1.0 Features

- Three on-chip PLLs with programmable Reference and Feedback Dividers
- Four independently programmable muxes and post dividers
- $I^{2} C^{\text {T"N }}$-bus serial interface
- Programmable power-down of all PLLs and output clock drivers
- One PLL and two mux/post-divider combinations can be modified by SEL_CD input
- Tristate outputs for board testing
- 5 V to 3.3 V operation
- Accepts 5 MHz to 27 MHz crystal resonators
- Commercial (FS6377-01) and industrial (FS6377-01i) temperature ranges

2.0 Description

The FS6377 is a CMOS clock generator IC designed to minimize cost and component count in a variety of electronic systems. Three $1^{2} \mathrm{C}$-programmable phase-locked loops feeding four programmable muxes and post dividers provide a high degree of flexibility.

Figure 1: Pin Configuration

16-pin (0.150 ") SOIC

Figure 2: Block Diagram

Table 1: Pin Descriptions

Key: AI = Analog Input; AO = Analog Output; DI = Digital Input; $\mathrm{DI}^{U}=\operatorname{Input}$ with Internal Pull-Up; DI $=$ Input with Internal Pull-Down; DIO $=$ Digital Input/Output; DI-3 $=$ Three-Level Digital Input, DO = Digital Output; P = Power/Ground; \# = Active Low pin

PIN	TYPE	NAME	
1	$\mathrm{DIO}^{\mathrm{O}}$	SDA	Serial Interface Data Input/Output
2	DI^{U}	SEL_CD	Selects one of two PLL C, Mux C/D, and Post Divider C/D combinations
3	DI^{U}	PD	Power-Down Input
4	P	VSS	Ground
5	AI	XIN	Crystal Oscillator Input
6	AO	XOUT	Crystal Oscillator Output
7	DI^{U}	OE	Output Enable Input
8	P	VDD	Power Supply (5V to 3.3V)
9	DI^{U}	ADDR	Address Select
10	DO	CLK_D	D Clock Output
11	P	VSS	Ground
12	DO	CLK_C	C Clock Output
13	DO	CLK_B	B Clock Output
14	P	VDD	Power Supply (5V to 3.3V)
15	DO	CLK_A	A Clock Output
16	DI	SCL	Serial Interface Clock Input

3.0 Functional Block Description

3.1 Phase Locked Loops

Each of the three on-chip phase-locked loops (PLLs) is a standard phase- and frequency-locked loop architecture that multiplies a reference frequency to a desired frequency by a ratio of integers. This frequency multiplication is exact.
As shown in Figure 3 each PLL consists of a Reference Divider, a Phase-Frequency Detector (PFD), a charge pump, an internal loop filter, a Voltage-Controlled Oscillator (VCO), and a Feedback Divider.
During operation, the reference frequency ($f_{\text {REF }}$), generated by the on-board crystal oscillator, is first reduced by the Reference Divider. The divider value is called the "modulus," and is denoted as N_{R} for the Reference Divider. The divided reference is then fed into the PFD.
The PFD controls the frequency of the VCO (fyco) through the charge pump and loop filter. The VCO provides a high-speed, low noise, continuously variable frequency clock source for the PLL. The output of the VCO is fed back to the PFD through the Feedback Divider (the modulus is denoted by N_{F}) to close the loop.

Figure 3: PLL Diagram

The PFD will drive the VCO up or down in frequency until the divided reference frequency and the divided VCO frequency appearing at the inputs of the PFD are equal. The input/output relationship between the reference frequency and the VCO frequency is

$$
f_{V C O}=f_{R E F}\left(\frac{N_{F}}{N_{R}}\right)
$$

AMI SEMICONDUCTOR

FS6377-01
 Programmable 3-PLL Clock Generator IC

3.1.1 Reference Divider

The Reference Divider is designed for low phase jitter. The divider accepts the output of the reference oscillator and provides a divided-down frequency to the PFD. The Reference Divider is an 8-bit divider, and can be programmed for any modulus from 1 to 255 by programming the equivalent binary value. A divide-by- 256 can also be achieved by programming the eight bits to 00h.

3.1.2 Feedback Divider

The Feedback Divider is based on a dual-modulus prescaler technique. The technique allows the same granularity as a fully programmable feedback divider, while still allowing the programmable portion to operate at low speed. A high-speed pre-divider (also called a prescaler) is placed between the VCO and the programmable Feedback Divider because of the high speeds at which the VCO can operate. The dual-modulus technique insures reliable operation at any speed that the VCO can achieve and reduces the overall power consumption of the divider.
For example, a fixed divide-by-eight could be used in the Feedback Divider. Unfortunately, a divide-by-eight would limit the effective modulus of the entire feedback divider to multiples of eight. This limitation would restrict the ability of the PLL to achieve a desired input-frequency-to-output-frequency ratio without making both the Reference and Feedback Divider values comparatively large.
A large feedback modulus means that the divided VCO frequency is relatively low, requiring a wide loop bandwidth to permit the low frequencies. A narrow loop bandwidth tuned to high frequencies is essential to minimizing jitter; therefore, divider moduli should always be as small as possible.

Figure 4: Feedback Divider

To understand the operation, refer to Figure 4. The Mcounter (with a modulus always equal to M) is cascaded with the dual-modulus prescaler. The A-counter controls the modulus of the prescaler. If the value programmed into the A-counter is A, the prescaler will be set to divide by $\mathrm{N}+1$ for A prescaler outputs. Thereafter, the prescaler divides by N until the M -counter output resets the A counter, and the cycle begins again. Note that $\mathrm{N}=8$, and A and M are binary numbers.
Suppose that the A-counter is programmed to zero. The modulus of the prescaler will always be fixed at N; and the entire modulus of the feedback divider becomes $\mathrm{M} \times \mathrm{N}$.
Next, suppose that the A-counter is programmed to a one. This causes the prescaler to switch to a divide-by$\mathrm{N}+1$ for its first divide cycle and then revert to a divide-byN. In effect, the A-counter absorbs (or "swallows") one extra clock during the entire cycle of the Feedback Divider. The overall modulus is now seen to be equal to $\mathrm{M} \times \mathrm{N}+1$.
This example can be extended to show that the Feedback Divider Modulus is equal to $M \times N+A$, where $A \leq M$.

3.1.3 Feedback Divider Programming

For proper operation of the Feedback Divider, the Acounter must be programmed only for values that are less than or equal to the M-counter. Therefore, not all divider moduli below 56 are available for use. The selection of divider values is listed in Table 2.
Above a modulus of 56, the Feedback Divider can be programmed to any value up to 2047.

Table 2: Feedback Divider Modulus Under 56

M-COUNTER: FBKDIV[10:3]	A-COUNTER: FBKDIV[2:0]							
	000	001	010	011	100	101	110	111
00000001	8	9	-	-	-	-	-	-
00000010	16	17	18	-	-	-	-	-
00000011	24	25	26	27	-	-	-	-
00000100	32	33	34	35	36	-	-	-
00000101	40	41	42	43	44	45	-	-
00000110	48	49	50	51	52	53	54	-
00000111	56	57	58	59	60	61	62	63
	FEEDBACK DIVIDER MODULUS							

3.2 Post Divider Muxes

As shown in Figure 2 an input mux in front of each Post Divider stage can select from any one of the PLL frequencies or the reference frequency. The frequency selection is done via the $I^{2} \mathrm{C}$-bus.
The input frequency on two of the four muxes (Mux C and D in Figure 2) can be changed without reprogramming by a logic-level input on the SEL_CD pin.

3.3 Post Dividers

The Post Divider performs several useful functions. First, it allows the VCO to be operated in a narrower range of speeds compared to the variety of output clock speeds that the device is required to generate. Second, it changes the basic PLL equation to

$$
f_{\text {CLK }}=f_{R E F}\left(\frac{N_{F}}{N_{R}}\right)\left(\frac{1}{N_{P}}\right)
$$

where N_{F}, N_{R}, and N_{P} are the Feedback, Reference, and Post Divider moduli respectively, and $f_{\text {CLK }}$ and $f_{\text {REF }}$ are the output and reference oscillator frequencies. The extra integer in the denominator permits more flexibility in the programming of the loop for many applications where frequencies must be achieved exactly.
The modulus on two of the four Post Dividers muxes (Post Dividers C and D in Figure 2) can be altered without reprogramming by a logic level on the SEL_CD pin.

4.0 Device Operation

The FS6377 powers up with all internal registers cleared to zero, delivering the crystal frequency to all outputs. For operation to occur, the registers must be loaded in a most-significant-bit (MSB) to least-significant-bit (LSB) order. The register mapping of the FS6377 is shown in Table 3, and I^{2} C-bus programming information is detailed in Section 5.0 .
Control of the Reference, Feedback, and Post Dividers is detailed in Table 6. Selection of these dividers directly controls how fast the VCO will run. The maximum VCO speed is noted in Table 15.

4.1 SEL_CD Input

The SEL_CD pin provides a way to alter the operation of PLL C, Muxes C and D, and Post Dividers C and D without having to reprogram the device. A logic-low on the SEL_CD pin selects the control bits with a "C1" or "D1" notation, per Table 3. A logic-high on the SEL_CD pin selects the control bits with "C2" or "D2" notation, per Table 3.
Note that changing between two running frequencies using the SEL_CD pin may produce glitches in the output, especially if the post-divider(s) is/are altered.

4.2 Power-Down and Output Enable

A logic-high on the PD pin powers down only those portions of the FS6377 which have their respective powerdown control bits enabled. Note that the PD pin has an internal pull-up.
When a Post Divider is powered down, the associated output driver is forced low. When all PLLs and Post Dividers are powered down the crystal oscillator is also powered down. The XIN pin is forced low, and the XOUT pin is pulled high.
A logic-low on the OE pin tristates all output clocks. Note that this pin has an internal pull-up.

4.3 Oscillator Overdrive

For applications where an external reference clock is provided (and the crystal oscillator is not required), the reference clock should be connected to XOUT and XIN should be left unconnected (float).
For best results, make sure the reference clock signal is as jitter-free as possible, can drive a 40 pF load with fast rise and fall times, and can swing rail-to-rail.
If the reference clock is not a rail-to-rail signal, the reference must be AC coupled to XOUT through a $0.01 \mu \mathrm{~F}$ or $0.1 \mu \mathrm{~F}$ capacitor. A minimum 1V peak-to-peak signal is required to drive the internal differential oscillator buffer.

AMI SEMICONDUCTOR
s

$5.0 \quad I^{2} \mathrm{C}$-bus Control Interface

This device is a read/write slave device meeting all Philips $I^{2} \mathrm{C}$-bus specifications except a "general call." The bus has to be controlled by a master device that generates the serial clock SCL, controls bus access, and generates the START and STOP conditions while the device works as a slave. Both master and slave can operate as a transmitter or receiver, but the master device determines which mode is activated. A device that sends data onto the bus is defined as the transmitter, and a device receiving data as the receiver.
$I^{2} \mathrm{C}$-bus logic levels noted herein are based on a percentage of the power supply $\left(\mathrm{V}_{\mathrm{DD}}\right)$. A logic-one corresponds to a nominal voltage of V_{DD}, while a logic-zero corresponds to ground (V_{SS}).

5.1 Bus Conditions

Data transfer on the bus can only be initiated when the bus is not busy. During the data transfer, the data line (SDA) must remain stable whenever the clock line (SCL) is high. Changes in the data line while the clock line is high will be interpreted by the device as a START or STOP condition. The following bus conditions are defined by the $\mathrm{I}^{2} \mathrm{C}$-bus protocol.

5.1.1 Not Busy

Both the data (SDA) and clock (SCL) lines remain high to indicate the bus is not busy.

5.1.2 START Data Transfer

A high to low transition of the SDA line while the SCL input is high indicates a START condition. All commands to the device must be preceded by a START condition.

5.1.3 STOP Data Transfer

A low to high transition of the SDA line while SCL is held high indicates a STOP condition. All commands to the device must be followed by a STOP condition.

5.1.4 Data Valid

The state of the SDA line represents valid data if the SDA line is stable for the duration of the high period of the SCL line after a START condition occurs. The data on the SDA line must be changed only during the low period of the SCL signal. There is one clock pulse per data bit.

Each data transfer is initiated by a START condition and terminated with a STOP condition. The number of data bytes transferred between START and STOP conditions is determined by the master device, and can continue indefinitely. However, data that is overwritten to the device after the first sixteen bytes will overflow into the first register, then the second, and so on, in a first-in, firstoverwritten fashion.

5.1.5 Acknowledge

When addressed, the receiving device is required to generate an Acknowledge after each byte is received. The master device must generate an extra clock pulse to coincide with the Acknowledge bit. The acknowledging device must pull the SDA line low during the high period of the master acknowledge clock pulse. Setup and hold times must be taken into account.
The master must signal an end of data to the slave by not generating and acknowledge bit on the last byte that has been read (clocked) out of the slave. In this case, the slave must leave the SDA line high to enable the master to generate a STOP condition.

$5.2 \quad I^{2} C$-bus Operation

All programmable registers can be accessed randomly or sequentially via this bi-directional two wire digital interface. The device accepts the following $I^{2} \mathrm{C}$-bus commands.

5.2.1 Slave Address

After generating a START condition, the bus master broadcasts a seven-bit slave address followed by a R/W bit.
The address of the device is:

A6	A5	A4	A3	A2	A1	A0
1	0	1	1	X	0	0

where X is controlled by the logic level at the ADDR pin.
The variable ADDR bit allows two different devices to exist on the same bus. Note that every device on an $I^{2} C$ bus must have a unique address to avoid bus conflicts. The default address sets $A 2$ to one via the pull-up on the ADDR pin.

5.2.2 Random Register Write Procedure

Random write operations allow the master to directly write to any register. To initiate a write procedure, the R/W bit that is transmitted after the seven-bit device address is a logic-low. This indicates to the addressed slave device that a register address will follow after the slave device acknowledges its device address. The register address is written into the slave's address pointer. Following an acknowledge by the slave, the master is allowed to write eight bits of data into the addressed register. A final acknowledge is returned by the device, and the master generates a STOP condition.
If either a STOP or a repeated START condition occurs during a Register Write, the data that has been transferred is ignored.

5.2.3 Random Register Read Procedure

Random read operations allow the master to directly read from any register. To perform a read procedure, the R/W bit that is transmitted after the seven-bit address is a logic-low, as in the Register Write procedure. This indicates to the addressed slave device that a register address will follow after the slave device acknowledges its device address. The register address is then written into the slave's address pointer.
Following an acknowledge by the slave, the master generates a repeated START condition. The repeated START terminates the write procedure, but not until after the slave's address pointer is set. The slave address is then resent, with the R/W bit set this time to a logic-high, indicating to the slave that data will be read. The slave will acknowledge the device address, and then transmits the eight-bit word. The master does not acknowledge the transfer but does generate a STOP condition.

5.2.4 Sequential Register Write Procedure

Sequential write operations allow the master to write to each register in order. The register pointer is automatically incremented after each write. This procedure is more efficient than the Random Register Write if several registers must be written.

To initiate a write procedure, the R/W bit that is transmitted after the seven-bit device address is a logic-low. This indicates to the addressed slave device that a register address will follow after the slave device acknowledges its device address. The register address is written into the slave's address pointer. Following an acknowledge by the slave, the master is allowed to write up to sixteen bytes of data into the addressed register before the register address pointer overflows back to the beginning address. An acknowledge by the device between each byte of data must occur before the next data byte is sent.
Registers are updated every time the device sends an acknowledge to the host. The register update does not wait for the STOP condition to occur. Registers are therefore updated at different times during a Sequential Register Write.

5.2.5 Sequential Register Read Procedure

Sequential read operations allow the master to read from each register in order. The register pointer is automatically incremented by one after each read. This procedure is more efficient than the Random Register Read if several registers must be read.
To perform a read procedure, the R/W bit that is transmitted after the seven-bit address is a logic-low, as in the Register Write procedure. This indicates to the addressed slave device that a register address will follow after the slave device acknowledges its device address. The register address is then written into the slave's address pointer.
Following an acknowledge by the slave, the master generates a repeated START condition. The repeated START terminates the write procedure, but not until after the slave's address pointer is set. The slave address is then resent, with the R/W bit set this time to a logic-high, indicating to the slave that data will be read. The slave will acknowledge the device address, and then transmits all sixteen bytes of data starting with the initial addressed register. The register address pointer will overflow if the initial register address is larger than zero. After the last byte of data, the master does not acknowledge the transfer but does generate a STOP condition.

Figure 5: Random Register Write Procedure

Figure 6: Random Register Read Procedure

Figure 7: Sequential Register Write Procedure

Figure 8: Sequential Register Read Procedure

6.0 Programming Information

Table 3: Register Map (Note: All Register Bits are cleared to zero on power-up.)

ADDRESS	BIT 7	BIT 6	BIT 5	BIT 4	BIT 3	BIT 2	BIT 1	BIT 0
BYTE 15	$\begin{array}{r} \mathrm{Ml} \\ \text { (selected } \end{array}$	$: \mathrm{Ol}_{\mathrm{CD}}=1 \text {) }$	$\begin{gathered} \text { MUX_C2[1:0] } \\ \text { (selected via SEL_CD = 1) } \end{gathered}$		PDPOST_D	PDPOST_C	PDPOST_B	PDPOST_A
BYTE 14	$\begin{gathered} \text { POST_D2[3:0] } \\ \text { (selected via SEL_CD = 1) } \end{gathered}$				$\begin{gathered} \text { POST_C2[3:0] } \\ \text { (selected via SEL_CD = 1) } \end{gathered}$			
BYTE 13	$\begin{gathered} \text { POST_D1[3:0] } \\ \text { (selected via SEL_CD = 0) } \end{gathered}$				$\begin{gathered} \text { POST_C1[3:0] } \\ (\text { selected via SEL_CD }=0) \end{gathered}$			
BYTE 12	POST_B[3:0]				POST_A[3:0]			
BYTE 11	$\begin{array}{r} \mathrm{ML} \\ \text { (selected } \end{array}$	$: 0]$	Reserved (0)	$\begin{gathered} \text { LFTC_C2 } \\ \left(S E L _C D=1\right) \end{gathered}$	$\begin{gathered} \text { CP_C2 } \\ (\mathrm{SEL}-\mathrm{CD}=1) \end{gathered}$	FBKD (sele	$\begin{aligned} & \text { V_C2[10:8] } \quad M-C \\ & \text { ed via SEL_CD } \end{aligned}$	$\begin{aligned} & \text { ounter } \\ & n=1 \text {) } \end{aligned}$
BYTE 10	FBKDIV_C2[7:3] M-Counter (selected via SEL_CD pin = 1)					FBKDIV_C2[2:0] A-Counter (selected via SEL_CD pin = 1)		
BYTE 9	REFDIV_C2[7:0](selected via SEL_CD pin = 1)							
BYTE 8	$\begin{array}{r} \mathrm{ML} \\ \text { (selected } \end{array}$	$\begin{aligned} & : 0] \\ & C_{0} \\ & \hline \end{aligned}$	PDPLL_C	$\begin{gathered} \text { LFTC_C1 } \\ (\mathrm{SEL} C \mathrm{CD}=0) \end{gathered}$	$\begin{gathered} C P-C 1 \\ \left(S E L _C D=0\right) \end{gathered}$	$\begin{aligned} & \text { FBKL } \\ & \text { (sel } \end{aligned}$	_C1[10:8] Mted via SEL_C	$\begin{aligned} & \text { ounter } \\ & =0 \text {) } \end{aligned}$
BYTE 7	FBKDIV_C1[7:3] M-Counter (selected via SEL_CD = 0)					FBKDIV_C1[2:0] A-Counter (selected via SEL_CD = 1)		
BYTE 6	$\begin{gathered} \text { REFDIV_C1[7:0] } \\ (\text { selected via SEL_CD }=0) \end{gathered}$							
BYTE 5			PDPLL_B	LFTC_B	CP_B	FBKD	_B[10:8] M-Cour	unter
BYTE 4	FBKDIV_B[7:3] M-Counter					FBKDIV_B[2:0] A-Counter		
BYTE 3	REFDIV_B[7:0]							
BYTE 2			PDPLL_A	LFTC_A	CP_A	FBKD	_A[10:8] M-Cour	unter
BYTE 1	FBKDIV_A[7:3] M-Counter					FBKDIV_A[2:0] A-Counter		
BYTE 0	REFDIV_A[7:0]							

6.1 Control Bit Assignment

If any PLL control bit is altered during device operation, including those bits controlling the Reference and Feedback Dividers, the output frequency will slew smoothly (in a glitch-free manner) to the new frequency. The slew rate is related to the programmed loop filter time constant.
However, any programming changes to any Mux or Post Divider control bits will cause a glitch on an operating clock output.

6.1.1 Power Down

All power-down functions are controlled by enable bits. The bits select which portions of the device to powerdown when the PD input is asserted.

Table 4: Power-Down Bits

NAME	DESCRIPTION	
$\begin{gathered} \text { PDPLL_A } \\ \text { (Bit 21) } \end{gathered}$	Power-Down PLL A	
	Bit $=0$	Power On
	Bit $=1$	Power Off
$\underset{(\text { Bit 45) }}{\text { PDPLL_B }}$	Power-Down PLL B	
	Bit $=0$	Power On
	Bit $=1$	Power Off
$\underset{(\text { Bit 69) }}{\text { PDPLL_C }}$	Power-Down PLL C	
	Bit $=0$	Power On
	Bit $=1$	Power Off
Reserved (0) (Bit 69)	Set these reserved bits to zero (0)	

AMI SEMICONDUCTOR

Table 5: Power-Down Bits, continued

NAME	DESCRIPTION	
PDPOSTA (Bit 120)	Power-Down POST divider A	
	Bit $=0$	Power On
	Bit $=1$	Power Off
PDPOSTB (Bit 121)	Power-Down POST divider B	
	Bit $=0$	Power On
	Bit $=1$	Power Off
PDPOSTC (Bit 122)	Power-Down POST divider C	
	Bit $=0$	Power On
	Bit $=1$	Power Off
PDPOSTD (Bit 123)	Power-Down POST divider D	
	Bit $=0$	Power On
	Bit $=1$	Power Off

Table 6: Divider Control Bits

NAME	DESCRIPTION	
REFDIV_A[7:0] (Bits $7-0$)	REFerence DIVider A (N_{R})	
REFDIV_B[7:0] (Bits 31-24)	REFerence DIVider B (N_{R})	
REFDIV_C1[7:0] (Bits 55-48)	REFerence DIVider C1 (\mathbf{N}_{R}) selected when the SEL_CD pin =0	
REFDIV_C2[7:0] (Bits 79-72)	REFerence DIVider C2 (\mathbf{N}_{R}) selected when the SEL_CD pin = 1	
FBKDIV_A[10:0] (Bits 18-8)	FeedBacK DIVider A (N_{F})	
	FBKDIV_A[2:0]	A-Counter Value
	FBKDIV_A[10:3]	M-Counter Value
$\begin{aligned} & \text { FBKDIV_B[10:0] } \\ & \text { (Bits } 42-32 \text {) } \end{aligned}$	FeedBacK DIVider B (\mathbf{N}_{F})	
	FBKDIV_B[2:0]	A-Counter Value
	FBKDIV_B[10:3]	M-Counter Value
FBKDIV_C1[10:0] (Bits 66-56)	FeedBacK DIVider C1 (\mathbf{N}_{F}) selected when the SEL_CD pin $=0$	
	FBKDIV_C1[2:0]	A-Counter Value
	FBKDIV_C1[10:3]	M-Counter Value
FBKDIV_C2[10:0] (Bits 90-80)	FeedBacK DIVider C2 $\mathbf{(N F}_{\mathrm{F}}$) selected when the SEL_CD pin = 1	
	FBKDIV_C2[2:0]	A-Counter Value
	FBKDIV_C2[10:3]	M-Counter Value

Table 7: Divider Control Bits

NAME	DESCRIPTION
POST_A[3:0] (Bits 99-96)	POST divider A (see Table 88
$\begin{aligned} & \text { POST_B[3:0] } \\ & \text { (Bits } 103-100 \text {) } \end{aligned}$	POST divider B (see Table 88
POST_C1[3:0] (Bits 107-104)	POST divider C1 (see Table 8) selected when the SEL_CD pin $=0$
POST_C2[3:0] $\text { (Bits } \overline{115-112)}$	$\begin{aligned} & \text { POST divider C2 (see Table 88 } \\ & \text { selected when the SEL_CD pin = } \end{aligned}$
POST_D1[3:0] (Bits 111-108)	POST divider D1 (see Table 8) selected when the SEL_CD pin =0
$\begin{aligned} & \text { POST_D2[3:0] } \\ & \text { (Bits 119-116) } \end{aligned}$	$\begin{aligned} & \text { POST divider D2 (see Table 88 } \\ & \text { selected when the SEL_CD pin = } \end{aligned}$

Table 8: Post Divider Modulus

BIT [3]	BIT [2]	BIT [1]	BIT [0]	DIVIDE BY
0	0	0	0	1
0	0	0	1	2
0	0	1	0	3
0	0	1	1	4
0	1	0	0	5
0	1	0	1	6
0	1	1	0	8
0	1	1	1	9
1	0	0	0	10
1	0	0	1	12
1	0	1	0	15
1	0	1	1	16
1	1	0	0	18
1	1	0	1	20
1	1	1	0	25
1	1	1	1	50

Table 9: PLL Tuning Bits

NAME	DESCRIPTION	
LFTC_A (Bit 20)	Loop Filter Time Constant A	
	Bit $=0$	Short Time Constant: $7 \mu \mathrm{~s}$
	Bit $=1$	Long Time Constant: $20 \mu \mathrm{~s}$
LFTC_B (Bit 44)	Loop Filter Time Constant B	
	Bit $=0$	Short Time Constant: $7 \mu \mathrm{~s}$
	Bit $=1$	Long Time Constant: $20 \mu \mathrm{~s}$
$\begin{gathered} \text { LFTC_C1 } \\ \text { (Bit 68) } \end{gathered}$	Loop Filter Time Constant C1 selected when the SEL_CD pin $=0$	
	Bit $=0$	Short Time Constant: $7 \mu \mathrm{~s}$
	Bit $=1$	Long Time Constant: $20 \mu \mathrm{~s}$
$\begin{gathered} \text { LFTC_C2 } \\ \text { (Bit } 92 \text {) } \end{gathered}$	Loop Filter Time Constant C2 selected when the SEL_CD pin = 1	
	Bit $=0$	Short Time Constant: $7 \mu \mathrm{~s}$
	Bit = 1	Long Time Constant: $20 \mu \mathrm{~s}$
CP_A (Bit 19)	Charge Pump A	
	Bit $=0$	Current $=2 \mu \mathrm{~A}$
	Bit = 1	Current $=10 \mu \mathrm{~A}$
$\begin{aligned} & \text { CP_B } \\ & \text { (Bit 43) } \end{aligned}$	Charge Pump B	
	Bit $=0$	Current $=2 \mu \mathrm{~A}$
	Bit = 1	Current $=10 \mu \mathrm{~A}$
$\begin{aligned} & \text { CP_C1 } \\ & \text { (Bit 67) } \end{aligned}$	Charge Pump C1 selected when the SEL_CD pin $=0$	
	Bit $=0$	Current $=2 \mu \mathrm{~A}$
	Bit = 1	Current $=10 \mu \mathrm{~A}$
$\begin{aligned} & \text { CP_C2 } \\ & \text { (Bit } 91 \text {) } \end{aligned}$	Charge Pump C2 selected when the SEL_CD pin = 1	
	Bit $=0$	Current $=2 \mu \mathrm{~A}$
	Bit $=1$	Current $=10 \mu \mathrm{~A}$

Table 10: Mux Select Bits

NAME	DESCRIPTION		
MUX_A[1:0] (Bits 23-22)	MUX A frequency select		
	Bit 23	Bit 22	
	0	0	Reference Frequency
	0	1	PLL A Frequency
	1	0	PLL B Frequency
	1	1	PLL C Frequency
$\begin{aligned} & \text { MUX_B[1:0] } \\ & \text { (Bits 47-46) } \end{aligned}$	MUX B frequency select		
	Bit 47	Bit 46	
	0	0	Reference Frequency
	0	1	PLL A Frequency
	1	0	PLL B Frequency
	1	1	PLL C Frequency
MUX_C1[1:0] (Bits 71-70)	MUX C1 frequency select selected when the SEL_CD pin $=0$ Bit 71 Bit 70		
	0	0	Reference Frequency
	0	1	PLL A Frequency
	1	0	PLL B Frequency
	1	1	PLL C Frequency
MUX_C2[1:0] (Bits 125-124)	MUX C2 frequency select selected when the SEL_CD pin = 1 Bit 125 Bit 124		
	0	0	Reference Frequency
	0	1	PLL A Frequency
	1	0	PLL B Frequency
	1	1	PLL C Frequency
$\begin{aligned} & \text { MUX_D1[1:0] } \\ & \text { (Bits 95-94) } \end{aligned}$	MUX D1 frequency select selected when the SEL_CD pin = 0		
	Bit 95	Bit 94	
	0	0	Reference Frequency
	0	1	PLL A Frequency
	1	0	PLL B Frequency
	1	1	PLL C Frequency
$\underset{\text { (Bits } 127-126 \text {) }}{\text { MUX_D2[1:0] }}$	MUX D2 frequency select selected when the SEL_CD pin = 1 Bit 127 Bit 126		
	0	0	Reference Frequency
	0	1	PLL A Frequency
	1	0	PLL B Frequency
	1	1	PLL C Frequency

7.0 Electrical Specifications

Table 11: Absolute Maximum Ratings

 functionality, and reliability.

PARAMETER	SYMBOL	MIN.	MAX.	UNITS
Supply Voltage, dc ($\mathrm{V}_{\mathrm{SS}}=$ ground $)$	V_{DD}	$\mathrm{V}_{\mathrm{SS}-}-0.5$	7	V
Input Voltage, dc	V_{I}	$\mathrm{V}_{\mathrm{SS}}-0.5$	$\mathrm{~V}_{\mathrm{DD}}+0.5$	V
Output Voltage, dc	V_{O}	$\mathrm{V}_{\mathrm{SS}}-0.5$	$\mathrm{~V}_{\mathrm{DD}}+0.5$	V
Input Clamp Current, dc $\left(\mathrm{V}_{1}<0\right.$ or $\left.\mathrm{V}_{\mathrm{I}}>\mathrm{V}_{\mathrm{DD}}\right)$	I_{K}	-50	50	mA
Output Clamp Current, dc $\left(\mathrm{V}_{1}<0\right.$ or $\left.\mathrm{V}_{1}>\mathrm{V}_{\mathrm{DD}}\right)$	I_{OK}	-50	50	mA
Storage Temperature Range (non-condensing)	T_{S}	-65	150	${ }^{\circ} \mathrm{C}$
Ambient Temperature Range, Under Bias	T_{A}	-55	125	${ }^{\circ} \mathrm{C}$
Junction Temperature	T_{J}		150	${ }^{\circ} \mathrm{C}$
Lead Temperature (soldering, 10s)			260	${ }^{\circ} \mathrm{C}$
Input Static Discharge Voltage Protection (MIL-STD 883E, Method 3015.7)			2	kV

CAUTION: ELECTROSTATIC SENSITIVE DEVICE

Permanent damage resulting in a loss of functionality or performance may occur if this device is subjected to a high-energy electrostatic discharge.

Table 12: Operating Conditions

PARAMETER	SYMBOL	CONDITIONS/DESCRIPTION	MIN.	TYP.	MAX.	UNITS
Supply Voltage	$V_{D D}$	$5 \mathrm{~V} \pm 10 \%$	4.5	5	5.5	V
		$3.3 \mathrm{~V} \pm 10 \%$	3	3.3	3.6	
Ambient Operating Temperature Range	T_{A}	Commercial	0		70	${ }^{\circ} \mathrm{C}$
		Industrial	-40		85	
Crystal Resonator Frequency	fxin		5		27	MHz
Crystal Resonator Load Capacitance	C_{xL}	Parallel resonant, AT cut		18		pF
Serial Data Transfer Rate		Standard mode	10		100	kb/s
Output Driver Load Capacitance	C_{L}				15	pF

Table 13: DC Electrical Specifications

Unless otherwise stated, $V_{D D}=5.0 \mathrm{~V} \pm 10 \%$, no load on any output, and ambient temperature range $T_{A}=0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$. Parameters denoted with an asterisk (*) represent nominal characterization data and are not currently production tested to any specific limits. MIN and MAX characterization data are $\pm 3 \sigma$ from typical. Negative currents indicate current flows out of the device.

PARAMETER	SYMBOL	CONDITIONS/DESCRIPTION	MIN.	TYP.	MAX.	UNITS
Overall						
Supply Current, Dynamic, with Loaded Outputs	IDD	$\mathrm{V}_{\mathrm{DD}}=5.5 \mathrm{~V}, \mathrm{f}_{\mathrm{CL}}=50 \mathrm{MHz}, \mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}$ See Figure 19 for more information		43		mA
Supply Current, Static	$\mathrm{I}_{\text {DLL }}$	$\mathrm{V}_{\mathrm{DD}}=5.5 \mathrm{~V}$, device powered down		0.3		mA
Power-Down, Output Enable Pins (PD, OE)						
High-Level Input Voltage	V_{HH}	$\mathrm{V}_{\mathrm{DD}}=5.5 \mathrm{~V}$	3.85		$\mathrm{V}_{\mathrm{DD}}+0.3$	V
		$\mathrm{V}_{\mathrm{DD}}=3.6 \mathrm{~V}$	2.52		$\mathrm{V}_{\mathrm{DD}}+0.3$	
Low-Level Input Voltage	VIL	$\mathrm{V}_{\mathrm{DD}}=5.5 \mathrm{~V}$	$\mathrm{V}_{\mathrm{ss}}-0.3$		1.65	V
		$\mathrm{V}_{\mathrm{DD}}=3.6 \mathrm{~V}$	$\mathrm{V}_{\mathrm{ss}}-0.3$		1.08	
Hysteresis Voltage	$\mathrm{V}_{\text {hys }}$	$\mathrm{V}_{\mathrm{DD}}=5.5 \mathrm{~V}$		2.20		V
		$\mathrm{V}_{\mathrm{DD}}=3.6 \mathrm{~V}$		1.44		
High-Level Input Current	I_{H}		-1		1	$\mu \mathrm{A}$
Low-Level Input Current (pull-up)	$1 / L$	$\mathrm{V}_{\mathrm{IL}}=0 \mathrm{~V}$	-20	-36	-80	$\mu \mathrm{A}$
Serial Interface I/O (SCL, SDA)						
High-Level Input Voltage	V_{IH}	$\mathrm{V}_{\mathrm{DD}}=5.5 \mathrm{~V}$	3.85		$\mathrm{V}_{\mathrm{DD}}+0.3$	V
		$\mathrm{V}_{\mathrm{DD}}=3.6 \mathrm{~V}$	2.52		$V_{\text {DD }}+0.3$	
Low-Level Input Voltage	$\mathrm{V}_{\text {IL }}$	$\mathrm{V}_{\mathrm{DD}}=5.5 \mathrm{~V}$	$\mathrm{V}_{\mathrm{ss}}-0.3$		1.65	V
		$\mathrm{V}_{\mathrm{DD}}=3.6 \mathrm{~V}$	$\mathrm{V}_{\text {ss }}-0.3$		1.08	
Hysteresis Voltage	$\mathrm{V}_{\text {hys }}$	$\mathrm{V}_{\mathrm{DD}}=5.5 \mathrm{~V}$		2.20		V
		$\mathrm{V}_{\mathrm{DD}}=3.6 \mathrm{~V}$		1.44		
High-Level Input Current	I_{H}		-1		1	$\mu \mathrm{A}$
Low-Level Input Current (pull-up)	$1 / 2$	$\mathrm{V}_{\mathrm{IL}}=0 \mathrm{~V}$	-20	-36	-80	$\mu \mathrm{A}$
Low-Level Output Sink Current (SDA)	loL	$\mathrm{V}_{\mathrm{OL}}=0.4 \mathrm{~V}, \mathrm{~V}_{\mathrm{DD}}=5.5 \mathrm{~V}$		26		mA
Mode and Frequency Select Inputs (ADDR, SEL_CD)						
High-Level Input Voltage	V_{H}	$\mathrm{V}_{\mathrm{DD}}=5.5 \mathrm{~V}$	2.4		$\mathrm{V}_{\mathrm{DD}}+0.3$	V
		$\mathrm{V}_{\mathrm{DD}}=3.6 \mathrm{~V}$	2.0		$\mathrm{V}_{\mathrm{DD}}+0.3$	
Low-Level Input Voltage	VIL	$\mathrm{V}_{\mathrm{DD}}=5.5 \mathrm{~V}$	$\mathrm{V}_{\mathrm{ss}}-0.3$		0.8	V
		$\mathrm{V}_{\mathrm{DD}}=3.6 \mathrm{~V}$	$\mathrm{V}_{\mathrm{ss}}-0.3$		0.8	
High-Level Input Current	I_{H}		-1		1	$\mu \mathrm{A}$
Low-Level Input Current (pull-up)	$1 / L$		-20	-36	-80	$\mu \mathrm{A}$
Crystal Oscillator Feedback (XIN)						
Threshold Bias Voltage	$\mathrm{V}_{\text {TH }}$	$\mathrm{V}_{\mathrm{DD}}=5.5 \mathrm{~V}$		2.9		V
		$\mathrm{V}_{\mathrm{DD}}=3.6 \mathrm{~V}$		1.7		
High-Level Input Current	I_{H}	$\mathrm{V}_{\mathrm{DD}}=5.5 \mathrm{~V}$		54		$\mu \mathrm{A}$
		$\mathrm{V}_{\mathrm{DD}}=5.5 \mathrm{~V}$, oscillator powered down	5		15	mA
Low-Level Input Current	$1 / 1$	$\mathrm{V}_{\mathrm{DD}}=5.5 \mathrm{~V}$	-25	-54	-75	$\mu \mathrm{A}$
Crystal Loading Capacitance *	$\mathrm{C}_{\mathrm{L} \text { (xala) }}$	As seen by an external crystal connected to XIN and xout		18		pF
Input Loading Capacitance *	$\mathrm{C}_{\mathrm{L} \text { (XIN) }}$	As seen by an external clock driver on XOUT; XIN unconnected		36		pF

FS6377-01

AMI SEMICONDUCTOR

Table 14: DC Electrical Specifications, continued

 data and are not currently production tested to any specific limits. MIN and MAX characterization data are $\pm 3 \sigma$ from typical. Negative currents indicate current flows out of the device.

PARAMETER	SYMBOL	CONDITIONS/DESCRIPTION	MIN.	TYP.	MAX.	UNITS
Crystal Oscillator Drive (XOUT)						
High-Level Output Source Current	I_{OH}	$\mathrm{V}_{\mathrm{DD}}=\mathrm{V}(\mathrm{XIN})=5.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{O}}=0 \mathrm{~V}$	10	21	30	mA
Low-Level Output Sink Current	l L	$\mathrm{V}_{\mathrm{DD}}=5.5 \mathrm{~V}, \mathrm{~V}(\mathrm{XIN})=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{O}}=5.5 \mathrm{~V}$	-10	-21	-30	mA
Clock Outputs (CLK_A, CLK_B, CLK_C, CLK_D)						
High-Level Output Source Current	Іон	$\mathrm{V}_{\mathrm{O}}=2.4 \mathrm{~V}$		-125		mA
Low-Level Output Sink Current	1 l	$\mathrm{V}_{\mathrm{O}}=0.4 \mathrm{~V}$		23		mA
Output Impedance	Z_{OH}	$\mathrm{V}_{\mathrm{O}}=0.5 \mathrm{~V}_{\mathrm{DD}}$; output driving high		29		Ω
	Z OL	$\mathrm{V}_{\mathrm{O}}=0.5 \mathrm{~V}_{\mathrm{DD}}$; output driving low		27		
Tristate Output Current	Iz^{\prime}		-10		10	$\mu \mathrm{A}$
Short Circuit Source Current *	$\mathrm{I}_{\mathrm{SCH}}$	$\mathrm{V}_{\mathrm{DD}}=5.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{O}}=0 \mathrm{~V}$; shorted for 30s, max.		-150		mA
Short Circuit Sink Current *	$\mathrm{I}_{\text {SCL }}$	$\mathrm{V}_{\mathrm{DD}}=\mathrm{V}_{\mathrm{O}}=5.5 \mathrm{~V}$, shorted for 30s, max.		123		mA

Figure 9: CLK_A, CLK_B, CLK_C, CLK_D Clock Outputs

Voltage (V)	Low Drive Current (mA)			Voltage (V)	High Drive Current (mA)			 The data in this table represents nominal characterization data only.
	MIN.	TYP.	MAX.		MIN.	TYP.	MAX.	
0	0	0	0	0	-87	-112	-150	
0.2	9	11	12	0.5	-85	-110	-147	
0.5	22	25	29	1	-83	-108	-144	
0.7	29	34	40	1.5	-80	-104	-139	
1	39	46	55	2	-74	-97	-131	
1.2	44	52	64	2.5	-65	-88	-121	
1.5	51	61	76	2.7	-61	-84	-116	
1.7	55	66	83	3	-53	-77	-108	
2	60	73	92	3.2	-48	-71	-102	
2.2	62	77	97	3.5	-39	-62	-92	
2.5	65	81	104	3.7	-32	-55	-85	
2.7	65	83	108	4	-21	-44	-74	
3	66	85	112	4.2	-13	-36	-65	
3.5	67	87	117	4.5	0	-24	-52	
4	68	88	119	4.7		-15	-43	
4.5	69	89	120	5		0	-28	
5		91	121	5.2			-11	
5.5			123	5.5			0	

Figure 10: Dynamic Current vs. Output Frequency
VDD $=5.0 \mathrm{~V}$; Reference Frequency $=27.00 \mathrm{MHz}$; VCO Frequency $=200 \mathrm{MHz}, \mathrm{C}_{\mathrm{L}}=17 \mathrm{pF}$ except where noted

VDD $=3.3 \mathrm{~V}$; Reference Frequency $=27.00 \mathrm{MHz}$; VCO Frequency $=100 \mathrm{MHz}, \mathrm{C}_{\mathrm{L}}=17 \mathrm{pF}$ except where noted

Table 15: AC Timing Specifications

Unless otherwise stated, $\mathrm{V}_{\mathrm{DD}}=5.0 \mathrm{~V} \pm 10 \%$, no load on any output, and ambient temperature range $\mathrm{T}_{\mathrm{A}}=0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$. Parameters denoted with an asterisk (*) represent nominal characterization data and are not currently production tested to any specific limits. MIN and MAX characterization data are $\pm 3 \sigma$ from typical.

Table 16: AC Timing Specifications, continued

Unless otherwise stated, $V_{D D}=5.0 \mathrm{~V} \pm 10 \%$, no load on any output, and ambient temperature range $T_{A}=0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$. Parameters denoted with an asterisk (${ }^{*}$) represent nominal characterization data and are not currently production tested to any specific limits. MIN and MAX characterization data are $\pm 3 \sigma$ from typical.

PARAMETER	SYMBOL	CONDITIONS/DESCRIPTION	$\begin{aligned} & \text { CLOCK } \\ & \text { (MHz) } \end{aligned}$	MIN.	TYP.	MAX.	UNITS
Clock Outputs (PLL B clock via CLK_B pin)							
Duty Cycle *		Ratio of pulse width (as measured from rising edge to next falling edge at 2.5 V) to one clock period	100	45		55	\%
Jitter, Long Term ($\left.\sigma_{y}(\tau)\right)^{*}$	$t_{j(L T)}$	On rising edges $500 \mu \mathrm{~s}$ apart at 2.5 V relative to an ideal clock, $\mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}, \mathrm{f}_{\mathrm{XIN}}=14.318 \mathrm{MHz}, \mathrm{N}_{\mathrm{F}}=220, \mathrm{~N}_{\mathrm{R}}=63$, $N_{P x}=50$, No other PLLs active	100		45		ps
		On rising edges $500 \mu \mathrm{~s}$ apart at 2.5 V relative to an ideal clock, $\mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}, \mathrm{f}_{\mathrm{XIN}}=14.318 \mathrm{MHz}, \mathrm{N}_{\mathrm{F}}=220, \mathrm{~N}_{\mathrm{R}}=63$, $\mathrm{N}_{\mathrm{P}_{\mathrm{x}}}=50$, all other PLLs active $(\mathrm{A}=50 \mathrm{MHz}, \mathrm{C}=40 \mathrm{MHz}$, $\mathrm{D}=14.318 \mathrm{MHz}$)	60		75		
Jitter, Period (peak-peak) *	$\mathrm{t}_{\mathrm{j}(\Delta \mathrm{P})}$	From rising edge to the next rising edge at 2.5 V , $\mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}, \mathrm{f}_{\mathrm{XIN}}=14.318 \mathrm{MHz}, \mathrm{N}_{\mathrm{F}}=220, \mathrm{~N}_{\mathrm{R}}=63, \mathrm{~N}_{\mathrm{Px}}=50$, No other PLLs active	100		120		ps
		From rising edge to the next rising edge at 2.5 V , $\mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}, \mathrm{f}_{\mathrm{XIN}}=14.318 \mathrm{MHz}, \mathrm{N}_{\mathrm{F}}=220, \mathrm{~N}_{\mathrm{R}}=63, \mathrm{~N}_{\mathrm{Px}}=50$, all other PLLs active $(A=50 \mathrm{MHz}, \mathrm{C}=40 \mathrm{MHz}, \mathrm{D}=14.318 \mathrm{MHz}$)	60		400		
Clock Outputs (PLL_C clock via CLK_C pin)							
Duty Cycle *		Ratio of pulse width (as measured from rising edge to next falling edge at 2.5 V) to one clock period	100	45		55	\%
Jitter, Long Term ($\left.\sigma_{y}(\tau)\right)^{*}$	$t_{j(L T)}$	On rising edges $500 \mu \mathrm{~s}$ apart at 2.5 V relative to an ideal clock, $\mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}, \mathrm{f}_{\mathrm{XIN}}=14.318 \mathrm{MHz}, \mathrm{N}_{\mathrm{F}}=220, \mathrm{~N}_{\mathrm{R}}=63$, $N_{P x}=50$, No other PLLs active	100		45		ps
		On rising edges $500 \mu \mathrm{~s}$ apart at 2.5 V relative to an ideal clock, $\mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}, \mathrm{f}_{\mathrm{XIN}}=14.318 \mathrm{MHz}, \mathrm{N}_{\mathrm{F}}=220, \mathrm{~N}_{\mathrm{R}}=63$, $N_{P_{x}}=50$, all other PLLs active ($A=50 \mathrm{MHz}, B=60 \mathrm{MHz}$, $\mathrm{D}=14.318 \mathrm{MHz}$)	40		105		
Jitter, Period (peak-peak) *	$\mathrm{t}_{\mathrm{j}(\Delta \mathrm{P})}$	From rising edge to the next rising edge at 2.5 V , $\mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}, \mathrm{f}_{\mathrm{XIN}}=14.318 \mathrm{MHz}, \mathrm{N}_{\mathrm{F}}=220, \mathrm{~N}_{\mathrm{R}}=63, \mathrm{~N}_{\mathrm{Px}}=50$, No other PLLs active	100		120		ps
		From rising edge to the next rising edge at 2.5 V , $\mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}, \mathrm{f}_{\mathrm{XIN}}=14.318 \mathrm{MHz}, \mathrm{N}_{\mathrm{F}}=220, \mathrm{~N}_{\mathrm{R}}=63, \mathrm{~N}_{\mathrm{Px}}=50$, all other PLLs active ($\mathrm{A}=50 \mathrm{MHz}, \mathrm{B}=60 \mathrm{MHz}, \mathrm{D}=14.318 \mathrm{MHz}$)	40		440		
Clock Outputs (Crystal Oscillator via CLK_D pin)							
Duty Cycle *		Ratio of pulse width (as measured from rising edge to next falling edge at 2.5 V) to one clock period	14.318	45		55	\%
Jitter, Long Term ($\left.\sigma_{\mathrm{y}}(\tau)\right)^{*}$	$t_{j(L T)}$	On rising edges $500 \mu \mathrm{~s}$ apart at 2.5 V relative to an ideal clock, $\mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}, \mathrm{f}_{\mathrm{XIN}}=14.318 \mathrm{MHz}$, No other PLLs active	14.318		20		ps
		From rising edge to the next rising edge at 2.5 V , $\mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}, \mathrm{f}_{\mathrm{XIN}}=14.318 \mathrm{MHz}$, all other PLLs active ($\mathrm{A}=50 \mathrm{MHz}, \mathrm{B}=60 \mathrm{MHz}, \mathrm{C}=40 \mathrm{MHz}$)	14.318		40		
Jitter, Period (peak-peak) *	$\mathrm{t}_{\mathrm{j}(\mathrm{P})}$	From rising edge to the next rising edge at 2.5 V , $\mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}$, $\mathrm{f}_{\mathrm{XIN}}=14.318 \mathrm{MHz}$, No other PLLs active	14.318		90		ps
		From rising edge to the next rising edge at 2.5 V , $\mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}, \mathrm{f}_{\mathrm{XIN}}=14.318 \mathrm{MHz}$, all other PLLs active ($\mathrm{A}=50 \mathrm{MHz}, B=60 \mathrm{MHz}, C=40 \mathrm{MHz}$)	14.318		450		

Table 17: Serial Interface Timing Specifications

 characterization data and are not currently production tested to any specific limits. MIN and MAX characterization data are $\pm 3 \sigma$ from typical.

PARAMETER	SYMBOL	CONDITIONS/DESCRIPTION	STANDARD MODE		UNITS
			MIN.	MAX.	
Clock frequency	$\mathrm{f}_{\mathrm{SCL}}$	SCL	0	100	kHz
Bus free time between STOP and START	$\mathrm{t}_{\text {BUF }}$		4.7		$\mu \mathrm{s}$
Set up time, START (repeated)	$\mathrm{t}_{\text {su:STA }}$		4.7		$\mu \mathrm{s}$
Hold time, START	$\mathrm{thd}_{\text {dSTA }}$		4.0		$\mu \mathrm{s}$
Set up time, data input	$\mathrm{t}_{\text {su:DAT }}$	SDA	250		ns
Hold time, data input	$\mathrm{thd}_{\text {dat }}$	SDA	0		$\mu \mathrm{s}$
Output data valid from clock	$\mathrm{t}_{\text {AA }}$	Minimum delay to bridge undefined region of the falling edge of SCL to avoid unintended START or STOP		3.5	$\mu \mathrm{s}$
Rise time, data and clock	t_{R}	SDA, SCL		1000	ns
Fall time, data and clock	t_{F}	SDA, SCL		300	ns
High time, clock	t_{H}	SCL	4.0		$\mu \mathrm{s}$
Low time, clock	t_{L}	SCL	4.7		$\mu \mathrm{s}$
Set up time, STOP	$\mathrm{t}_{\text {su:STo }}$		4.0		$\mu \mathrm{s}$

Figure 11: Bus Timing Data
SCL

SDA

Figure 12: Data Transfer Sequence

8.0 Package Information

Table 18: 16-pin SOIC (0.150") Package Dimensions

	DIMENSIONS			
	INCHES		MILLIMETERS	
	MIN.	MAX.	MIN.	MAX.
A	0.061	0.068	1.55	1.73
A1	0.004	0.0098	0.102	0.249
A2	0.055	0.061	1.40	1.55
B	0.013	0.019	0.33	0.49
C	0.0075	0.0098	0.191	0.249
D	0.386	0.393	9.80	9.98
E	0.150	0.157	3.81	3.99
e	0.050 BSC	1.27 BSC		
H	0.230	0.244	5.84	6.20
h	0.010	0.016	0.25	0.41
L	0.016	0.035	0.41	0.89
Θ	0°	8°	0°	8°

Table 19: 16 -pin SOIC ($0.150^{\prime \prime}$) Package Characteristics

PARAMETER	SYMBOL	CONDITIONS/DESCRIPTION	TYP.	UNITS
Thermal Impedance, Junction to Free-Air 16-pin 0.150" SOIC	Θ_{JA}	Air flow $=0 \mathrm{~m} / \mathrm{s}$	110	${ }^{\circ} \mathrm{C} / \mathrm{W}$
Lead Inductance, Self	L_{11}	Corner lead	4.0	nH
		Center lead	3.0	
Lead Inductance, Mutual	L_{12}	Any lead to any adjacent lead	0.4	nH
Lead Capacitance, Bulk	C_{11}	Any lead to $\mathrm{V}_{\text {SS }}$	0.5	pF

9.0 Ordering Information

9.1 Device Ordering Codes

ORDERING CODE	DEVICE NUMBER	FONT	PACKAGE TYPE	OPERATING TEMPERATURE RANGE	SHIPPING CONFIGURATION
$11486-801$	FS6377	-01	$16-$ pin (0.150") SOIC (Small Outline Package)	$0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$ (Commercial)	Tape-and-Reel
$11486-811$	FS6377	-01	$16-$ pin $\left(0.150^{\prime \prime}\right)$ SOIC (Small Outline Package)	$0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$ (Commercial)	Tubes
$11486-901$	FS6377	-01 i	$16-$ pin ($\left.0.150^{\prime \prime}\right)$ SOIC (Small Outline Package)	$-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$ (Industrial)	Tape-and-Reel
$11486-911$	FS6377	-01 i	$16-$ pin $\left(0.150^{\prime \prime}\right)$ SOIC (Small Outline Package)	$-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$ (Industrial)	Tubes

9.2 Demo Kit Ordering Codes

ORDERING CODE	KIT FOR DEVICE NUMBER:	
$11486-201$	FS6377-01	DESCRIPTION

Purchase of $I^{2} C$ components of American Microsystems, Inc., or one of its sublicensed Associated Companies conveys a license under Philips $I^{2} C$ Patent Rights to use these components in an $I^{2} C$ system, provided that the system conforms to the $\mathrm{I}^{2} \mathrm{C}$ Standard Specification as defined by Philips.

Copyright © 1998, 1999 American Microsystems, Inc.

Devices sold by AMI are covered by the warranty and patent indemnification provisions appearing in its Terms of Sale only. AMI makes no warranty, express, statutory implied or by description, regarding the information set forth herein or regarding the freedom of the described devices from patent infringement. AMI makes no warranty of merchantability or fitness for any purposes. AMI reserves the right to discontinue production and change specifications and prices at any time and without notice. AMI's products are intended for use in commercial applications. Applications requiring extended temperature range, unusual environmental requirements, or high reliability applications, such as military, medical life-support or life-sustaining equipment, are specifically not recommended without additional processing by AMI for such applications.
American Microsystems, Inc., 2300 Buckskin Rd., Pocatello, ID 83201, (208) 233-4690, FAX (208) 234-6796, WWW Address: http://www.amis.com E-mail: tgp@amis.com

10.0 Demonstration Board and Software

A simple demonstration board and Windows 3.1x/95/98based software is available from American Microsystems that illustrates the capabilities of the FS6377. The software can operate under Windows NT but cannot communicate with the board.

The board schematic is shown below. Components listed with an asterisk (*) are not required in an actual application, and are used here to preserve signal integrity with the cabling associated with the board. A cabled interface between a computer parallel port (DB25 connector) and the board (J1) is provided. Components shown in dashed lines are optional, depending on the application.
Contact your local sales representative or the company directly for more information.

Figure 13: Board Schematic

10.1 Demo Kit Contents

- Demonstration board
- Interface cable (DB25 to 6-pin connector)
- Data sheet
- Demonstration software, totaling 24 compressed files which will expand to 1.8 MB , including fs6370.exe after installation.

10.2 Requirements

- PC running MS Windows 3.1 x or 95/98 with an accessible parallel (LPT1) port. Software also runs on Windows NT in a calculation mode only.
- 1.8 MB available space on hard drive C

10.3 Board Setup and Software Installation Instructions

- At the appropriate disk drive prompt (A:I) unzip the compressed demo files to a directory of your choice. Run setup.exe to install the software.
- Connect a power supply to the board: RED = power, BLACK = ground.
- Connect the supplied interface cable to the parallel port (DB25 connector) and to the demo board (6-pin connector). Make sure the cable is facing away from the board. Pin 1 is the red wire per Table 20.
- Connect the clock outputs to the target application board with a twisted-pair cable.

10.4 Demo Program Operation

Launch the fs6377.exe program. Note that the parallel port can not be accessed if your machine is running Windows NT. A warning message will appear stating: "This version of the demo program cannot communicate with the FS6377 hardware when running on a Windows NT operating system. Do you want to continue anyway, using just the calculation features of this program?" Clicking OK starts the program for calculation only.
The opening screen is shown in Figure 14.

Figure 14: Opening Screen

10.4.1 Example Programming

Type a value for the crystal resonator frequency in MHz in the Reference Crystal box. This frequency provides the basis for all of the PLL calculations that follow.
Next, click on the PLL A box. A pop-up screen similar to Figure 15 should appear. Type in a desired Output Clock frequency in MHz , set the operating voltage (3.3 V or 5 V), and the desired maximum output frequency error. Pressing Calculate Solutions generates several possible divider and VCO-speed combinations.

Figure 15: PLL Screen

For a 100 MHz output, the VCO should ideally operate at a higher frequency, and the Reference and Feedback Dividers should be as small as possible. In this example, highlight Solution \#7. Notice the VCO operates at 200 MHz with a Post Divider of 2 to obtain an optimal 50% duty cycle.
Now choose which Mux and Post Divider to use (that is, choose an output pin for the 100MHz output). Selecting A places the PostDiv value in Solution \#7 into Post Divider A and switches Mux A to take the output of PLL A.
The PLL screen should disappear, and now the value in the PLL A box is the new VCO frequency chosen in Solution \#7. Also note that Mux A has been switched to PLL A and the Post Divider A has the chosen 100 MHz output displayed.
Repeat the steps for PLL B.

PLL C supports two different output frequencies depending on the setting of the SEL_CD pin. Both Mux C and Mux D are also affected by the logic level on the SEL_CD pin, as are the Post Dividers C and D.

Figure 16: Post Divider Menu

Click on PLL C1 to open the PLL screen. Set a desired frequency, however, now choose the Post Divider B as the output divider. Notice the Post Divider box has split in two (as shown in Eigure 16), The Post Divider B box now shows that the divider is dependent on the setting of the SEL_CD pin for as long as Mux B is the PLL C output.

Clicking on Post Divider A reveals a pull-down menu provided to permit adjustment of the Post Divider value independently of the PLL screen. A typical menu is shown in Figure 16. The range of possible post divider values is also given in 「able 8.

Once all of the PLLs, switches, and post dividers have been set, the information can be downloaded out the PC parallel port to the FS6377 (not available on Windows NT).
The register settings are shown to the left in the screen shown in Eigure 14. Clicking on a register location displays a screen shown in Figure 17. Individual bits can be poked, or the entire register value can be changed.

Figure 17: Register Screen

Table 20: Cable Interface

Color	J1	DB25	Signal
Red	1	2,13	SCL
White	2	3,12	SDA
Green	3	8	MODE
Blue	4	5	SEL
Brown	5	4	$+5 V$
Black	6	25	GND

Figure 18: Cable Diagram

DB-25

Figure 19: Board Layout

