UHF POWER TRANSISTOR

NPN silicon planar epitaxial transistor primarily intended for use in radio transmitters in the 470 MHz communications band.

Features

- Multi-base structure and emitter ballasting resistors for an optimum temperature profile
- · Gold metallization ensures excellent reliability
- Internal matching to achieve an optimum wideband capability and high power gain

The BLU60/28 has a 6-lead flange envelope with a ceramic cap (SOT119). All leads are isolated from the flange,

QUICK REFERENCE DATA

RF performance at T _h = 25 °C in a common-emitter class-B circuit					
Mode of operation	f	VCE	P _L	G _P	η _C
	MHz	V	W	dB	%
CW class-B	470	28	60	> 7	> 55
	470	24	50	typ. 7	typ. 60

MECHANICAL DATA

2,5

Dimensions in mm

1 = emitter

2 = emitter 3 = base

4 = collector

5 = emitter

6 = emitter

min. 0.6 Nm (6 kg cm) max. 0.75 Nm (7.5 kg cm) Recommended screw: cheese-head 4-40 UNC/2A

Heatsink compound must be applied sparingly,

0,14

and evenly distributed.

Torque on screw:

Fig.1 SOT119.

7,5 4,05

max

4,50

PRODUCT SAFETY: This device incorporates beryllium oxide, the dust of which is toxic. The device is entirely safe provided that the internal BeO disc is not damaged,

RATINGS

Limiting values in accordance with the Absolute Maximum System (IEC 134)

Collector-emitter voltage (peak value), V _{BE} = 0
open base
Emitter-base voltage (open collector)
Collector current DC or average peak value; f > 1 MHz
RF power dissipation f > 1 MHz; $T_{mb} \approx 25$ °C
Storage temperature range
Operating junction temperatur

VCESM	И	max.	60	٧
VCE0		max.	32	٧
VEBO		max.	3.5	٧
10,100	AV)	max.	8.0	Α
CM	· · · · ,	max.	24	Α
P_{rf}		max.	110	W
T_{stg}		-65 to +	150	оC
Τj		max.	200	οС

Fig.2 DC SOAR.

- (1) Short-time operation during mismatch.
- (2) Continuous RF operation (f > 1 MHz).
- (3) Continuous DC operation.

Fig.3 Power/temperature derating curves.

THERMAL RESISTANCE

RF dissipation = 110 W; T_{mb} = 25 °C From junction to mounting base From mounting base to heatsink

R _{th j-mb}	max.	1.55	K/W
R _{th mb-h}	max.	0.2	K/W

CHARACTERISTICS

T _j = 25 °C unless otherwise specified			
Collector-emitter breakdown voltage $V_{BE} = 0$; $I_{C} = 30 \text{ mA}$ open base; $I_{C} = 200 \text{ mA}$	V(BR)CES V(BR)CEO	min. min.	60 V 32 V
Emitter-base breakdown voltage open collector; I _E = 20 mA	V _{(BR)EBO}	min.	3.5 V
Collector cut-off current V _{BE} = 0; V _{CE} = 32 V	CES	max.	10 mA
DC current gain $I_C = 3.2 \text{ A}$; $V_{CE} = 25 \text{ V}$	hFE	20 1 typ.	to 120 75
Collector capacitance at f = 1 MHz I _E = I _e = 0; V _{CB} = 28 V	C _c	typ.	90 pF
Feedback capacitance at f = 1 MHz I _C = 0; V _{CE} = 28 V	C _{re}	typ.	55 pF
Collector-flange capacitance	C _{cf}	typ.	3.0 pF

Fig.4 Collector capacitance as a function of base-collector voltage; $I_E = I_e = 0$; f = 1 MHz; typical values.

APPLICATION INFORMATION

RF performance at T_h = 25 °C in a class-B test circuit

Mode of operation	f MHz	V _{CE} V	P _L W	Gp dB	η _C %
CW class-B	470	28	60	> 7	> 55
CW class-B	470	24	50	typ. 7	typ. 60

$$T_h = 25 \, {}^{\circ}\text{C}$$

- $T_h = 70 \, {}^{\circ}\text{C}$

Fig.5 Power gain as a function of load power; typical values.

$$T_h = 25 \, {}^{\circ}\text{C}$$

--- $T_h = 70 \, {}^{\circ}\text{C}$

Fig.6 Efficiency as a function of load power; typical values.

$$T_h = 25 \, {}^{\circ}\text{C}$$

--- $T_h = 70 \, {}^{\circ}\text{C}$

Fig.7 Load power as a function of drive power; typical values.

Conditions for Figs 5 to 7

Class-B operation; $V_{CE} = 28 \text{ V}$; f = 470 MHz; $R_{th \, mb-h} = 0.2 \text{ K/W}$.

Ruggedness in class-B operation

The BLU60/28 is capable of withstanding a load mismatch corresponding with VSWR = 50 through all phases under the following conditions: $V_{CE} = 28 \text{ V}$; f = 470 MHz; $T_h = 25 \, ^{\text{O}}\text{C}$; $R_{th \, mb-h} = 0.2 \text{ K/W}$, at rated output power.

Fig.8 Class-B test circuit at f = 470 MHz.

List of components

- C1 = C13 = 1.8 to 10 pF film dielectric trimmer (cat. no. 2222 809 05002)
- C2 = C11 = 1.4 to 5.5 pF film dielectric trimmer (cat. no. 2222 809 09001)
- C3 = 12 pF multilayer ceramic chip capacitor*
- C4 = C5 = 8.2 pF multilayer ceramic chip capacitor**
- C6 = C7 = 15 pF multilayer ceramic chip capacitor*
- C8 = 110 pF multilayer ceramic chip capacitor*
- C9 = 3 x 100 nF multilayer ceramic chip capacitors in parallel
- C10 = 2.2 μ F (35 V) electrolytic capacitor
- C12 = 5.6 pF multilayer ceramic chip capacitor*
- L1 = 34.6 Ω stripline (17 mm x 4 mm)
- L2 = L5 = 25.3 Ω stripline (6 mm x 6 mm)
- L3 = 45 nH; 4 turns, closely wound enamelled Cu-wire (0.5 mm); int. diam. 2.5 mm; leads 2 x 5 mm
- L4 = L8 = Ferroxcube wideband HF choke, grade 3B (cat. no. 4312 020 36642)
- L6 = 29.2 Ω stripline (25.5 mm x 5 mm)
- L7 = 10 nH; 1 turn Cu-wire (1.0 mm); int. diam. 5 mm; leads 2 x 5 mm
- R1 = $1 \Omega \pm 5\%$ (0.4 W) metal film resistor
- R2 = $10 \Omega \pm 5\%$ (1,0 W) metal film resistor

Striplines are on a double Cu-clad printed-circuit board with PTFE fibre-glass dielectric; thickness 1/32 inch; ($\epsilon_r = 2.2$).

- * American Technical Ceramics capacitor type B or equivalent.
- ** Idem type A.

APPLICATION INFORMATION (continued)

Fig.9 Component layout of 470 MHz, class-B test circuit.

Fig.10 Printed-circuit board for 470 MHz, class-B test circuit.

NOTE

The circuit and the components are on one side of the PTFE fibre-glass board; the other side is fully metallized serving as groundplane. Earth connections are made by fixing screws, hollow rivets and also by copper straps under the emitter to provide a direct contact between the copper on the component side and the ground plane.

Fig.11 Input impedance as a function of frequency (series components); typical values.

Fig.12 Load impedance as a function of frequency (series components); typical values.

Fig.13 Gain as a function of frequency; typical values.

Conditions for Figs 11 to 13

Class-B operation; $V_{CE} \approx 28 \text{ V}$; $P_L = 60 \text{ W}$; $R_{th \, mb \cdot h} = 0.2 \text{ K/W}$.