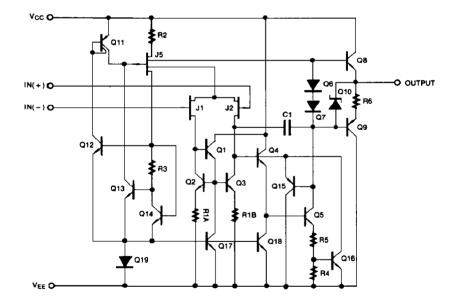

DUAL JFET INPUT OPERATIONAL

FEATURES

- Low supply current: 400pA MAX
- Low input bias Current: 50pA MAX
 Low input offset voltage: 1mV MAX
- High slew rate: 1V/μs
- High gain bandwidth: 1MHz


BLOCK DIAGRAM

ORDERING INFORMATION

Device	Package	Operating Temperature				
LM442N LM442 A N	8 DIP					
LM442S LM442AS	9 SIP	0 ~ +70°C				

SCHEMATIC DIAGRAM (One Section Only)

ABSOLUTE MAXIMUM RATINGS

Characteristics	Symbol	Value	Unit
Power Supply Voltage LM442	Vcc	±18	v
LM442A	V cc	±20	'
Differential Input Voltage	$V_{I(DIFF)}$	30	٧
Input Voltage range	V _I	±15	V
Output Short Circuit Duration		Continuous	
Power Dissipation	P _D	670	mW
Operating Temperature Range LM442/A	T _{OPR}	0 ~ + 70	°C
Storage Temperature Range	Т _{sта}	-65 ~ + 150	°C

ELECTRICAL CHARACTERISTICS

(T_A=25 °C, unless otherwise specified)

		Test Conditions		LM442A			LM442			[]
Characteristic	Svmbol			Min	Тур	Max	Min	Тур	Max	Init
Input Offset Voltage	V _{IO}	R _S =10KΩ			0.5	1.0		1.0	5.0	mV
	-		Note 1						7.5	
Input Offset Voltage Drift	ΔV ₁₀ /ΔΤ	$R_S = 10K\Omega$			7	10		7		μV/°C
Input Offset Current	l _{io}		N . 4		5	25		5	50	p A
	+	-	Note 1		10	15		10	15	
Large Signal Voltage Gain	IBIAS		Note 1		10	50 30		10	100 30	рA
		$R_L = 10K\Omega$	Note i	50	200	30	25	200	30	
Large Signal Voltage Gain	Gv	$V_{O(P,P)} = \pm 0V$	Note 1	25	200		15	200		V/mV
Output Voltage Swing	V _{O(P-P)}	$R_S = 10K\Omega$	Note	±17	±18		±12	±13		V
Input Voltage Range	V _{I(R)}			±16	+18 -17		±11	+15 -12		٧
Common-Mode Rejection Ratio	CMRR	R _s ≤10KΩ		80	100		70	95		dB
Power Supply Rejection Ratio	PSRR	R _s ≤10KΩ		80	100		70	90		dB
Input Resistance	Rı				10 ¹²		10 ¹²			Ω
Supply Current	lcc				300	400		400	500	μА
Slew Rate	SR			8.0	1		0.6	1		V/µS
Gain Bandwidth Product				8.0	1		0.6	1		MHz
Channel Separation	cs	f = 1Hz-20KHz (input reference			120			120		dB
Equivalent Input Noise Voltage	V _{NI}	$R_S = 100\Omega$ f = 1 KHz			35			35		n <u>V/</u> √Hz
Equivalent Input Noise Current	I _{NI}	f = 1KHz			0.01			0.01		p A / √ Hz

NOTE 1. LM442/A : $0 \le T_A \le +70$ °C

TRADEMARKS

The following are registered and unregistered trademarks Fairchild Semiconductor owns or is authorized to use and is not intended to be an exhaustive list of all such trademarks.

ACEX™ ISOPLANAR™ CoolFET™ MICROWIRE™

CROSSVOLTTM POPTM

E²CMOS™ PowerTrench™

FACTTM QSTM

FACT Quiet Series $^{\text{TM}}$ Quiet Series $^{\text{TM}}$ SuperSOT $^{\text{TM}}$ -3 FAST $^{\text{TM}}$ SuperSOT $^{\text{TM}}$ -6 GTO $^{\text{TM}}$ SuperSOT $^{\text{TM}}$ -8 HiSeC $^{\text{TM}}$

DISCLAIMER

FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION OR DESIGN. FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS. NOR THE RIGHTS OF OTHERS.

LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF FAIRCHILD SEMICONDUCTOR CORPORATION. As used herein:

- 1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, or (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in significant injury to the user.
- 2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

PRODUCT STATUS DEFINITIONS

Definition of Terms

Datasheet Identification	Product Status	Definition
Advance Information	Formative or In Design	This datasheet contains the design specifications for product development. Specifications may change in any manner without notice.
Preliminary	First Production	This datasheet contains preliminary data, and supplementary data will be published at a later date. Fairchild Semiconductor reserves the right to make changes at any time without notice in order to improve design.
No Identification Needed	Full Production	This datasheet contains final specifications. Fairchild Semiconductor reserves the right to make changes at any time without notice in order to improve design.
Obsolete	Not In Production	This datasheet contains specifications on a product that has been discontinued by Fairchild semiconductor. The datasheet is printed for reference information only.