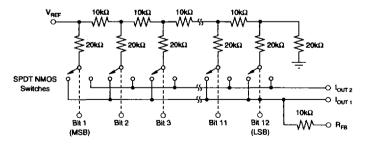


DAC7541

www.burr-brown.com/databook/DAC7541.html

Low Cost 12-Bit CMOS Four-Quadrant Multiplying DIGITAL-TO-ANALOG CONVERTER


FEATURES

- FULL FOUR-QUADRANT MULTIPLICATION
- 12-BIT END-POINT LINEARITY
- DIFFERENTIAL LINEARITY ±1/2LSB MAX OVER TEMPERATURE
- MONOTONICITY GUARANTEED OVER TEMPERATURE
- TTL-/CMOS-COMPATIBLE
- SINGLE +5V TO +15V SUPPLY
- LATCH-UP RESISTANT
- 7521/7541/7541A REPLACEMENT
- PACKAGES: Plastic DIP, Plastic SOIC
- LOW COST

DESCRIPTION

The Burr-Brown DAC7541A is a low cost 12-bit, four-quadrant multiplying digital-to-analog converter. Laser-trimmed thin-film resistors on a monolithic CMOS circuit provide true 12-bit integral and differential linearity over the full specified temperature range.

DAC7541A is a direct, improved pin-for-pin replacement for 7521, 7541, and 7541A industry standard parts. In addition to a standard 18-pin plastic package, the DAC7541A is also available in a surface-mount plastic 18-pin SOIC.

Digital Inputs (DTL-/TTL-/CMOS-compatible) Logic: A switch is closed to $I_{\text{OUT 1}}$ for its digital input in a "HIGH" state.

Switches shown for digital inputs "HIGH".

international Airport Industrial Park • Mailing Address: PO Box 11400, Tucson, AZ 85734 • Street Address: 6730 S. Tucson Bivd., Tucson, AZ 85706 • Tet (\$20) 746-1111 • Twx: 910-952-1111 htternet: http://www.burr-brown.com/ • FAXLine: (800) 548-5133 (US/Canada Only) • Cable: 9BRCORP • Teles: 086-6491 • FAX: (\$20) 889-1510 • Immediate Product Info: (800) 548-5132

For Immediate Assistance, Contact Your Local Salesperson

SPECIFICATIONS

ELECTRICAL

At +25°C, +V_{DD} = +12V or +15V, V_{REF} = +10V, $V_{PIN,1}$ = $V_{PIN,2}$ = 0V, unless otherwise specified.

	DAC7541A					
PARAMETER	GRADE T _A = +25°C		TA = Tmax, Tame(1)	UNITS	TEST CONDITIONS/COMMENTS	
ACCURACY						
Resolution	All	12	12	Bits		
Relative Accuracy	j	±1	±1	LSB max	$\pm 1LSB = \pm 0.024\%$ of FSR.	
	K	±1/2	±1/2	LSB max	±1/2LSB = ±0.012% of FSR.	
Differential Non-linearity	J	±1	±1	LSB max	All grades guaranteed monotonic to 12 bits,	
	K	±1/2	±1/2	LSB max	T _{MIN} to T _{MAX} .	
Gain Error	J	±6	±8	LSB max	Measured using internal RFB and includes effect	
	K	±1	±3	LSB max	of leakage current and gain T.C.	
			1		Gain error can be trimmed to zero.	
Gain Temperature Coefficient			1	1		
(ΔGain/∆Temperature)	ALL	1	5	ppm/°C max	Typical value is 2ppm/°C.	
Output Leakage Current: Out ₁ (Pin 1)	J, K	±5	±10	nA max	All digital inputs = 0V.	
Out ₂ (Pin 2)	J, K	±5	±10	nA max	All digital inputs = V _{DD} .	
REFERENCE INPUT					'	
Voltage (Pin 17 to GND)	Ali	-10/+10	-10/+10	V min/max		
Input Resistance (Pin 17 to GND)	Ali	7-18	7-18	kΩ min/max		
· · · · · · · · · · · · · · · · · · ·		,			Typical input resistance = 11kΩ.	
					Typical input resistance temperature coefficient is	
					–50ppm/°C.	
DIGITAL INPUTS						
V _M (Input HIGH Voltage)	All	2.4	2.4	V min		
V _{II} (Input LOW Voltage)	Ali	0.8	0.8	V max		
I _N (Input Current)	All	±1	±1	μA max	Logic inputs are MOS gates.	
	ł		ł		I _{IN} typ (25°C) = 1nA	
C _{IN} (Input Capacitance)(2)	All	8	8	pF max	V _{IN} = 0V	
POWER SUPPLY REJECTION		T	1			
ΔGain/ΔV _{DD}	Ali	±0.01	±0.02	% per % max	V _{DD} = +11.4V to +16V	
POWER SUPPLY			1			
V _{DD} Range	All	+5 to +16	+5 to +16	V min to V max	Accuracy is not guaranteed over this range.	
I _{DD}	All	2	2	mA max	All digital inputs V _{II} or V _{IN} .	
	Ali	100	500	μA max	All digital inputs 0V or Vpp.	

NOTES: (1) Temperature ranges are: = 0°C to + 70°C for JP, KP, JU and KU versions. (2) Guaranteed by design but not production tested.

AC PERFORMANCE CHARACTERISTICS

These characteristics are included for design guidance only and are not production tested.

 V_{DO} = +15V, V_{REF} = +10V except where stated, $V_{PIN 1}$ = $V_{PIN 2}$ = 0V, output amp is OPA606 except where stated.

Ali	T _A = +25°C	TA = TMAX, Tum(1)	UNITS	TEST CONDITIONS/COMMENTS
	100	_		
		1	ns typ	Out ₁ Load = 100 Ω , C _{EXT} = 13pF. Digital inputs = 0V to V _{DD} or V _{DD} to 0V.
Ali	1000	_	nV-styp	V_{REF} = 0V, all digital inputs 0V to V_{DD} or V_{DD} to 0V. Measured using OPA606 as output amplifier.
All	1.0		mVp-p max	V _{REF} = ±10V, 10kHz sine wave.
All	0.6	_	μs typ	To 0.01% of Full Scale Range. Out₁ Load ≈ 100tl, C _{EXT} = 13pF. Digital Inputs: 0V to V _{PD} or V _{PD} to 0V.
All All Ali	100 60 70	100 60 70	pF max pF max pF max	Digital Inputs = V _{IH} Sigital Inputs = V _{IL} Digital Inputs = V _{IL} Digital Inputs = V _{IL} Sigital Inputs = V _{IL}
	All All	Ali 1.0 Ali 100 Ali 50 Ali 70	All 1.0 — All 100 100 All 60 60 All 70 70	All 1.0 — μs max All 100 100 pF max All 60 60 pF max All 70 70 pF max

NOTE: (1) Temperature ranges are: = 0°C to + 70°C for JP, KP, JU and KU versions.

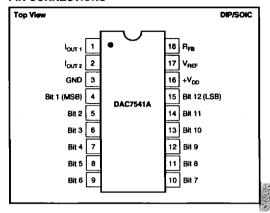
Or, Call Customer Service at 1-800-548-6132 (USA Only)

ABSOLUTE MAXIMUM RATINGS(1)

V _{DD} (Pin 16) to Ground	+17V
V _{REF} (Pin 17) to Ground	+25V
V _{RPB} (Pin 18) to Ground	±25V
Digital Input Voltage (pins 4-15) to Ground	
VPN 1, VPN 2 to Ground	0.4V, V _{DD}
Power Dissipation (any Package):	
To +75°C	450mW
Derates above +75°C	6mW/°C
Lead Temperature (soldering, 10s)	+300°C
Storage Temperature: Plastic Package	

NOTE: (1) Stresses above those listed above may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other condition above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

ELECTROSTATIC A DISCHARGE SENSITIVITY


The DAC7541A is an ESD (electrostatic discharge) sensitive device. The digital control inputs have a special FET structure, which turns on when the input exceeds the supply by 18V, to minimize ESD damage. However, permanent damage may occur on unconnected devices subject to high energy electrostatic fields. When not in use, devices must be stored in conductive foam or shunts. The protective foam should be discharged to the destination socket before devices are removed.

BURN-IN SCREENING

Burn-in screening is an option available for the models in the Ordering Information table. Burn-in duration is 160 hours at the indicated temperature (or equivalent combination of time and temperature).

All units are tested after burn-in to ensure that grade specifications are met. To order burn-in, add "-BI" to the base model number.

PIN CONNECTIONS

PACKAGE INFORMATION

PRODUCT	PACKAGE	PACKAGE DRAWING NUMBER ⁽¹⁾
DAC7541JP	Plastic DIP	218
DAC7541KP	Plastic DIP	218
DAC7541JU	Plastic SOIC	219
DAC7541KU	Plastic SOIC	219
DAC7541JP-BI	Plastic DIP	218
DAC7541KP-BI	Plastic DIP	218

NOTE: (1) For detailed drawing and dimension table, please see end of data sheet, or Appendix C of Burr-Brown IC Data Book.

ORDERING INFORMATION

PRODUCT	PACKAGE	TEMPERATURE RANGE	RELATIVE ACCURACY (LSB)	GAIN ERROR (LS8
DAC7541AJP DAC7541AKP	Plastic DIP Plastic DIP	0°C to +70°C 0°C to +70°C	±1 ±1/2	±6 ±1
DAC7541AJU DAC7541AKU	Plastic SOIC Plastic SOIC	0°C to +70°C 0°C to +70°C	±1 ±1/2	±6 ±1
BURN-IN SCREENIA See text for details.	IG OPTION			
	PACKAGE	TEMPERATURE RANGE	RELATIVE ACCURACY (LSB)	BURN-IN TEMP. (160 Hours)(1)

The information provided herein is believed to be reliable; however, BURR-BROWN assumes no responsibility for inaccuracies or omissions. BURR-BROWN assumes no responsibility for the use of this information, and all use of such information shall be entirely at the user's own risk. Prices and specifications are subject to change without notice. No patent rights or licenses to any of the circuits described herein are implied or granted to any third party. BURR-BROWN does not authorize or warrant any BURR-BROWN product for use in life support devices and/or systems.

