x}$	ADDRESS USED	PREVIOUS CYCLE	CURRENT CYCLE	I/0 (One cycle later)
L	L	L	L	Valid	External	X	LOAD WRITE	$D^{(7)}$
L	H	L	L	X	External	X	LOAD READ	$Q^{(7)}$
L	X	X	H	Valid	Internal	LOAD WRITE / BURST WRITE	BURST WRITE (Advance burst counter) ${ }^{(2)}$	$D^{(7)}$
L	X	X	H	X	Internal	LOAD READ / BURST READ	BURST READ (Advance burst counter) ${ }^{(2)}$	$Q^{(7)}$
L	X	H	L	X	X	X	DESELECT or STOP ${ }^{(3)}$	HIZ
L	X	X	H	X	X	DESELECT / NOOP	NOOP	HIZ
H	X	X	X	X	X	X	SUSPEND ${ }^{(4)}$	Previous Value

NOTES:

1. $\mathrm{L}=\mathrm{V}_{\mathrm{IL}}, \mathrm{H}=\mathrm{V}_{\mathrm{I}}, \mathrm{X}=$ Don't Care.
2. When $\operatorname{ADV} / \overline{L D}$ signal is sampled high, the internal burst counter is incremented. The $R \bar{W}$ signal is ignored when the counter is advanced. Therefore the nature of the burst cycle (Read or Write) is determined by the status of the R / \bar{W} signal when the first address is loaded at the beginning of the burst cycle.
3. Deselect cycle is initiated when either ($\overline{C E} 1, ~ o r ~_{\mathrm{CE}}^{2} 2$ is sampled high or CE_{2} is sampled low) and $\mathrm{ADV} / \overline{\mathrm{LD}}$ is sampled low at rising edge of clock. The data bus will tri-state one cycle after deselect is initiated.
4. When $\overline{\mathrm{CEN}}$ is sampled high at the rising edge of clock, that clock edge is blocked from propogating through the part. The state of all the internal registers and the I/Os remains unchanged.
5. To select the chip requires $\overline{\mathrm{CE}}_{1}=\mathrm{L}, \overline{\mathrm{CE}}_{2}=\mathrm{L}$ and $\mathrm{CE}_{2}=\mathrm{H}$ on these chip enable pins. The chip is deselected if any one of the chip enables is false.
6. Device Outputs are ensured to be in High-Z during device power-up.
7. Q-data read from the device, D - data written to the device.

Partial Truth Table for Writes ${ }^{(1)}$

OPERATION	R/W	$\overline{\mathrm{BW}} 1$	$\overline{\mathrm{BW}} 2$	$\overline{\mathrm{BW}}{ }^{(3)}$	$\overline{\mathrm{BW}} 4^{(3)}$
READ	H	X	X	X	X
WRITE ALL BYTES	L	L	L	L	L
WRITE BYTE 1 (I/O[0:7], I/OP1) ${ }^{(2)}$	L	L	H	H	H
WRITE BYTE 2 (//O[8:15], I/OP2) ${ }^{(2)}$	L	H	L	H	H
WRITE BYTE 3 (//O[16:23], I/Op3) ${ }^{(2,3)}$	L	H	H	L	H
WRITE BYTE 4 (I/O[24:31], I/OP4) ${ }^{(2,3)}$	L	H	H	H	L
NO WRITE	L	H	H	H	H

NOTES:

1. $\mathrm{L}=\mathrm{V} / \mathrm{L}, \mathrm{H}=\mathrm{V}_{\mathrm{I}}, \mathrm{X}=$ Don't Care.
2. Multiple bytes may be selected during the same cycle.
3. N / A for x 18 configuration.

Interleaved Burst Sequence Table ($\overline{\text { LBO }}=$ Vdd)

	Sequence 1		Sequence 2		Sequence 3		Sequence 4	
	A1	A0	A1	A0	A1	A0	A1	A0
First Address	0	0	0	1	1	0	1	1
Second Address	0	1	0	0	1	1	1	0
Third Address	1	0	1	1	0	0	0	1
Fourth Address ${ }^{(1)}$	1	1	1	0	0	1	0	0

NOTE:
5003 tbl 10

1. Upon completion of the Burst sequence the counter wraps around to its initial state and continues counting

Linear Burst Sequence Table ($\overline{\text { LBO }}=\mathrm{Vss}$)

	Sequence 1		Sequence 2		Sequence 3		Sequence 4	
	A1	A0	A1	A0	A1	A0	A1	A0
First Address	0	0	0	1	1	0	1	1
Second Address	0	1	1	0	1	1	0	0
Third Address	1	0	1	1	0	0	0	1
Fourth Address ${ }^{(1)}$	1	1	0	0	0	1	1	0

NOTE:

1. Upon completion of the Burst sequence the counter wraps around to its initial state and continues counting.

Functional Timing Diagram ${ }^{(1)}$

CYCLE	n+29	n+30	$\mathrm{n}+31$	n+32	n+33	n+34	n+35	$\mathrm{n}+36$	$\mathrm{n}+37$
CLOCK	\triangle	4	4	4	4	4	4	\downarrow	\downarrow
ADDRESS ${ }^{(2)}$ (A0-A17)	A29	A30	A31	A32	A33	A34	A35	A36	A37
$\begin{gathered} \text { CONTROL }^{(2)} \\ (\mathrm{R} / \overline{\mathrm{W}}, \mathrm{ADV} / \overline{\mathrm{LD}}, \overline{\mathrm{BW}} \mathrm{x}) \end{gathered}$	C29	C30	C31	C32	C33	C34	C35	C36	C37
$\begin{gathered} \text { DATA }^{(2)} \\ \text { I/O [0:31], I/O P[1:4] } \end{gathered}$	D/Q28	D/Q29	D/Q30	D/Q31	D/Q32	D/Q33	D/Q34	D/Q35	D/Q36

NOTES:
5003 drw 03

1. This assumes $\overline{\mathrm{CEN}}, \overline{\mathrm{CE}} 1, \mathrm{CE} 2$ and $\overline{\mathrm{CE}} 2$ are all true.
2. All Address, Control and Data_In are only required to meet set-up and hold time with respect to the rising edge of clock. Data_Out is valid after a clock-to-data delay from the rising edge of clock.

Device Operation - Showing Mixed Load, Burst, Deselect and NOOP Cycles ${ }^{(2)}$

Cycle	Address	R/W	ADV/LD	$\overline{\mathrm{CE}} 1^{1{ }^{11)}}$	$\overline{C E N}$	$\overline{\mathrm{BW}} \mathrm{X}$	$\overline{O E}$	I/0	Comments
n	A0	H	L	L	L	X	X	D1	Load read
n+1	X	X	H	X	L	X	L	Q0	Burst read
n+2	A1	H	L	L	L	X	L	Q0+1	Load read
n+3	X	X	L	H	L	X	L	Q1	Deselect or STOP
n+4	X	X	H	X	L	X	X	Z	NOOP
n+5	A2	H	L	L	L	X	X	Z	Load read
n+6	X	X	H	X	L	X	L	Q2	Burst read
n+7	X	X	L	H	L	X	L	Q2+1	Deselect or STOP
n+8	A3	L	L	L	L	L	X	Z	Load write
n+9	X	X	H	X	L	L	X	D3	Burst write
n+10	A4	L	L	L	L	L	X	D3+1	Load write
n+11	X	X	L	H	L	X	X	D4	Deselect or STOP
n+12	X	X	H	X	L	X	X	Z	NOOP
n+13	A5	L	L	L	L	L	X	Z	Load write
n+14	A6	H	L	L	L	X	X	D5	Load read
n+15	A7	L	L	L	L	L	L	Q6	Load write
n+16	X	X	H	X	L	L	X	D7	Burst write
n+17	A8	H	L	L	L	X	X	D7+1	Load read
$\mathrm{n}+18$	X	X	H	X	L	X	L	Q8	Burst read
n+19	A9	L	L	L	L	L	L	Q8+1	Load write

NOTES:

1. $\overline{\mathrm{CE}}_{2}$ timing transition is identical to $\overline{\mathrm{CE}}_{1}$ signal. CE 2 timing transition is identical but inverted to the $\overline{\mathrm{CE}}_{1}$ and $\overline{\mathrm{CE}}_{2}$ signals.
2. $\mathrm{H}=$ High; $\mathrm{L}=$ Low; $\mathrm{X}=$ Don't Care; $\mathrm{Z}=$ High Impedence.

Read Operation ${ }^{(1)}$

Cycle	Address	$\mathrm{R} / \overline{\mathrm{W}}$	$\mathrm{ADV} / \overline{\mathrm{LD}}$	$\overline{\mathrm{CE}}{ }^{(2)}$	$\overline{\mathrm{CEN}}$	$\overline{\mathrm{B}} \overline{\mathrm{X}}$	$\overline{\mathrm{OE}}$	//O	Comments
n	A 0	H	L	L	L	X	X	X	Address and Control meet setup
$\mathrm{n}+1$	X	X	X	X	X	X	L	Q 0	Contents of Address Ao Read Out

NOTES:

1. $\mathrm{H}=$ High; $\mathrm{L}=$ Low; $\mathrm{X}=$ Don't Care; $\mathrm{Z}=$ High Impedance.
2. $\overline{\mathrm{CE}} 2$ timing transition is identical to $\overline{\mathrm{CE}}_{1}$ signal. CE_{2} timing transition is identical but inverted to the $\overline{\mathrm{CE}}_{1}$ and $\overline{\mathrm{CE}}_{2}$ signals.

Burst Read Operation ${ }^{(1)}$

Cycle	Address	R/W	ADV/LD	$\overline{\mathrm{CE}}{ }^{(2)}$	$\overline{\mathrm{CEN}}$	$\overline{\mathrm{B}} \mathrm{W} \mathrm{x}$	$\overline{\mathrm{OE}}$	I/O	Comments
n	A0	H	L	L	L	X	X	X	Address and Control meet setup
n+1	X	X	H	X	L	X	L	Q0	Address Ao Read Out, Inc. Count
n+2	X	X	H	X	L	X	L	Q0+1	Address A0+1 Read Out, Inc. Count
n+3	X	X	H	X	L	X	L	Q0+2	Address A0+2 Read Out, Inc. Count
n+4	X	X	H	X	L	X	L	Q0+3	Address A0 +3 Read Out, Load A1
n+5	A1	H	L	L	L	X	L	Q0	Address Ao Read Out, Inc. Count
n+6	X	X	H	X	L	X	L	Q1	Address A1 Read Out, Inc. Count
n+7	A2	H	L	L	L	X	L	Q1+1	Address A1+1 Read Out, Load A2

NOTES:

1. $\mathrm{H}=$ High; $\mathrm{L}=$ Low; $\mathrm{X}=$ Don't Care; $\mathrm{Z}=$ High Impedance.
2. $\overline{\mathrm{CE}}_{2}$ timing transition is identical to $\overline{\mathrm{CE}}_{1}$ signal. CE 2 timing transition is identical but inverted to the $\overline{\mathrm{CE}}_{1}$ and $\overline{\mathrm{CE}}_{2}$ signals.

Write Operation ${ }^{(1)}$

Cycle	Address	$\mathrm{R} / \overline{\mathrm{W}}$	$\mathrm{ADV} / \overline{\mathrm{LD}}$	$\overline{\mathrm{CE}} 1^{(2)}$	$\overline{\mathrm{CEN}}$	$\overline{\mathrm{BW}} \mathbf{x}$	$\overline{\mathrm{OE}}$	I/O	Comments
n	A_{0}	L	L	L	L	L	X	X	Address and Control meet setup
$\mathrm{n}+1$	X	X	X	X	L	X	X	D 0	Write to Address A0

NOTES:

1. $\mathrm{H}=$ High; $\mathrm{L}=$ Low; $\mathrm{X}=$ Don't Care; $\mathrm{Z}=$ High Impedance.
2. $\overline{\mathrm{CE}}_{2}$ timing transition is identical to $\overline{\mathrm{CE}}_{1}$ signal. CE_{2} timing transition is identical but inverted to the $\overline{\mathrm{CE}}_{1}$ and $\overline{\mathrm{CE}}_{2}$ signals.

Burst Write Operation ${ }^{(1)}$

Cycle	Address	R/W	ADV/ $\overline{L D}$	$\overline{\mathrm{CE}}{ }^{(2)}$	$\overline{C E N}$	$\overline{\mathrm{BW}} \mathrm{x}$	$\overline{O E}$	//0	Comments
n	A0	L	L	L	L	L	X	X	Address and Control meet setup
n+1	X	X	H	X	L	L	X	Do	Address Ao Write, Inc. Count
$\mathrm{n}+2$	X	X	H	X	L	L	X	D $0+1$	Address A0+1 Write, Inc. Count
n+3	X	X	H	X	L	L	X	D0+2	Address A0+2 Write, Inc. Count
n+4	X	X	H	X	L	L	X	Do+3	Address A0+3 Write, Load A1
n+5	A1	L	L	L	L	L	X	Do	Address Ao Write, Inc. Count
n+6	X	X	H	X	L	L	X	D1	Address A1 Write, Inc. Count
n+7	A2	L	L	L	L	L	X	D1+1	Address A1+1 Write, Load A2

NOTES:

1. $\mathrm{H}=$ High; $\mathrm{L}=$ Low; $\mathrm{X}=$ Don't Care; $\mathrm{Z}=$ High Impedance.
2. $\overline{\mathrm{CE}}_{2}$ timing transition is identical to $\overline{\mathrm{CE}}_{1}$ signal. CE_{2} timing transition is identical but inverted to the $\overline{\mathrm{CE}}_{1}$ and $\overline{\mathrm{CE}}_{2}$ signals.

Read Operation with Clock Enable Used ${ }^{(1)}$

Cycle	Address	R/W	ADV/LD	$\overline{\mathrm{CE}} 1^{(2)}$	$\overline{C E N}$	$\overline{\mathrm{BW}} \mathrm{x}$	$\overline{\mathrm{O}}$	//0	Comments
n	A0	H	L	L	L	X	X	X	Address A0 and Control meet setup
n+1	X	X	X	X	H	X	X	X	Clock n+1 Ignored
$\mathrm{n}+2$	A1	H	L	L	L	X	L	Q0	Address A0 Read out, Load A1
n+3	X	X	X	X	H	X	L	Qo	Clock Ignored. Data Qo is on the bus.
n+4	X	X	X	X	H	X	L	Q0	Clock Ignored. Data Q0 is on the bus.
n+5	A2	H	L	L	L	X	L	Q1	Address A1 Read out, Load A2
n+6	A3	H	L	L	L	X	L	Q2	Address A2 Read out, Load A3
n+7	A4	H	L	L	L	X	L	Q3	Address A3 Read out, Load A4

NOTES:

1. $\mathrm{H}=$ High; $\mathrm{L}=$ Low; $\mathrm{X}=$ Don't Care; $\mathrm{Z}=$ High Impedance.
2. $\overline{\mathrm{CE}}_{2}$ timing transition is identical to $\overline{\mathrm{CE}}_{1}$ signal. CE_{2} timing transition is identical but inverted to the $\overline{\mathrm{CE}}_{1}$ and $\overline{\mathrm{CE}} 2$ signals.

Write Operation with Clock Enable Used ${ }^{(1)}$

Cycle	Address	R/TW	ADV/LD	$\overline{\mathrm{CE}}{ }^{(2)}$	$\overline{C E N}$	$\overline{\mathrm{BW}} \mathrm{x}$	$\overline{O E}$	I/O	Comments
n	A0	L	L	L	L	L	X	X	Address A0 and Control meet setup.
n+1	X	X	X	X	H	X	X	X	Clock n+1 Ignored.
n+2	A1	L	L	L	L	L	X	Do	Write data D0, Load A1.
n+3	X	X	X	X	H	X	X	X	Clock Ignored.
n+4	X	X	X	X	H	X	X	X	Clock Ignored.
n+5	A2	L	L	L	L	L	X	D1	Write Data D1, Load A2
n+6	A3	L	L	L	L	L	X	D2	Write Data D2, Load A3
n+7	A4	L	L	L	L	L	X	D3	Write Data D3, Load A4

NOTES:

1. $\mathrm{H}=$ High; $\mathrm{L}=$ Low; $\mathrm{X}=$ Don't Care; $\mathrm{Z}=$ High Impedance.
2. $\overline{\mathrm{CE}}_{2}$ timing transition is identical to $\overline{\mathrm{CE}}_{1}$ signal. CE_{2} timing transition is identical but inverted to the $\overline{\mathrm{CE}}_{1}$ and $\overline{\mathrm{CE}}_{2}$ signals.

Read Operation with Chip Enable Used (1)

Cycle	Address	R / \bar{W}	ADV/LD	$\overline{\mathrm{CE}}{ }^{(2)}$	$\overline{C E N}$	$\overline{\mathrm{BW}} \mathrm{x}$	$\overline{\mathrm{O}}$	$1 / 0^{(3)}$	Comments
n	X	X	L	H	L	X	X	?	Deselected.
n+1	X	X	L	H	L	X	X	Z	Deselected.
n+2	A0	H	L	L	L	X	X	Z	Address A0 and Control meet setup.
n+3	X	X	L	H	L	X	L	Qo	Address Ao read out, Deselected.
n+4	A1	H	L	L	L	X	X	Z	Address A1 and Control meet setup.
n+5	X	X	L	H	L	X	L	Q1	Address A1 read out, Deselected.
n+6	X	X	L	H	L	X	X	Z	Deselected.
n+7	A2	H	L	L	L	X	X	Z	Address A2 and Control meet setup.
n+8	X	X	L	H	L	X	L	Q2	Address A2 read out, Deselected.
n+9	X	X	L	H	L	X	X	Z	Deselected.

NOTES:

1. $\mathrm{H}=$ High; $\mathrm{L}=$ Low; $\mathrm{X}=$ Don't Care; ? = Don't Know; $\mathrm{Z}=$ High Impedance.
2. $\overline{\mathrm{CE}} 2$ timing transition is identical to $\overline{\mathrm{CE}}_{1}$ signal. CE 2 timing transition is identical but inverted to the $\overline{\mathrm{CE}}_{1}$ and $\overline{\mathrm{CE}}_{2}$ signals.
3. Device outputs are ensured to be in High-Z during device power-up.

Write Operation with Chip Enable Used ${ }^{(1)}$

Cycle	Address	R/W	ADV/LD	$\overline{C E}^{(2)}$	$\overline{C E N}$	$\overline{\mathrm{BW}} \mathrm{x}$	$\overline{\mathrm{O}}$	I/O	Comments
n	X	X	L	H	L	X	X	?	Deselected.
n+1	X	X	L	H	L	X	X	Z	Deselected.
n+2	A0	L	L	L	L	L	X	Z	Address A0 and Control meet setup
n+3	X	X	L	H	L	X	X	Do	Data Do Write In, Deselected.
n+4	A1	L	L	L	L	L	X	Z	Address A1 and Control meet setup
n+5	X	X	L	H	L	X	X	D1	Data D1 Write In, Deselected.
n+6	X	X	L	H	L	X	X	Z	Deselected.
n+7	A2	L	L	L	L	L	X	Z	Address A2 and Control meet setup
n+8	X	X	L	H	L	X	X	D2	Data D2 Write In, Deselected.
n+9	X	X	L	H	L	X	X	Z	Deselected.

NOTES:

1. $\mathrm{H}=$ High; $\mathrm{L}=$ Low; $\mathrm{X}=$ Don't Care; ? $=$ Don't Know; $\mathrm{Z}=$ High Impedance.
2. $\overline{\mathrm{CE}}=\mathrm{L}$ is defined as $\overline{\mathrm{CE}}_{1}=\mathrm{L}, \overline{\mathrm{CE}} 2_{2}=\mathrm{L}$ and $\mathrm{CE} 2=\mathrm{H} . \overline{\mathrm{CE}}=\mathrm{H}$ is defined as $\overline{\mathrm{CE}}_{1}=\mathrm{H}, \overline{\mathrm{CE}}_{2}=\mathrm{H}$ or $\mathrm{CE} 2=\mathrm{L}$.

DC Electrical Characteristics Over the Operating

Temperature and Supply Voltage Range (Vdo $=\mathbf{2 . 5 V} \pm 5 \%$)

Symbol	Parameter	Test Conditions	Min.	Max.	Unit		
\|	니		Input Leakage Current	Vdd = Max., Vin $=0 \mathrm{~V}$ to Vdd	-	5	$\mu \mathrm{A}$
\|	니		$\overline{\text { LBO }}$ Input Leakage Current ${ }^{(1)}$	$V_{D D}=$ Max., $\mathrm{V}^{\prime \prime}=0 \mathrm{~V}$ to $\mathrm{V} D \mathrm{D}$	-	30	$\mu \mathrm{A}$
\|	LO		Output Leakage Current	Vout $=0 \mathrm{~V}$ to Vcc	-	5	$\mu \mathrm{A}$
Vol	Output Low Voltage	$\mathrm{IOL}=+6 \mathrm{~mA}, \mathrm{VDD}=\mathrm{Min}$.	-	0.4	V		
VOH	Output High Voltage	$\mathrm{IOH}=-6 \mathrm{~mA}, \mathrm{VDD}=\mathrm{Min}$.	2.0	-	V		

NOTE:

1. The $\overline{\mathrm{LBO}}$ pin will be internally pulled to VDD if it is not actively driven in the application.

DC Electrical Characteristics Over the Operating
Temperature and Supply Voltage Range ${ }^{(1)}$ (VdD $=2.5 \mathrm{~V} \pm 5 \%$)

Symbol	Parameter	Test Conditions	7.5ns	8ns	8.5ns	Unit
IDD	Operating Power Supply Current	Device Selected, Outputs Open, $A D V / \overline{L D}=X, V D D=$ Max., VIN $\geq \mathrm{VIH}$ or $\leq \mathrm{VIL}, \mathrm{f}=\mathrm{fmax}{ }^{(2)}$	275	250	225	mA
ISB1	CMOS Standby Power Supply Current	Device Deselected, Outputs Open, VDD = Max., VIN \geq VhD or \leq VLD, $f=0^{(2,3)}$	40	40	40	mA
ISB2	Clock Running Power Supply Current	Device Deselected, Outputs Open, VDD $=$ Max., VIN \geq VhD or \leq VLD, $f=f m a x(2,3)$	105	100	95	mA
ISB3	Idle Power Supply Current	Device Selected, Outputs Open, $\overline{\mathrm{CEN}} \geq \mathrm{VIH}, \mathrm{V}_{\mathrm{DD}}=\mathrm{Max}$., VIN \geq VHD or $\leq V L D, f=f m a x(2,3)$	40	40	40	mA

NOTES:
5003 tbl 22

1. All values are maximum guaranteed values.
2. At $f=f$ max, inputs are cycling at the maximum frequency of read cycles of $1 / t c y c ; f=0$ means no input lines are changing.
3. For $/ / O s \mathrm{VHD}=\mathrm{V} D \mathrm{DQ}-0.2 \mathrm{~V}, \mathrm{~V} L D=0.2 \mathrm{~V}$. For other inputs $\mathrm{V} H \mathrm{D}=\mathrm{V} D \mathrm{D}-0.2 \mathrm{~V}, \mathrm{~V} L D=0.2 \mathrm{~V}$.

AC Test Load

AC Test Conditions

Input Pulse Levels	0 to 2.5V
Input Rise/Fall Times	2 ns
Input Timing Reference Levels	$(\mathrm{VDDQ/2)}$
Output Reference Levels	$(\mathrm{VDDQ/2)}$
Output Load	Figure 1

5003 tbl 23

Figure 2. Lumped Capacitive Load, Typical Derating

AC Electrical Characteristics

(Vdd $=2.5 \mathrm{~V} \pm 5 \%, \mathrm{TA}^{2}=0$ to $70^{\circ} \mathrm{C}$)

Symbol	Parameter	7.5ns		8ns		8.5ns		Unit
		Min.	Max.	Min.	Max.	Min.	Max.	
tcyc	Clock Cycle Time	10	-	10.5	-	11	-	ns
tch ${ }^{(1)}$	Clock High Pulse Width	2.5	-	2.7	-	3.0	-	ns
tcL ${ }^{(1)}$	Clock Low Pulse Width	2.5	-	2.7	-	3.0	-	ns

Output Parameters

tCD	Clock High to Valid Data	-	7.5	-	8	-	8.5	ns
tcoc	Clock High to Data Change	2	-	2	-	2	-	ns
tcti ${ }^{(2,3,4)}$	Clock High to Output Active	3	-	3	-	3	-	ns
tchz ${ }^{(2,3,4)}$	Clock High to Data High-Z	-	5	-	5	-	5	ns
toe	Output Enable Access Time	-	5	-	5	-	5	ns
totz ${ }^{(2,3)}$	Output Enable Low to Data Active	0	-	0	-	0	-	ns
tohz ${ }^{(2,3)}$	Output Enable High to Data High-Z	-	5	-	5	-	5	ns

Set Up Times

tsE	Clock Enable Setup Time	2.0	-	2.0	-	2.0	-	ns
tsA	Address Setup Time	2.0	-	2.0	-	2.0	-	ns
tsD	Data In Setup Time	2.0	-	2.0	-	2.0	-	ns
tsw	Read/Write (R/ $\overline{\mathrm{W}}$) Setup Time	2.0	-	2.0	-	2.0	-	ns
tsADV	Advance/Load (ADV/ $\overline{\mathrm{LD}) ~ S e t u p ~ T i m e ~}$	2.0	-	2.0	-	2.0	-	ns
tsC	Chip Enable/Select Setup Time	2.0	-	2.0	-	2.0	-	ns
tsB	Byte Write Enable $(\overline{\mathrm{BW}} \mathrm{x})$ Setup Time	2.0	-	2.0	-	2.0	-	ns

Hold Times

the	Clock Enable Hold Time	0.5	-	0.5	-	0.5	-	ns
tha	Address Hold Time	0.5	-	0.5	-	0.5	-	ns
thD	Data In Hold Time	0.5	-	0.5	-	0.5	-	ns
thw	Read/Write (R/ $\overline{\mathrm{W}})$ Hold Time	0.5	-	0.5	-	0.5	-	ns
thadV	Advance/Load (ADV/ $\overline{\text { LD }})$ Hold Time	0.5	-	0.5	-	0.5	-	ns
thC	Chip Enable/Select Hold Time	0.5	-	0.5	-	0.5	-	ns
tHB	Byte Write Enable $(\overline{\mathrm{BW}} \mathrm{x})$ Hold Time	0.5	-	0.5	-	0.5	-	ns

NOTES:

1. Measured as HIGH above 0.6 VDDQ and LOW below 0.4 VDDQ .
2. Transition is measured $\pm 200 \mathrm{mV}$ from steady-state.
3. These parameters are guaranteed with the AC load (Figure 1) by device characterization. They are not production tested.
4. To avoid bus contention, the output buffers are designed such that tchz (device turn-off) is about 1 ns faster than tcLZ (device turn-on) at a given temperature and voltage. The specs as shown do not imply bus contention because tclz is a Min. parameter that is worse case at totally different test conditions (0 deg. $\mathrm{C}, 2.625 \mathrm{~V}$) than tchz, which is a Max. parameter (worse case at 70 deg. C, 2.375 V).

Timing Waveform of Read Cycle ${ }^{(1,2,3,4)}$

[^0]Timing Waveform of Write Cycles ${ }^{(1,2,3,4,5)}$

[^1]Timing Waveform of Combined Read and Write Cycles ${ }^{(1,2,3)}$

Timing Waveform of CEN Operation ${ }^{(1,2,3,4)}$

Timing Waveform of $\overline{\mathbf{C S}}$ Operation ${ }^{(1,2,3,4)}$

119-Lead Ball Grid Array (BGA) Package Diagram Outline

Timing Waveform of $\overline{\text { OE Operation }}{ }^{(1)}$

NOTE:

1. A read operation is assumed to be in progress.

Ordering Information

$\left.\begin{array}{l}\text { PF } \\ \text { BG }\end{array}\right\}$ 100-lead Plastic Thin Quad Flatpack (TQFP)
75
$\left.\begin{array}{l}80 \\ 85\end{array}\right\}$ Access time (tCD) in tenths of nanoseconds

IDT71T657 256Kx36 Flow-Through ZBT SRAM IDT71T659 512Kx18 Flow-Through ZBT SRAM

Datasheet Document History

Updated to new format
8/23/99
Pp. 5, 6 Added pin 64 to Note 1 and changed pins 38, 42, and 43 to DNU Pg. 7 Changed U6 to DNU
Pg. 15 Improved tCH, tCL; revised tCLZ
Pg. 23 Added Datasheet Document History

[^0]: NOTES: of the base address A_{2}, etc. where address bits A_{0} and A_{1} are advancing for the four word burst in the sequence defined by the state of the $\overline{\mathrm{LBO}}$ input. 2. CE_{2} timing transitions are identical but inverted to the $\overline{\mathrm{CE}}_{1}$ and $\overline{\mathrm{CE}}_{2}$ signals. For example, when $\overline{\mathrm{CE}}_{1}$ and $\overline{\mathrm{CE}}_{2}$ are LOW on this waveform, CE_{2} is HIGH^{2}. 3. Burst ends when new address and control are loaded into the SRAM by sampling ADV/ $\overline{\mathrm{LD}} \mathrm{LOW}$.
 4. R/W is don't care when the SRAM is bursting (ADV/LD sampled HIGH). The nature of the burst access (Read or Write) is fixed by the state of the R / \bar{W} signal when new address and control
 are loaded into the SRAM.

[^1]: 1. $D\left(A_{1}\right)$ represents the first input to the external address A_{1}. $D\left(A_{2}\right)$ represents the first input to the external address $A_{2} ; D\left(A_{2}+1\right)$ represents the next input data in the burst sequence of the base address A_{2}, etc. where address bits A_{0} and A_{1} are advancing for the four word burst in the sequence defined by the state of the $\overline{\mathrm{LBO}}$ input. 3. Burst ends when new address and control are loaded into the SRAM by sampling ADV/LD LOW.
 2. R / \bar{W} is don't care when the SRAM is bursting (ADV//̄D sampled HIGH). The nature of the burstaccess (Read or Write) is fixed by the state of the R / \bar{W} signal when new address and control are

 3. Individual Byte Write signals ($\overline{\mathrm{BW}} \mathrm{x}$) must be valid on all write and burst-write cycles. A write cycle is initiated when $\mathrm{R} / \overline{\mathrm{W}}$ signal is sampled LOW. The byte write information comes in one
 cycle before the actual data is presented to the SRAM.
