

Rochester Electronics Manufactured Components

Rochester branded components are manufactured using either die/wafers purchased from the original suppliers or Rochester wafers recreated from the original IP. All recreations are done with the approval of the OCM.

Parts are tested using original factory test programs or Rochester developed test solutions to guarantee product meets or exceed the OCM data sheet.

Quality Overview

- ISO-9001
- AS9120 certification
- Qualified Manufacturers List (QML) MIL-PRF-35835
 - Class Q Military
 - Class V Space Level
- Qualified Suppliers List of Distributors (QSLD)
- Rochester is a critical supplier to DLA and meets all industry and DLA standards.

Rochester Electronics, LLC is committed to supplying products that satisfy customer expectations for quality and are equal to those originally supplied by industry manufacturers.

The original manufacturer's datasheet accompanying this document reflects the performance and specifications of the Rochester manufactured version of this device. Rochester Electronics guarantees the performance of its semiconductor products to the original OEM specifications. 'Typical' values are for reference purposes only. Certain minimum or maximum ratings may be based on product characterization, design, simulation, or sample testing.

November 1994

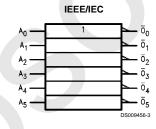
54F/74F04 Hex Inverter

General Description

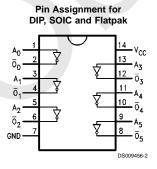
Features

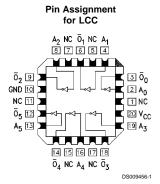
This device contains six independent gates, each of which performs the logic INVERT function.

■ Guaranteed 4000V minimum ESD protection


Ordering Code: See Section 0

Commercial	Military	Package	Package Description			
		Number				
74F04PC		N14A	14-Lead (0.300" Wide) Molded Dual-In-Line			
	54F04DM (Note 2)	J14A	14-Lead Ceramic Dual-In-Line			
74F04SC (Note 1)		M14A	14-Lead (0.150" Wide) Molded Small Outline, JEDEC			
74F04SJ (Note 1)		M14D	14-Lead (0.300" Wide) Molded Small Outline, EIAJ			
	54F04FM (Note 2)	W14B	14-Lead Cerpack			
	54F04LM (Note 2)	E20A	20-Lead Ceramic Leadless Chip Carrier, Type C			


Note 1: Devices also available in 13" reel. Use suffix = SCX and SJX.


Note 2: Military grade device with environmental and burn-in processing. Use suffix = DMQB, FMQB and LMQB.

Logic Symbol

Connection Diagrams

TRI-STATE® is a registered trademark of National Semiconductor Corporation.

© 1997 National Semiconductor Corporation DS00945

www.national.com

1

Unit Loading/Fan Out See Section 0 for U.L. definitions

		54F/74F				
Pin Names	Description	U.L.	Input I _{IH} /I _{IL}			
		HIGH/LOW	Output I _{OH} /I _{OL}			
A _n	Inputs	1.0/1.0	20 μA/-0.6 mA			
\overline{O}_n	Outputs	50/33.3	-1 mA/20 mA			

www.national.com

PrintDate=1997/08/26 PrintTime=15:21:54 9457 ds009456 Rev. No. 1 cmserv **Proof**

Absolute Maximum Ratings (Note 3)

If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/ Distributors for availability and specifications.

Storage Temperature -65°C to +150°C

Ambient Temperature under Bias -55°C to +125°C

Junction Temperature under Bias -55°C to +175°C

Plastic -55°C to +150°C

V_{CC} Pin Potential to

Voltage Applied to Output

in HIGH State (with $V_{CC} = 0V$)

Standard Output -0.5V to V_{CC} TRI-STATE® Output -0.5V to +5.5V Current Applied to Output

Recommended Operating Conditions

Free Air Ambient Temperature

Supply Voltage

Military +4.5V to +5.5V Commercial +4.5V to +5.5V

Note 3: Absolute maximum ratings are values beyond which the device may be damaged or have its useful life impaired. Functional operation under these conditions is not implied.

Note 4: Either voltage limit or current limit is sufficient to protect inputs.

DC Electrical Characteristics

Symbol	Parameter		54F/74F			Units	V _{cc}	Conditions	
			Min	Тур	Max				
V _{IH}	Input HIGH Voltage		2.0			V		Recognized as a HIGH Signal	
V _{IL}	Input LOW Voltage				0.8	V		Recognized as a LOW Signal	
V _{CD}	Input Clamp Diode Voltage				-1.2	V	Min	I _{IN} = -18 mA	
V _{OH}	Output HIGH	54F 10% V _{CC}	2.5					I _{OH} = -1 mA	
	Voltage	74F 10% V _{CC}	2.5			V	Min	I _{OH} = -1 mA	
		74F 5% $V_{\rm CC}$	2.7					I _{OH} = -1 mA	
V _{OL}	Output LOW	54F 10% V _{CC}			0.5	V	Min	I _{OL} = 20 mA	
	Voltage	74F 10% V _{CC}			0.5			I _{OL} = 20 mA	
I _{IH}	Input HIGH	54F			20.0	μA	Max	V _{IN} = 2.7V	
	Current	74F			5.0				
I _{BVI}	Input HIGH Current	54F			100	μA	Max	V _{IN} = 7.0V	
	Breakdown Test	74F			7.0				
I _{CEX}	Output HIGH	54F			250	μA	Max	V _{OUT} = V _{CC}	
	Leakage Current	74F			50				
V _{ID}	Input Leakage	74F	4.75			V	0.0	I _{ID} = 1.9 μA	
	Test							All other pins grounded	
I _{OD}	Output Leakage	74F			3.75	μA	0.0	V _{IOD} = 150 mV	
	Circuit Current							All other pins grounded	
I _{IL}	Input LOW Current				-0.6	mA	Max	V _{IN} = 0.5V	
I _{os}	Output Short-Circuit Current		-60		-150	mA	Max	V _{OUT} = 0V	
I _{CCH}	Power Supply Current			2.8	4.2	mA	Max	V _O = HIGH	
I _{CCL}	Power Supply Current			10.2	15.3	mA	Max	V _O = LOW	

AC Electrical Characteristics

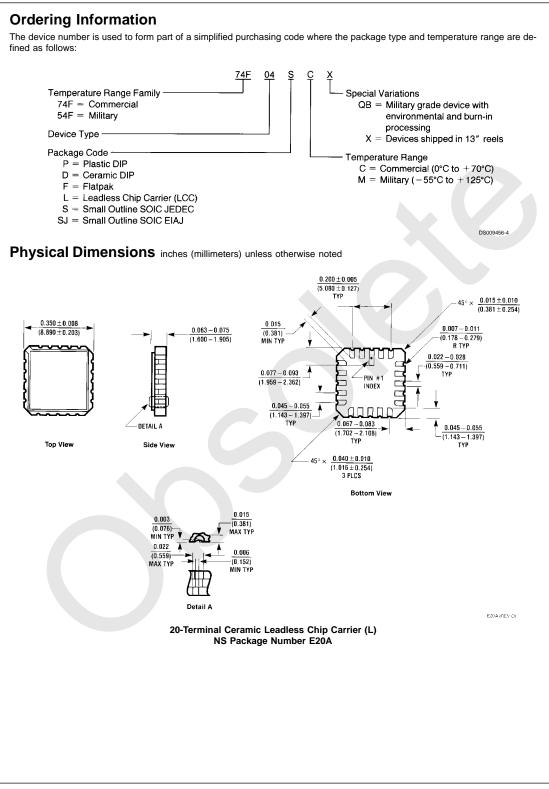
See Section 0 for Waveforms and Load Configurations

Symbol	Parameter	74F T _A = +25°C V _{CC} = +5.0V			54F T _A , V _{CC} = Mil C _L = 50 pF		74F T _A , V _{CC} = Com C _L = 50 pF		Units	Fig. No.
		Min	C _L = 50 pl Typ	Max	Min	Max	Min	Max		
t _{PLH}	Propagation Delay	2.4	3.7	5.0	2.0	7.0	2.4	6.0	ns	++-++
t _{PHL}	A_n to \overline{O}_n	1.5	3.2	4.3	1.5	6.5	1.5	5.3		

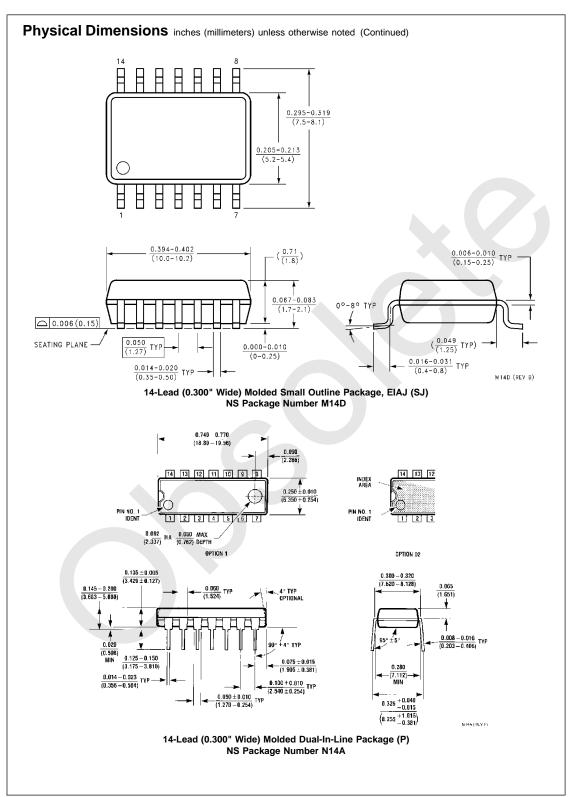
www.national.com

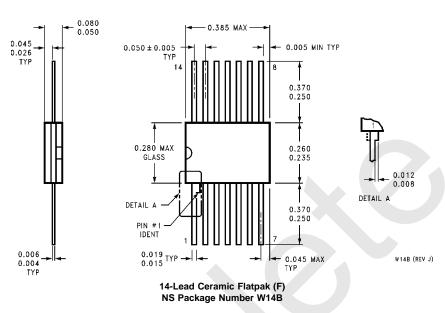
Proof

3


DSXXX

DSXXX


PrintDate=1997/08/26 PrintTime=15:21:56 9457 ds009456 Rev. No. 1 cmserv **Proof**


www.national.com

www.national.com

www.national.com

Physical Dimensions inches (millimeters) unless otherwise noted (Continued)

LIFE SUPPORT POLICY

NATIONAL'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DE-VICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF NATIONAL SEMI-CONDUCTOR CORPORATION. As used herein:

- 1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the user.
- 2. A critical component in any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

National Semiconductor Corporation

Americas Tel: 1-800-272-9959 Fax: 1-800-737-7018 Email: support@nsc.com

www.national.com

National Semiconductor

Fax: +49 (0) 1 80-530 85 86 Fax: +49 (0) 1 80-530 85 86 Email: europe. support@nsc.com Deutsch Tel: +49 (0) 1 80-530 85 85 English Tel: +49 (0) 1 80-532 78 32 Français Tel: +49 (0) 1 80-532 93 58 Italiano Tel: +49 (0) 1 80-534 16 80

National Semiconductor Hong Kong Ltd.

13th Floor, Straight Block, Ocean Centre, 5 Canton Rd. Tsimshatsui, Kowloon Hong Kong Tel: (852) 2737-1600 Fax: (852) 2736-9960

National Semiconductor Japan Ltd.

Tel: 81-3-5620-6175 Fax: 81-3-5620-6179

National does not assume any responsibility for use of any circuitry described, no circuit patent licenses are implied and National reserves the right at any time without notice to change said circuitry and specifications.