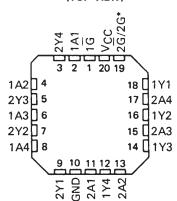
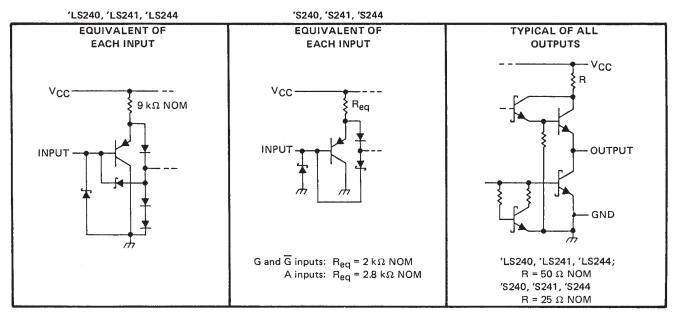

- 3-State Outputs Drive Bus Lines or Buffer Memory Address Registers
- PNP Inputs Reduce D-C Loading
- Hysteresis at Inputs Improves Noise Margins

description


These octal buffers and line drivers are designed specifically to improve both the performance and density of three-state memory address drivers, clock drivers, and bus-oriented receivers and transmitters. The designer has a choice of selected combinations of inverting and noninverting outputs, symmetrical \overline{G} (active-low output control) inputs, and complementary G and \overline{G} inputs. These devices feature high fan-out, improved fan-in, and 400-mV noise-margin. The SN74LS' and SN74S' can be used to drive terminated lines down to 133 ohms.

The SN54' family is characterized for operation over the full military temperature range of -55° C to 125° C. The SN74' family is characterized for operation from 0°C to 70°C.

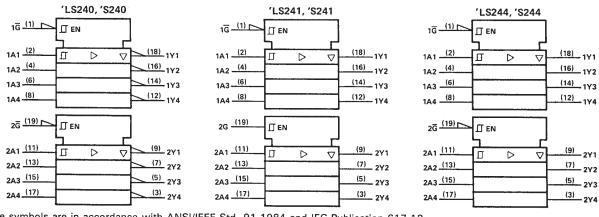
SN54LS', SN54S'	J OR W PACKAGE
SN74LS', SN74S'.	DW OR N PACKAGE
(70	B 105100



SN54LS', SN54S' . . . FK PACKAGE (TOP VIEW)

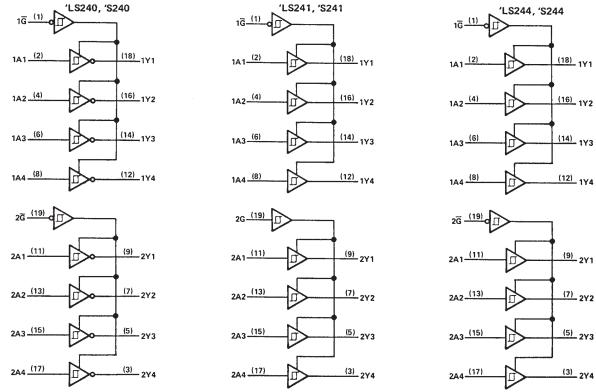
*2G for 'LS241 and 'S241 or 2G for all other drivers.

schematics of inputs and outputs


PRODUCTION DATA information is current as of publication date. Products conform to specifications per the terms of Texas Instruments standard warranty. Production processing does not necessarily include testing of all parameters.

POST OFFICE BOX 655303 • DALLAS, TEXAS 75265

Copyright © 1988, Texas Instruments Incorporated


SDLS144 – APRIL 1985 – REVISED MARCH 1988

logic symbols[†]

[†]These symbols are in accordance with ANSI/IEEE Std. 91-1984 and IEC Publication 617-12.

logic diagrams (positive logic)

Pin numbers shown are for DW, J, N, and W packages.

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)

	Supply voltage, V _{CC} (see Note 1)	
	nput voltage: 'LS Circuits	
	'S Circuits	
	Off-state output voltage	
	Dperating free-air temperature range: SN54LS', SN54S' Circuits	
	SN74LS', SN74S' Circuits	
	Storage temperature range	
NOT	1. Voltage values are with respect to petwork ground terminel	

NOTE 1: Voltage values are with respect to network ground terminal.

SDLS144 – APRIL 1985 – REVISED MARCH 1988

recommended operating conditions

	PARAMETER			SN74LS'				
		MIN	NOM	MAX	MIN	NOM	MAX	UNIT
Vcc	Supply voltage (see Note 1)	4.5	5	5.5	4.75	5	5.25	V
VIH	High-level input voltage	2	*****		2			V
VIL	Low-level input voltage			0.7			0.8	V
юн	High-level output current			- 12			- 15	mA
IOL	Low-level output current			12			24	mA
TA	Operating free-air temperature	- 55		125	0		70	°C

NOTE 1: Voltage values are with respect to network ground terminal.

electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

DA	DAMETED		TEST CONDITI	ovet		SN54LS	57		υνιτ		
PA	RAMETER	TEST CONDITIONS [†]			MIN	TYP‡	MAX	MIN		TYP‡	MAX
ν _{II}	к	V _{CC} = MIN,	lj = - 18 mA				- 1.5			- 1.5	V
	eresis - V _T)	V _{CC} = MIN			0.2	0.4		0.2	0.4		V
V _{OH}		V _{CC} = MIN, I _{OH} = - 3 mA	V _{IH} = 2 V,	V _{IL} = MAX,	2.4	3.4		2.4	3.4		v
		V _{CC} = MIN, I _{OH} = MAX	V _{IH} = 2 V,	V _{IL} = 0.5 V,	2			2			
Va		V _{CC} = MIN,	V _{IH} = 2 V,	I _{OL} = 12 mA			0.4			0.4	v
VC		V _{IL} = MAX		1 _{OL} = 24 mA						0.5	1 [×]
102	ZH	V _{CC} = MAX,	V _{IH} = 2 V,	V _O = 2.7 V			20			20	
107	ZL	VIL = MAX		V _O = 0.4 V			20			- 20	μA
1		$V_{CC} = MAX,$	V1 = 7 V				0.1			0.1	mA
ЧН	1	V _{CC} = MAX,	V _I = 2.7 V				20			20	μA
կլ	-	V _{CC} = MAX,	V _{IL} = 0.4 V				- 0.2			0.2	mA
10	S§	V _{CC} = MAX			- 40		- 225	- 40		- 225	mA
	Outputs high			All		17	27		17	27	
	Outputs low			'LS240		26	44		26	44]
lcc		V _{CC} = MAX, Output open		'LS241, 'LS244		27	46		27	46	mA
	All outputs			'L\$240		29	50		29	50]
	disabled			'LS241, 'LS244		32	54		32	54]

[†] For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions.

[‡] All typical values are at $V_{CC} = 5 V$, $T_A = 25^{\circ}C$. § Not more than one output should be shorted at a time, and duration of the short-circuit should not exceed one second.

switching characteristics, $V_{CC} = 5 V$, $T_A = 25^{\circ}C$

PARAMETER	TEST CONDITIONS			'LS241, 'LS244			UNIT		
PARAMETER	TEST CON	MIN	ТҮР	MAX	MIN	TYP	MAX	UNIT	
^t PLH				9	14		12	18	ns
^t PHL	RL = 667 Ω, See Note 2	С _L = 45 рF,		12	18		12	18	ns
^t PZL				20	30		20	30	ns
^t PZH				15	23		15	23	ns
^t PLZ	R _L = 667 Ω,	C _L = 5 pF,		10	20		10	20	ns
^t PHZ	See Note 2			15	25		15	25	ns

NOTE 2: Load circuits and voltage waveforms are shown in Section 1.

SDLS144 – APRIL 1985 – REVISED MARCH 1988

recommended operating conditions

DADAMETED			UNIT					
FANAMETER		NOM	MAX	MIN	NOM	MAX	UNIT	
Supply voltage, (see Note 1)	4.5	5	5.5	4.75	5	5.25	V	
High-level input voltage	2			2	A		V	
Low-level input voltage			0.8			0.8	V	
High-level output current			- 12			- 15	mA	
Low-level output current			48			64	mA	
External resistance between any input and V_{CC} or ground			40		ç	40	kΩ	
Operating free-air temperature (see Note 3)	55		125	0		70	°C	
	High-level input voltage Low-level input voltage High-level output current Low-level output current External resistance between any input and V _{CC} or ground	MIN Supply voltage, (see Note 1) 4.5 High-level input voltage 2 Low-level input voltage 2 High-level output current 2 Low-level output current 2 External resistance between any input and V _{CC} or ground 4.5	PARAMETER MIN NOM Supply voltage, (see Note 1) 4.5 5 High-level input voltage 2 2 Low-level input voltage	MINNOMMAXSupply voltage, (see Note 1)4.555.5High-level input voltage22Low-level input voltage-120.8High-level output current-1248External resistance between any input and V _{CC} or ground40	PARAMETER MIN NOM MAX MIN Supply voltage, (see Note 1) 4.5 5 5.5 4.75 High-level input voltage 2 2 2 Low-level input voltage -12 0.8 High-level output current -12 48 External resistance between any input and V _{CC} or ground 40 40	MIN NOM MAX MIN NOM Supply voltage, (see Note 1) 4.5 5 5.5 4.75 5 High-level input voltage 2 2 2 2 2 2 2 2 2 1 Low-level input voltage	MINNOMMAXMINNOMMAXSupply voltage, (see Note 1)4.555.54.7555.25High-level input voltage22222Low-level input voltage-12-150.8-15Low-level output current-12-1564External resistance between any input and V _{CC} or ground4040	

NOTES: 1. Voltage values are with respect to network ground terminal.

3. An SN54S241J operating at free-air temperature above 116°C requires a heat sink that provides a thermal resistance from case to free-air $R_{\theta CA}$, of not more than 40° C/W.

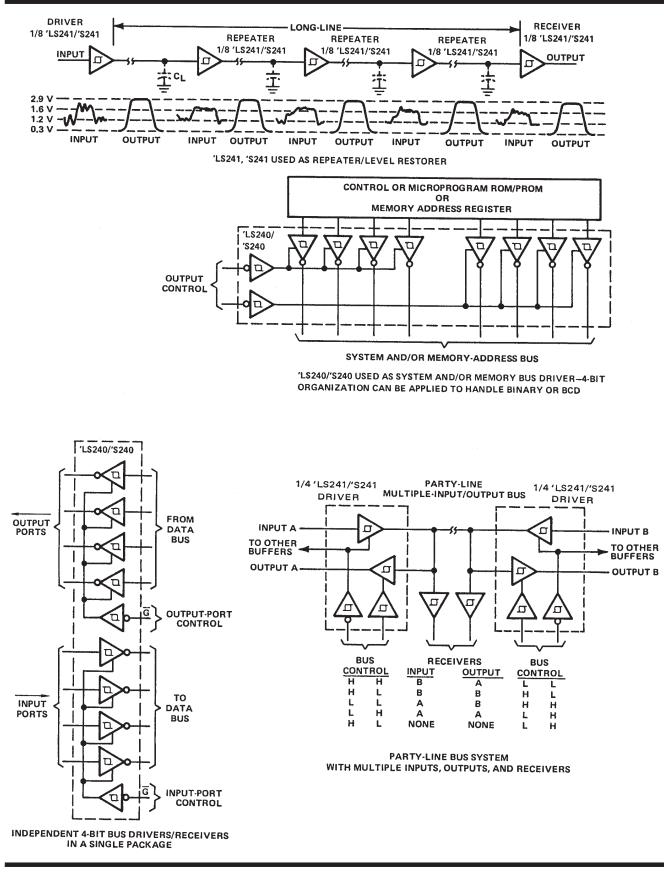
electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

PAF	RAMETER		TEST CONDITIC	Met		SN545	57		SN74S	,								
					MIN	TYP‡	MAX	MIN	TYP [‡]	MAX	UNIT							
Vik	($V_{CC} = MIN,$	l _l = – 18 mA				- 1.2			- 1.2	V							
Hyste (V _{T+} –		V _{CC} = MIN	<u>, , , , , , , , , , , , , , , , , , , </u>	·	0.2	0.4		0.2	0.4		v							
		$V_{CC} = MIN,$	V _{IH} = 2 V,	V _{IL} = 0.8 V,														
		l _{OH} = 1 mA						2.7										
Vo	[$V_{CC} = MIN,$	V _{IH} = 2 V,	V _{IL} = 0.8 V,														
∨он		loH = - 3 mA			2.4	3.4		2.4	3.4		V							
		$V_{CC} = MIN,$	V _{IH} = 2 V,	V _{IL} = 0.5 V,							1							
		I _{OH} = MAX			2			2										
VOL		V _{CC} = MIN,	V _{IH} = 2 V,	V _{1L} = 0.8 V,			0.55											
VOL		I _{OL} = MAX					0.55			0.55	V							
loz	Н	V _{CC} = MAX,	V _{IH} = 2 V,	V _O = 2.4 V			50			50								
loz	L	V _{IL} = 0.8 V,		V _O = 0.5 V			- 50			- 50	μA							
4		$V_{CC} = MAX,$	V _I = 5.5 V				1			1	mA							
ЧΗ		V _{CC} = MAX,	V ₁ = 2.7 V				50			50	μA							
11L	Any A	V _{CC} = MAX,	$V_{1} = 0.5 V$				- 400			- 400	μA							
-16	Any G		v - 0.5 v				- 2			- 2	mA							
los	§	V _{CC} = MAX			50		- 225	- 50		- 225	mA							
	Outputs high			'S240		80	123		80	135								
				'S241, 'S244		95	147		95	160	1							
lcc	Outputs low	Vcc = MAX		'S240		100	145		100	150]							
			Outputs open	Outputs open	Outputs open	Outputs open	Outputs open	Outputs open	Outputs open	Outputs open	'S241, 'S244		120	170		120	180	mA
	Outputs			'S240		100	145		100	150	1							
	disabled			'S241, 'S244		120	170		120	180	1							

[†] For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions.

[‡] All typical values are at V_{CC} = 5 V, T_A = 25°C.

\$Not more than one output should be shorted at a time, and duration of the short-circuit should not exceed one second.


switching characteristics, V_{CC} = 5 V, T_A = 25° C

PARAMETER	TEST CONDITIONS		′S240			'S241, 'S244			
	1201 00	MIN	ТҮР	MAX	MIN	ТҮР	MAX	UNIT	
^t PLH				4.5	7		6	9	ns
^t PHL	RL = 90 Ω, See Note 4	C _L = 50 pF,		4.5	7		6	9	ns
^t PZL				10	15		10	15	ns
^t PZH				6.5	10		8	12	ns
tplz	R _L = 90 Ω,	C _L = 5 pF,		10	15		10	15	ns
^t PHZ	See Note 4			6	9		6	9	ns

NOTE 4: Load circuits and voltage waveforms are shown in Section 1.

SDLS144 - APRIL 1985 - REVISED MARCH 1988

IMPORTANT NOTICE

Texas Instruments and its subsidiaries (TI) reserve the right to make changes to their products or to discontinue any product or service without notice, and advise customers to obtain the latest version of relevant information to verify, before placing orders, that information being relied on is current and complete. All products are sold subject to the terms and conditions of sale supplied at the time of order acknowledgement, including those pertaining to warranty, patent infringement, and limitation of liability.

TI warrants performance of its semiconductor products to the specifications applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques are utilized to the extent TI deems necessary to support this warranty. Specific testing of all parameters of each device is not necessarily performed, except those mandated by government requirements.

CERTAIN APPLICATIONS USING SEMICONDUCTOR PRODUCTS MAY INVOLVE POTENTIAL RISKS OF DEATH, PERSONAL INJURY, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE ("CRITICAL APPLICATIONS"). TI SEMICONDUCTOR PRODUCTS ARE NOT DESIGNED, AUTHORIZED, OR WARRANTED TO BE SUITABLE FOR USE IN LIFE-SUPPORT DEVICES OR SYSTEMS OR OTHER CRITICAL APPLICATIONS. INCLUSION OF TI PRODUCTS IN SUCH APPLICATIONS IS UNDERSTOOD TO BE FULLY AT THE CUSTOMER'S RISK.

In order to minimize risks associated with the customer's applications, adequate design and operating safeguards must be provided by the customer to minimize inherent or procedural hazards.

TI assumes no liability for applications assistance or customer product design. TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right of TI covering or relating to any combination, machine, or process in which such semiconductor products or services might be or are used. TI's publication of information regarding any third party's products or services does not constitute TI's approval, warranty or endorsement thereof.

Copyright © 1999, Texas Instruments Incorporated

🜵 Texas Instruments	THE WORLD LEADER IN DSP AND ANALOG
Products 💌	Development Tools Applications GO GO GO
Search GO	■ Advanced Search ■ TI Home ■ TI&ME ■ Employment ■ Tech Support ■ Comments ■ Site Map ■ TI Global

PRODUCT FOLDER | PRODUCT INFO: <u>FEATURES | DESCRIPTION | DATASHEETS | PRICING/AVAILABILITY |</u> <u>APPLICATION NOTES | RELATED DOCUMENTS | MODELS</u>

PRODUCT SUPPORT: TRAINING

SN74LS240, Octal buffers and line drivers

DEVICE STATUS: ACTIVE

PARAMETER NAME	SN74LS240				
Voltage Nodes (V)	5				
Vcc range (V)	4.75 to 5.25				
Input Level	TTL				
Output Level	TTL				
No. of Outputs	8				
Output Drive (mA)	-15/24				
tpd(max) (ns)	18				
Static Current	35.5				
Logic	Inv				

FEATURES

Back to Top

- 3-State Outputs Drive Bus Lines or Buffer Memory Address Registers
- PNP Inputs Reduce D-C Loading
- Hysteresis at Inputs Improves Noise Margins

These octal buffers and line drivers are designed specifically to improve both the performance and density of three-state memory address drivers, clock drivers, and bus-oriented receivers and transmitters. The designer has a choice of selected combinations of inverting and noninverting outputs, symmetrical G\ (active-low output control) inputs, and complementary G and G\ inputs. These devices feature high fan-out, improved fan-in, and 400-mV noise-margin. The SN74LS' and SN74S' can be used to drive terminated lines down to 133 ohms.

The SN54' family is characterized for operation over the full military temperature range of -55°C to 125°C. The SN74' family is characterized for operation from 0°C to 70°C.

TECHNICAL DOCUMENTS	Back to Top
To view the following documents, <u>Acrobat Reader 3.x</u> is required.	
To download a document to your hard drive, right-click on the link and choose 'Save'.	
DATASHEET	Back to Top
Full datasheet in Acrobat PDF: sdls144.pdf (271 KB) (Updated: 03/01/1988)	
Full datasheet in Zipped PostScript: <u>sdls144.psz</u> (494 KB)	
	Deals to Tan
APPLICATION NOTES	Back to Top
View Application Reports for <u>Digital Logic</u>	
 Designing With Logic (SDYA009C - Updated: 06/01/1997) 	
• Designing with the SN54/74LS123 (SDLA006A - Updated: 03/01/1997)	
 Input and Output Characteristics of Digital Integrated Circuits (SDYA010 - Updated 	: 10/01/1996)
 Live Insertion (SDYA012 - Updated: 10/01/1996) 	
RELATED DOCUMENTS	Book to Top
RELATED DOCOMENTS	Back to Top
Decumentation Dulos (SAD) And Ordering Information (SZZU001P, 4 KP, under a langer)	05/04/1000)
Documentation Rules (SAP) And Ordering Information (SZZU001B, 4 KB - Updated	
Logic Selection Guide Second Half 2000 (SDYU001N, 5035 KB - Updated: 04/17/2000))
 MicroStar Junior BGA Design Summary (SCET004, 167 KB - Updated: 07/28/2000) 	
 More Power In Less Space - Technical Article (SCAU001A, 850 KB - Updated: 03/01/1 	1996)

PRICING/AVAILABILITY	(<u>ABack to</u>	<u>о Тор</u>	
ORDERABLE DEVICE	<u>PACKAGE</u>	<u>PINS</u>	<u>TEMP (°C)</u>	<u>STATUS</u>	<u>BUDGETARY PRICE</u> <u>US\$/UNIT</u>	PACK QTY	PRICING/AVAILABILITY

					<u>QTY=1000+</u>		
SN74LS240DW	DW	20	0 TO 70	ACTIVE	0.50	25	Check stock or order
SN74LS240DWR	<u>DW</u>	20	0 TO 70	ACTIVE	0.53	2000	Check stock or order
SN74LS240J	Ţ	20	0 TO 70	OBSOLETE			
SN74LS240N	<u>N</u>	20	0 TO 70	ACTIVE	0.47	20	Check stock or order
SN74LS240N3	N	20	0 TO 70	OBSOLETE			
SN74LS240NSR	<u>NS</u>	20	0 TO 70	ACTIVE	0.59	2000	Check stock or order

MODELS

Back to Top

Octal Buffer and Line Driver With 3-State Outputs (SDLM007, 65 KB - Updated: 08/08/2000)
 Octal Buffer and Line Driver With 3-State Outputs (SDLM007, 10 KB, ZIP - Updated: 08/08/2000)

Table Data Updated on: 11/17/2000

© Copyright 2000 Texas Instruments Incorporated. All rights reserved. Trademarks | Privacy Policy | Important Notice

🜵 Texas Instruments	THE WORLD LEADER IN DSP AND ANALOG
Products 💌	Development Tools Applications GO GO GO
Search GO	■ Advanced Search ■ TI Home ■ TI&ME ■ Employment ■ Tech Support ■ Comments ■ Site Map ■ TI Global

PRODUCT FOLDER | PRODUCT INFO: <u>FEATURES | DESCRIPTION | DATASHEETS | PRICING/AVAILABILITY |</u> <u>APPLICATION NOTES | RELATED DOCUMENTS | MODELS</u>

PRODUCT SUPPORT: TRAINING

SN74LS244, Octal Buffers And Line Drivers With 3-State Outputs

DEVICE STATUS: ACTIVE

PARAMETER NAME	SN74LS244
Voltage Nodes (V)	5
Vcc range (V)	4.75 to 5.25
Input Level	TTL
Output Level	TTL
Output Drive (mA)	-15/24
tpd(max) (ns)	18
Static Current	36.5

FEATURES

Back to Top

- 3-State Outputs Drive Bus Lines or Buffer Memory Address Registers
- PNP Inputs Reduce D-C Loading
- Hysteresis at Inputs Improves Noise Margins

DESCRIPTION

These octal buffers and line drivers are designed specifically to improve both the performance and density of three-state memory address drivers, clock drivers, and bus-oriented receivers and transmitters. The designer has a choice of selected combinations of inverting and noninverting outputs, symmetrical G\ (active-low output control) inputs, and complementary G and G\ inputs. These devices feature high fan-out, improved fan-in, and 400-mV noise-margin. The SN74LS' and SN74S' can be used to drive terminated lines down to 133 ohms.

The SN54' family is characterized for operation over the full military temperature range of -55°C to 125°C. The SN74' family is characterized for operation from 0°C to 70°C.

TECHNICAL DOCUMENTS	Back to Top
To view the following documents, Acrobat Reader 3.x is required.	
To download a document to your hard drive, right-click on the link and choose 'Save'.	
DATASHEET	Back to Top
Full datasheet in Acrobat PDF: sdls144.pdf (271 KB) (Updated: 03/01/1988)	_ <u></u>
Full datasheet in Zipped PostScript: sdls144.psz (494 KB)	
APPLICATION NOTES	Back to Top
View Application Reports for <u>Digital Logic</u>	
 Designing With Logic (SDYA009C - Updated: 06/01/1997) Designing with the SN54/74LS123 (SDLA006A - Updated: 03/01/1997) Input and Output Characteristics of Digital Integrated Circuits (SDYA010 - Updated: Live Insertion (SDYA012 - Updated: 10/01/1996) Timing Differences Of 10-pF Versus 50pF Loading (SCEA004 - Updated: 11/01/1996) 	10/01/1996)
RELATED DOCUMENTS	Back to Top
 Documentation Rules (SAP) And Ordering Information (SZZU001B, 4 KB - Updated: Logic Selection Guide Second Half 2000 (SDYU001N, 5035 KB - Updated: 04/17/2000) MicroStar Junior BGA Design Summary (SCET004, 167 KB - Updated: 07/28/2000) More Power In Less Space - Technical Article (SCAU001A, 850 KB - Updated: 03/01/1 	

PRICING/AVAILABILITY		<u>ABack to Top</u>					
ORDERABLE DEVICE	PACKAGE	<u>PINS</u>	<u>TEMP (°C)</u>	<u>STATUS</u>	<u>BUDGETARY PRICE</u> <u>US\$/UNIT</u> <u>QTY=1000+</u>	<u>PACK QTY</u>	PRICING/AVAILABILITY

SN74LS244DBR	<u>DB</u>	20	0 TO 70	ACTIVE	0.50	2000	Check stock or order
SN74LS244DW	DW	20	0 TO 70	ACTIVE	0.50	25	Check stock or order
SN74LS244DWR	DW	20	0 TO 70	ACTIVE	0.53	2000	Check stock or order
SN74LS244J	Ţ	20	0 TO 70	OBSOLETE			
SN74LS244N	<u>N</u>	20	0 TO 70	ACTIVE	0.47	20	Check stock or order
SN74LS244N3	N	20	0 TO 70	OBSOLETE			
SN74LS244NSR	<u>NS</u>	20	0 TO 70	ACTIVE	0.59	2000	Check stock or order

MODELS

Back to Top

Octal Buffer and Line Driver With 3-State Outputs (SDLM008, 65 KB - Updated: 08/08/2000)
 Octal Buffer and Line Driver With 3-State Outputs (SDLM008, 10 KB, ZIP - Updated: 08/08/2000)

Table Data Updated on: 11/17/2000

© Copyright 2000 Texas Instruments Incorporated. All rights reserved. Trademarks | Privacy Policy | Important Notice