Latchable Single 8-Ch/Differential 4-Ch Analog Multiplexers

FEATURES

- Low ros(on): 270Ω
- 44-V Power Supply Rating
- On-Board Address Latches
- Break-Before-Make
- Low Leakage- $\mathrm{I}_{\mathrm{D}(\mathrm{on})}: 30 \mathrm{pA}$

BENEFITS

- Improved System Accuracy
- Microporcessor Bus Compatible
- Easily Interfaced
- Reduced Crosstalk

APPLICATIONS

- Data Acquisition Systems
- Automatic Test Equipment
- Avionics and Military Systems
- Medical Instrumentation

DESCRIPTION

The DG528 is an 8-channel single-ended analog multiplexer designed to connect one of eight inputs to a common output as determined by a 3-bit binary address ($\mathrm{A}_{0}, \mathrm{~A}_{1}, \mathrm{~A}_{2}$). DG529, a 4-channel dual analog multiplexer, is designed to connect one of four differential inputs to a common differential output as determined by its 2-bit binary address $\left(A_{0}, A_{1}\right)$ logic.

These analog multiplexers have on-chip address and control latches to simplify design in microprocessor based
applications. Break-before-make switching action protects against momentary shorting of the input signals. The DG528/529 are built on the improved PLUS-40 CMOS process. A buried layer prevents latchup.

The on chip TTL-compatible address latches simplify digital interface design and reduce board space in data acquisition systems, process controls, avionics, and ATE.

FUNCTIONAL BLOCK DIAGRAMS AND PIN CONFIGURATIONS

Top View

Top View

TRUTH TABLE — DG528						
8-Channel Single-Ended Multiplexer						

TRUTH TABLE - DG529 Differential 4-Channel Multiplexer				
A_{0}	EN	WR	RS	On Switch
Latching				
X	X	5	1	Maintains previous switch condition
Reset				
X	X	X	0	None (latches cleared)
Transparent Operation				
X	0	0	1	None
0	1	0	1	1
1	1	0	1	2
0	1	0	1	3
1	1	0	1	4

Logic "0" $=\mathrm{V}_{\mathrm{AL}} \leq 0.8 \mathrm{~V}$
Logic "1" $=\mathrm{V}_{\mathrm{AH}} \geq 2.4 \mathrm{~V}$
$\mathrm{X}=$ Don't Care

ORDERING INFORMATION - DG528		
Temp Range	Package	Part Number
0 to $70^{\circ} \mathrm{C}$	18-Pin Plastic DIP	DG528CJ
	20-Pin PLCC	DG528DN
-25 to $85^{\circ} \mathrm{C}$	18-Pin CerDIP	DG528BK
-55 to $125^{\circ} \mathrm{C}$		DG528AK
		DG528AK/883
		5962-8768901VA

ORDERING INFORMATION - DG529		
Temp Range	Package	Part Number
0 to $70^{\circ} \mathrm{C}$	18 -Pin Plastic DIP	DG529CJ
-25 to $85^{\circ} \mathrm{C}$	18 -Pin CerDIP	DG529BK
-55 to $125^{\circ} \mathrm{C}$		

ABSOLUTE MAXIMUM RATINGS

Voltage Referenced to V -
GND 44 V
Digital Inputs ${ }^{\text {a }}, \mathrm{V}_{\mathrm{S}}, \mathrm{V}_{\mathrm{D}}$ (V-) -2 V to (V+) +2 V or
30 mA , whichever occurs first
Continuous Current, S or D 30 mA
Peak Current, S or D
(Pulsed at $1 \mathrm{~ms}, 10 \%$ Duty Cycle Max) 40 mA
Storage Temperature (AK, BK Suffix)
-65 to $125^{\circ} \mathrm{C}$

[^0]DG528/529
Vishay Siliconix

SPECIFICATIONS ${ }^{\mathbf{a}}$

Parameter	Symbol	Test Conditions Unless Otherwise Specified$\begin{aligned} & \mathrm{V}+=15 \mathrm{~V}, \mathrm{~V}-=-15 \mathrm{~V}, \mathrm{WR}=0 \\ & \mathrm{RS}=2.4 \mathrm{~V}, \mathrm{~V}_{\mathrm{IN}}=2.4 \mathrm{~V}, 0.8 \mu \mathrm{~F}^{\mathrm{f}} \end{aligned}$		Temp ${ }^{\text {b }}$	Typ ${ }^{\text {c }}$	A Suffix -55 to $125^{\circ} \mathrm{C}$		$\begin{aligned} & \text { B, C, D } \\ & \text { Suffix } \\ & -40 \text { to } 85^{\circ} \mathrm{C} \end{aligned}$		Unit	
				Min ${ }^{\text {d }}$		Max ${ }^{\text {d }}$	Min ${ }^{\text {d }}$	Max ${ }^{\text {d }}$			
Analog Switch											
Analog Signal Range ${ }^{\text {e }}$	$V_{\text {ANALOG }}$				Full		-15	15	-15	15	V
Drain-Source On-Resistance	${ }^{\text {d }}$ (on)	$V_{D}=$ Q $10 \mathrm{~V}, \mathrm{I}_{\mathrm{S}}=-200 \mu \mathrm{~A}$		Room Full	270		$\begin{aligned} & 400 \\ & 500 \end{aligned}$		$\begin{aligned} & 450 \\ & 550 \end{aligned}$	Ω	
Greatest Change in $r_{\text {DS(on) }}$ Between Channels ${ }^{f}$	$\Delta \mathrm{r}_{\text {DS }}(\mathrm{on})$	$-10 \mathrm{~V}<\mathrm{V}_{\mathrm{S}}<10 \mathrm{~V}$		Room	6					\%	
Source Off Leakage Current	$\mathrm{I}_{\text {S(off) }}$	$\begin{gathered} \mathrm{V}_{\mathrm{EN}}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{S}}= \pm 10 \mathrm{~V} \\ \mathrm{~V}_{\mathrm{D}}=\mp 10 \mathrm{~V} \end{gathered}$		Room Full	± 0.005	$\begin{gathered} \hline-1 \\ -50 \end{gathered}$	$\begin{gathered} 1 \\ 50 \end{gathered}$	$\begin{gathered} \hline-5 \\ -50 \end{gathered}$	$\begin{gathered} 5 \\ 50 \end{gathered}$	nA	
Drain Off Leakage Current	$I_{\text {(off) }}$	$\begin{gathered} \mathrm{V}_{\mathrm{EN}}=0 \mathrm{~V} \\ \mathrm{~V}_{\mathrm{D}}= \pm 10 \mathrm{~V} \\ \mathrm{~V}_{\mathrm{S}}=\mp 10 \mathrm{~V} \end{gathered}$	DG528	$\begin{gathered} \text { Room } \\ \text { Full } \end{gathered}$	± 0.015	$\begin{gathered} -10 \\ -200 \end{gathered}$	$\begin{gathered} 10 \\ 200 \end{gathered}$	$\begin{gathered} -20 \\ -200 \end{gathered}$	$\begin{gathered} 20 \\ 200 \end{gathered}$		
			DG529	$\begin{gathered} \hline \text { Room } \\ \text { Full } \end{gathered}$	± 0.008	$\begin{gathered} \hline-10 \\ -100 \end{gathered}$	$\begin{gathered} \hline 10 \\ 100 \end{gathered}$	$\begin{gathered} \hline-20 \\ -100 \end{gathered}$	$\begin{gathered} 20 \\ 100 \end{gathered}$		
Drain On Leakage Current	$I_{\text {(on) }}$	$\begin{gathered} \mathrm{V}_{\mathrm{S}}=\mathrm{V}_{\mathrm{D}}=010 \mathrm{~V} \\ \mathrm{~V}_{\mathrm{EN}}=2.4 \mathrm{~V} \end{gathered}$	DG528	Room Full	± 0.03	$\begin{gathered} \hline-10 \\ -200 \end{gathered}$	$\begin{gathered} 10 \\ 200 \end{gathered}$	$\begin{gathered} \hline-20 \\ -200 \end{gathered}$	$\begin{gathered} 20 \\ 200 \end{gathered}$		
			DG529	$\begin{gathered} \hline \text { Room } \\ \text { Full } \end{gathered}$	± 0.015	$\begin{gathered} \hline-10 \\ -100 \end{gathered}$	$\begin{gathered} \hline 10 \\ 100 \end{gathered}$	$\begin{gathered} \hline-20 \\ -100 \end{gathered}$	$\begin{gathered} \hline 20 \\ 100 \end{gathered}$		

Digital Control

Logic Input Current	I_{AH}	$\mathrm{V}_{\mathrm{A}}=2.4 \mathrm{~V}$	Room Hot	-0.002	$\begin{aligned} & -10 \\ & -30 \end{aligned}$		$\begin{aligned} & -10 \\ & -30 \end{aligned}$	
Input Voltage High		$\mathrm{V}_{\mathrm{A}}=15 \mathrm{~V}$	Room Hot	0.006		10 30		10 30
Logic Input Current Input Voltage Low	I_{AL}	$\begin{gather*} \mathrm{V}_{\mathrm{EN}}=0 \mathrm{~V}, 2.4 \mathrm{~V}, \mathrm{~V}_{\mathrm{A}}=0 \mathrm{~V} \\ \mathrm{RS}=0 \mathrm{~V}, \mathrm{WR}=0 \mathrm{~V} \end{gather*}$	Room Hot	-0.002	-10 -30		-10 -30	

Dynamic Characteristics

Minimum Input Timing Requirements

Write Pulse Width	t_{W}		Full		300		300	
$\mathrm{~A}_{\mathrm{X}}$, EN Setup Time	t_{S}		Full		180		180	
$\mathrm{~A}_{\mathrm{X}}$, EN Hold Time	t_{H}		Full		30		30	
Reset Pulse Width	t_{RS}	$\mathrm{V}_{\mathrm{S}}=5 \mathrm{~V}$, See Figure 3	Full		500		500	

SPECIFICATIONS ${ }^{\mathbf{a}}$

Parameter	Symbol	Test Conditions Unless Otherwise Specified$\begin{aligned} & \mathrm{V}_{+}=15 \mathrm{~V}, \mathrm{~V}-=-15 \mathrm{~V}, \mathrm{WR}=0 \\ & \mathrm{RS}=2.4 \mathrm{~V}, \mathrm{~V}_{\mathrm{IN}}=2.4 \mathrm{~V}, 0.8 \mu \mathrm{~F}^{\mathrm{f}} \end{aligned}$	Temp ${ }^{\text {b }}$	Typ ${ }^{\text {c }}$	A Suffix -55 to $125^{\circ} \mathrm{C}$		$\begin{aligned} & \text { B, C, D } \\ & \text { Suffix } \\ & -40 \text { to } 85^{\circ} \mathrm{C} \end{aligned}$		Unit
					Min ${ }^{\text {d }}$	Max ${ }^{\text {d }}$	Min ${ }^{\text {d }}$	Max ${ }^{\text {d }}$	
Power Supplies									
Positive Supply Current	I+	$\mathrm{V}_{\mathrm{EN}}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{A}}=0$	Room			2.5		2.5	mA
Negative Supply Current	I-		Room		-1.5		-1.5		

Notes:

a. Refer to PROCESS OPTION FLOWCHART.
b. Room $=25^{\circ} \mathrm{C}$, Full $=$ as determined by the operating temperature suffix.
c. Typical values are for DESIGN AID ONLY, not guaranteed nor subject to production testing.
d. The algebraic convention whereby the most negative value is a minimum and the most positive a maximum, is used in this data sheet.
e. Guaranteed by design, not subject to production test.
f. $\quad \mathrm{V}_{\mathrm{IN}}=$ input voltage to perform proper function.

TYPICAL CHARACTERISTICS (25 ${ }^{\circ}$ C UNLESS NOTED)

SCHEMATIC DIAGRAM (TYPICAL CHANNEL)

FIGURE 1.

DETAILED DESCRIPTION

The internal structure of the DG528/DG529 includes a 5-V logic interface with input protection circuitry followed by a latch, level shifter, decoder and finally the switch constructed with parallel n - and p-channel MOSFETs (see Figure 1).

The logic interface circuit compares the TTL input signal against a TTL threshold reference voltage. The output of the comparator feeds the data input of a D type latch. The level sensitive D latch continuously places the D_{X} input signal on the Q_{X} output when the $\overline{W R}$ input is low, resulting in transparent latch operation. As soon as WR returns high, the latches hold the data last present on the D_{X} input, subject to the minimum input timing requirements.

Following the latches the Q_{X} signals are level shifted and decoded to provide proper drive levels for the CMOS switches. This level shifting insures full on/off switch operation for any analog signal present between the $\mathrm{V}+$ and V - supply rails.

The EN pin is used to enable the address latches during the WR pulse. It can be hard-wired to the logic supply or to V+if one of the channels will always be used (except during a reset) or it can be tied to address decoding circuitry for memory mapped operation. The RS pin is used as a master reset. All latches are cleared regardless of the state of any other latch or control line. The WR pin is used to transfer the state of the address control lines to their latches, except during a reset or when EN is low (see Truth Tables).

FIGURE 3.

FIGURE 2.

TEST CIRCUITS

FIGURE 4. Break-Before-Make

FIGURE 5. Transition Time

TEST CIRCUITS

FIGURE 6. Enable $\mathrm{t}_{\mathrm{ON}} / \mathrm{t}_{\text {OFF }}$ Time

FIGURE 7. Write Turn-On Time ton(WR)

Vishay Siliconix

TEST CIRCUITS

FIGURE 8. Reset Turn-Off Time toff(RS)

FIGURE 9. Bus Interface

APPLICATION HINTSa			
V+ Positive Supply Voltage (V)	V- Negative Supply Voltage (V)	$\mathrm{V}_{\text {IN }}$ Logic Input Voltage $\mathrm{V}_{\mathrm{INH}(\text { min })} / \mathrm{V}_{\text {INL }}$ (max) (V)	V_{S} or V_{D} Analog Voltage Range (V)
20	-20	2.4/0.8	± 20
$15^{\text {b }}$	-15	2.4/0.8	± 15
$8^{\text {c }}$	-8 (min)	2.4/0.8	± 8

Notes:
a. Application Hints are for DESIGN AID ONLY, not guaranteed and not subject to production testing.
b. Electrical Parameter Chart based on $\mathrm{V}_{+}=15 \mathrm{~V}, \mathrm{~V}_{\mathrm{L}}=5 \mathrm{~V}, \mathrm{~V}_{\mathrm{R}}=\mathrm{GND}$.
c. Operation below $\pm 8 \mathrm{~V}$ is not recommended.

The DG528/DG529 minimize the amount of interface hardware between a microprocessor system bus and the analog system being controlled or measured. The internal TTL compatible latches give these multiplexers write-only memory, that is, they can be programmed to stay in a particular switch state (e.g., switch 1 on) until the microprocessor determines it is necessary to turn different switches on or turn all switches off (see Figure 9).

The input latches become transparent when WR is held low; therefore, these multiplexers operate by direct command of the coded switch state on A_{2}, A_{1}, A_{0}. In this mode the DG528 is identical to the popular DG508A. The same is true of the DG529 versus the popular DG509A.

During system power-up, RS would be low, maintaining all eight switches in the off state. After RS returned high the DG528 maintains all switches in the off state. When the system program performs a write operation to the address assigned to the DG528, the address decoder provides a CS active low signal which is gated with the WRITE (WR) control signal. At this time the data on the DATA BUS (that will determine which switch to close) is stabilizing. When the WR signal returns to the high state, (positive edge) the input latches of the DG528 save the data from the DATA BUS. The coded information in the A_{0}, A_{1}, A_{2} and EN latches is decoded and the appropriate switch is turned on.

The EN latch allows all switches to be turned off under program control. This becomes useful when two or more DG528s are cascaded to build 16-line and larger multiplexers.

Disclaimer

All product specifications and data are subject to change without notice.
Vishay Intertechnology, Inc., its affiliates, agents, and employees, and all persons acting on its or their behalf (collectively, "Vishay"), disclaim any and all liability for any errors, inaccuracies or incompleteness contained herein or in any other disclosure relating to any product.

Vishay disclaims any and all liability arising out of the use or application of any product described herein or of any information provided herein to the maximum extent permitted by law. The product specifications do not expand or otherwise modify Vishay's terms and conditions of purchase, including but not limited to the warranty expressed therein, which apply to these products.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted by this document or by any conduct of Vishay.

The products shown herein are not designed for use in medical, life-saving, or life-sustaining applications unless otherwise expressly indicated. Customers using or selling Vishay products not expressly indicated for use in such applications do so entirely at their own risk and agree to fully indemnify Vishay for any damages arising or resulting from such use or sale. Please contact authorized Vishay personnel to obtain written terms and conditions regarding products designed for such applications.

Product names and markings noted herein may be trademarks of their respective owners.

[^0]: Power Dissipation (Package) ${ }^{\text {b }}$
 18-Pin Plastic DIPC
 470 mW
 18-Pin CerDIPd 900 mW
 20-Pin PLCC ${ }^{\text {e }}$ 800 mW
 Notes:
 a. Signals on S_{X}, D_{X} or IN_{X} exceeding $\mathrm{V}+$ or V - will be clamped by internal diodes. Limit forward diode current to maximum current ratings
 b. All leads soldered or welded to PC board
 c. Derate $6.3 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ above $75^{\circ} \mathrm{C}$.
 d. Derate $1.2 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ above $75^{\circ} \mathrm{C}$.
 e. Derate $10 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ above $75^{\circ} \mathrm{C}$.

