3.3V CMOS FAST SRAM WITH 2.5V COMPATIBLE INPUTS 256K (32K x 8-BIT) **IDT71V256SB** #### **FEATURES** - · Ideal for high-performance processor secondary cache - · Fast access times: - 12/15/20ns - Inputs are 2.5V and LVTTL compatible: ViH = 1.8V - Outputs are LVTTL compatible - Low standby current (maximum): - 2mA full standby - · Small packages for space-efficient layouts: - 28-pin 300 mil SOJ - 28-pin TSOP Type I - Produced with advanced high-performance CMOS technology - Single 3.3V(±0.3V) power supply ### DESCRIPTION The IDT71V256SB is a 262,144-bit high-speed static RAM organized as 32K x 8. The improved VIH (1.8V) makes the inputs compatible with 2.5V logic levels. The IDT71V256SB is otherwise identical to the IDT71V256SA. The IDT71V256SB has outstanding low power characteristics while at the same time maintaining very high performance. Address access times of as fast as12 ns are ideal for tag SRAM in secondary cache designs. When power management logic puts the IDT71V256SB in standby mode, its very low power characteristics contribute to extended battery life. By taking $\overline{\text{CS}}$ HIGH, the SRAM will automatically go to a low power standby mode and will remain in standby as long as $\overline{\text{CS}}$ remains HIGH. Furthermore, under full standby mode ($\overline{\text{CS}}$ at CMOS level, f=0), power consumption is guaranteed to always be less than 6.6mW and typically will be much smaller. The IDT71V256SB is packaged in 28-pin 300 mil SOJ and 28-pin 300 mil TSOP Type I packaging. ### **FUNCTIONAL BLOCK DIAGRAM** The IDT logo is a registered trademark of Integrated Device Technology, Inc ### **PIN CONFIGURATIONS** ### PIN DESCRIPTIONS | Name | Description | | | | | |-----------|-------------------|--|--|--|--| | A0-A14 | Addresses | | | | | | I/O0-I/O7 | Data Input/Output | | | | | | <u>cs</u> | Chip Select | | | | | | WE | Write Enable | | | | | | ŌĒ | Output Enable | | | | | | GND | Ground | | | | | | Vcc | Power | | | | | 3770 tbl 01 ## TRUTH TABLE(1) | WE | <u>cs</u> | ŌĒ | I/O | Function | | |----|-----------|----|--------|----------------|--| | Х | Н | Х | High-Z | Standby (ISB) | | | Х | VHC | Х | High-Z | Standby (ISB1) | | | Н | L | Н | High-Z | Output Disable | | | Н | L | L | Dout | Read | | | L | L | Х | Din | Write | | **NOTE:**1. $H = V_{IH}, L = V_{IL}, X = Don't Care$ 3770 tbl 02 ## ABSOLUTE MAXIMUM RATINGS(1) | Symbol | Rating | Rating Com'l. | | | | |--------------------------|---|---------------|----|--|--| | VTERM ⁽²⁾ | Terminal Voltage with
Respect to GND | -0.5 to +4.6 | ٧ | | | | VTERM ⁽³⁾ | Terminal Voltage with
Respect to GND | <u> </u> | | | | | Та | Operating Temperature | 0 to +70 | °C | | | | TBIAS | TBIAS Temperature Under Bias -55 to +1 | | °C | | | | TSTG Storage Temperature | | -55 to +125 | °C | | | | PT | Power Dissipation | 1.0 | W | | | | lout | DC Output Current | 50 | mA | | | NOTES: 3770 tbl 03 - Stresses greater than those listed under ABSOLUTE MAXIMUM RATINGS may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect reliability. - 2. Vcc terminals only - 3. Input, Output, and I/O terminals; 4.6V maximum. ### **CAPACITANCE** $(TA = +25^{\circ}C, f = 1.0MHz, SOJ package)$ | Symbol | Parameter ⁽¹⁾ | Conditions | Max. | Unit | |--------|--------------------------|------------|------|------| | CIN | Input Capacitance | VIN = 3dV | 6 | рF | | Соит | Output Capacitance | Vout = 3dV | 7 | рF | NOTE: 3770 tbl 04 This parameter is determined by device characterization, but is not production tested. # RECOMMENDED OPERATING TEMPERATURE AND SUPPLY VOLTAGE | Grade | e Temperature | | Vcc | |------------|---------------|----|-------------| | Commercial | 0°C to +70°C | οV | 3.3V ± 0.3V | 3770 tbl 05 # RECOMMENDED DC OPERATING CONDITIONS | Symbol | Parameter | Min. | Тур. | Max. | Unit | |--------|-----------------------------|---------------------|------|---------|------| | Vcc | Supply Voltage | 3.0 | 3.3 | 3.6 | ٧ | | GND | Supply Voltage | 0 | 0 | ٧ | | | VIH | Input High Voltage - Inputs | 1.8 | | 5.0 | ٧ | | VIH | Input High Voltage - I/O | 1.8 | | Vcc+0.3 | ٧ | | VIL | Input Low Voltage | -0.5 ⁽¹⁾ | | 0.8 | ٧ | NOTE: 3770 tbl 06 1. $V \parallel (min.) = -1.0V$ for pulse width less than 5ns, once per cycle. # DC ELECTRICAL CHARACTERISTICS(1, 2) (VCC = $3.3V \pm 0.3V$, VLC = 0.2V, VHC = VCC - 0.2V) | Symbol | Parameter | 71V256SB12
Com'l | 71V256SB15
Com'l. | 71V256SB20
Com'l. | Unit | |--------|---|---------------------|----------------------|----------------------|------| | lcc | Dynamic Operating Current $\overline{CS} \le VIL$, Outputs Open, $VCC = Max.$, $f = fMax^{(2)}$ | 90 | 85 | 85 | mA | | ISB | Standby Power Supply Current (TTL Level) CS = VIH, VCC = Max., Outputs Open, f = fMAX ⁽²⁾ | 20 | 20 | 20 | mA | | ISB1 | Full Standby Power Supply Current (CMOS Level) $\overline{\text{CS}} \geq \text{VHc}$, $\text{Vcc} = \text{Max.}$, Outputs Open, $f = 0^{(2)}$, $\text{VIN} \leq \text{VLC}$ or $\text{VIN} \geq \text{VHC}$ | 2 | 2 | 2 | mA | ### NOTES: 3770 tbl 07 - 1. All values are maximum guaranteed values. - 2. fMAX = 1/tRC, only address inputs cycling at fmax; f = 0 means that no inputs are cycling. ### DC ELECTRICAL CHARACTERISTICS $Vcc = 3.3V \pm 0.3V$ | | | | IDT71V256SB | | | | |--------|------------------------|--|-------------|------|------|------| | Symbol | Parameter | Test Condition | Min. | Тур. | Max. | Unit | | lu | Input Leakage Current | Vcc = Max., Vin = GND to Vcc | _ | _ | 2 | μА | | [ILO] | Output Leakage Current | $VCC = Max., \overline{CS} = VIH, VOUT = GND to VCC$ | _ | - | 2 | μΑ | | Vol | Output Low Voltage | IOL = 8mA, VCC = Min. | _ | _ | 0.4 | V | | Voн | Output High Voltage | IOH = -4mA, VCC = Min. | 2.4 | _ | _ | V | 3770 tbl 08 ### **AC TEST CONDITIONS** | Input Pulse Levels | GND to 3.0V | |-------------------------------|---------------------| | Input Rise/Fall Times | 3ns | | Input Timing Reference Levels | 1.5V | | Output Reference Levels | 1.5V | | AC Test Load | See Figures 1 and 2 | 3770 tbl 09 Figure 1. AC Test Load Figure 2. AC Test Load (for tclz, tolz, tchz, tohz, tow, twhz) ^{*}Includes scope and jig capacitances ### **AC ELECTRICAL CHARACTERISTICS** (Vcc = 3.3V ± 0.3V, Commercial Temperature Range) | | | 71V256SA12 | | 71V25 | 6SA15 | 71V256SA20 | | | |---------------------|---|------------|------|-------|-------|------------|------|------| | Symbol | Parameter | Min. | Max. | Min. | Max. | Min. | Max. | Unit | | Read C | cycle control of the | | | | | | | | | tRC | Read Cycle Time | 12 | | 15 | _ | 20 | | ns | | taa | Address Access Time | _ | 12 | | 15 | | 20 | ns | | tacs | Chip Select Access Time | _ | 12 | | 15 | _ | 20 | ns | | tcLZ ⁽¹⁾ | Chip Select to Output in Low-Z | 5 | | 5 | _ | 5 | | ns | | tcHZ ⁽¹⁾ | Chip Select to Output in High-Z | 0 | 8 | 0 | 9 | 0 | 10 | ns | | toE | Output Enable to Output Valid | _ | 6 | _ | 7 | | 8 | ns | | toLZ ⁽¹⁾ | Output Enable to Output in Low-Z | 3 | | 0 | _ | 0 | | ns | | toHZ ⁽¹⁾ | Output Disable to Output in High-Z | 2 | 6 | 0 | 7 | 0 | 8 | ns | | toH | Output Hold from Address Change | 3 | _ | 3 | _ | 3 | _ | ns | | Write C | Pycle | | | | | | | | | twc | Write Cycle Time | 12 | _ | 15 | _ | 20 | | ns | | taw | Address Valid to End-of-Write | 9 | _ | 10 | _ | 15 | | ns | | tcw | Chip Select to End-of-Write | 9 | _ | 10 | _ | 15 | _ | ns | | tas | Address Set-up Time | 0 | _ | 0 | _ | 0 | | ns | | twp | Write Pulse Width | 9 | _ | 10 | _ | 15 | | ns | | twr | Write Recovery Time | 0 | _ | 0 | _ | 0 | _ | ns | | tDW | Data to Write Time Overlap | 6 | _ | 7 | _ | 8 | _ | ns | | tDH | Data Hold from Write Time | 0 | _ | 0 | _ | 0 | _ | ns | | tow ⁽¹⁾ | Output Active from End-of-Write | 4 | _ | 4 | _ | 4 | | ns | | twHz ⁽¹⁾ | Write Enable to Output in High-Z | 1 | 8 | 1 | 9 | 1 | 10 | ns | ### NOTE: 1. This parameter guaranteed with the AC test load (Figure 2) by device characterization, but is not production tested. 3770 tbl 10 # TIMING WAVEFORM OF READ CYCLE NO. 1⁽¹⁾ ### NOTES: - 1. WE is HIGH for Read cycle. - 2. Transition is measured $\pm 200 mV$ from steady state. # TIMING WAVEFORM OF READ CYCLE NO. 2^(1, 2, 4) # TIMING WAVEFORM OF READ CYCLE NO. 3^(1, 3, 4) #### NOTES: - 1. WE is HIGH for Read cycle. - 2. Device is continuously selected, CS is LOW. - 3. Address valid prior to or coincident with $\overline{\text{CS}}$ transition LOW. - 4. OE is LOW. - 5. Transition is measured $\pm 200 \text{mV}$ from steady state. # TIMING WAVEFORM OF WRITE CYCLE NO. 1 (WE CONTROLLED TIMING)(1, 2, 3, 5, 7) ### NOTES: - 1. WE or CS must be HIGH during all address transitions. - 2. A write occurs during the overlap of a LOW $\overline{\text{CS}}$ and a LOW $\overline{\text{WE}}$. - 3. twn is measured from the earlier of \overline{CS} or \overline{WE} going HIGH to the end of the write cycle. - 4. During this period, I/O pins are in the output state so that the input signals must not be applied. - 5. If the CS LOW transition occurs simultaneously with or after the WE LOW transition, the outputs remain in a high-impedance state. - 6. Transition is measured ±200mV from steady state. - 7. If \overline{OE} is LOW during a \overline{WE} controlled write cycle, the write pulse width must be the larger of twp or (twHz + tow) to allow the I/O drivers to turn off and data to be placed on the bus for the required tow. If \overline{OE} is HIGH during a \overline{WE} controlled write cycle, this requirement does not apply and the write pulse can be as short as the spectified twp. # TIMING WAVEFORM OF WRITE CYCLE NO. 2 (CS CONTROLLED TIMING)(1, 2, 3, 4) #### NOTES: - 1. WE or CS must be HIGH during all address transitions. - 2. A write occurs during the overlap of a LOW CS and a LOW WE. - 3. twn is measured from the earlier of $\overline{\text{CS}}$ or $\overline{\text{WE}}$ going HIGH to the end of the write cycle. - 4. If the $\overline{\text{CS}}$ LOW transition occurs simultaneously with or after the $\overline{\text{WE}}$ LOW transition, the outputs remain in a high-impedance state. - 5. If \overline{OE} is LOW during a \overline{WE} controlled write cycle, the write pulse width must be the larger of twp or (twhz + tow) to allow the I/O drivers to turn off and data to be placed on the bus for the required tow. If \overline{OE} is HIGH during a \overline{WE} controlled write cycle, this requirement does not apply and the write pulse can be as short as the spectified twp. ### ORDERING INFORMATION 7.?? 6 ### PACKAGE DIAGRAM OUTLINES ### SOJ (Continued) | | DWG # 5020-1 | | | 1 | DW | G # | S028- | -5 | |----|--------------|----------|------|-----|--------------|------|-------|-----| | 45 | JEDE | C VARIAT | TON | | JEDEC VARIAT | | TON | | | Ä | | AD | | P | | AF | | å | | ده | MIN | HOM | MAX | Ė | MIN | NOM | MAX | Ė | | A | .120 | .130 | .140 | | .120 | .130 | .140 | | | A1 | .078 | .086 | .095 | | .078 | .085 | .095 | | | ٥ | .500 | .506 | .512 | 3,4 | .700 | .706 | .712 | 3,4 | | E | .335 | .340 | .347 | | .335 | .340 | .347 | | | E1 | .292 | .296 | .300 | 3,5 | .292 | -298 | .300 | 3,5 | | E2 | .262 | .267 | .272 | 6 | .262 | .267 | .272 | 6 | | N | | 20 | | | | 28 | | | ### NOTES: - 1 ALL DIMENSIONING AND TOLERANCING CONFORM TO ANSI Y14.5M-1982 - A DATUMS AND BE DETERMINED AT DATUM PLANE H- - DIMENSIONS D AND E1 ARE TO BE DETERMINED AT DATUM PLANE -H- - ⚠ DIMENSION D DOES NOT INCLUDE MOLD FLASH, PROTRUSIONS OR GATE BURRS, MOLD FLASH, PROTRUSIONS AND GATE BURRS SHALL NOT EXCEED .006 PER SIDE - (a) Dimension et do not include interlead flash or protrusions. Interlead flash or protrusions shall not exceed .006 per side - ⚠ DIMENSION E2 TO BE DETERMINED AT SEATING PLANE —C→ CONTACT POINT - THE CHAMPER ON THE PACKAGE BODY IS OPTIONAL. IF IT IS NOT PRESENT, A VISUAL INDEX FEATURE MUST BE LOCATED WITHIN THE ZONE INDICATED - LEAD WIDTH DIMENSION DOES NOT INCLUDE DAMBAR PROTRUSION. ALLOWABLE DAMBAR PROTRUSION IS .004 IN EXCESS OF THE LEAD WIDTH DIMENSION AT MAXIMUM MATERIAL CONDITION - A EXACT SHAPE OF EACH CORNER IS OPTIONAL - 10 ALL DIMENSIONS ARE IN INCHES - 11 This outline conforms to jedec publication 95 registration MO-088, variation ad & AF | | SEVEROMS | | | | | | | | | |-------|----------|------------------------|----------|----------|--|--|--|--|--| | DON | REV | DESCRIPTION | DATE | APPROVED | | | | | | | 27644 | 03 | REDRAW TO JEDEC FORMAT | 03/15/95 | | | | | | | ### LAND PATTERN DIMENSIONS | | MIN | MAX | MIN | MAX | |----|----------|------|----------|------| | Р | .362 | .370 | .362 | .370 | | P1 | .196 | .204 | .195 | .204 | | P2 | .450 BSC | | .650 BSC | | | X | .018 | .026 | .018 | .026 | | | .050 BSC | | .050 BSC | | | N | 20 | | 28 | | | TOLERANCES
UNLESS SPEC
DECIMAL
XXXx
XXXx
XXXX
XXXX
XXXX
XXXX | SFED
MIGULAR | | integrated Device Technology
2875 Sunsir Wey, Serie Clers, CA
287 PHONE (408) 727—9118
FAIC (408) 483—8874 THE 810—33 | 95054 | |--|------------------|------------|--|--------| | SAAWA AA | DATE
03/18/40 | TITLE | PJ 20 & 28 PACKAGE OUTLINE
.300" BODY WIDTH SOJ
.050" PITCH | : | | | | SEATE
C | PSC-4024 | 03 | | | | D0 H0 | OT SCALE DRAWING | \cap | ■ 4825771 0021969 5T3 ■ ### PACKAGE DIAGRAM OUTLINES ### TSOP (Continued) | ! | DWG # | | S028-8 | | | |-------|-----------------|------|--------|-----|--| | FOURA | JEDEC VARIATION | | | | | | B | NOT REGISTERED | | | N O | | | 5 | MIN | NOM | MAX | É | | | A | 1.00 | - | 1.20 | П | | | A1 | .05 | - | .20 | | | | A2 | .91 | 1.00 | 1.02 | | | | D | 13.40 BSC | | | 3 | | | D1 | 11.80 BSC | | | 4,5 | | | E | 8.00 BSC | | | 4,6 | | | N | 28 | | | | | ### NOTES: 1 ALL DIMENSIONING AND TOLERANCING CONFORM TO ANSI Y14.5M-1982 △ DATUMS —A— AND —B— TO BE DETERMINED AT DATUM PLANE —H— ⚠ DIMENSION D TO BE DETERMINED AT SEATING PLANE —C— DIMENSIONS D1 AND E ARE TO BE DETERMINED AT DATUM PLANE -H- △ DIMENSION 0.1 DOES NOT INCLUDE INTERLEAD FLASH OR PROTRUSIONS SHALL NOT EXCEED .13 mm PER SIDE DIMENSION E DOES NOT INCLUDE MOLD FLASH, PROTRUSIONS OR GATE BURRS. MOLD FLASH , PROTRUSIONS OR GATE BURRS SHALL NOT EXCEED .13 mm PER SIDE LEAD WIDTH DIMENSION DOES NOT INCLUDE DAMBAR PROTRUSION. ALLOWABLE DAMBAR PROTRUSION IS .08 mm in excess of the lead width dimension at maximum material condition. Dambar cannot be located on the lower radius or the foot THESE DIMENSIONS APPLY TO THE FLAT SECTION OF THE LEAD BETWEEN .10 AND .25 mm FROM THE LEAD TIP ALL DIMENSIONS ARE IN MILLIMETERS ### LAND PATTERN DIMENSIONS | | MIN | MAX | | |----|---------|-------|--| | Р | 14.20 | 14.40 | | | Ρ1 | 11.60 | 11.80 | | | P2 | 7.15 | BSC | | | X | .30 | .40 | | | ė | .55 BSC | | | | N | 28 | | | | TOLERANCES
UNLESS SPEC
DECIMAL
XX±
XXX±
XXXX± | OFFED
ANGULAR
± | | Integrated Device Technolog
2975 Stender Woy, Sonto Cloro, C/
PHONE: (408) 727-8118
FAX: (408) 482-8674 TRX: 910-3 | 93054 | |--|-----------------------|-------|---|----------| | APPROVALS | DATE | TITLE | PZ PACKAGE OUTLINE | | | DRAWN ALA | 04/15/94 | | 8.0 X 13.4 X 1.0 mm TSOP | TYPE | | CHECKED | | | .55 mm PITCH | | | | | SIZE | DRAWING No. | REV | | | | С | PSC-4044 | 01 | | | | DO N | OT SCALE DRAWING | <u> </u> | | | | | | 1 | **4825771 0021988 455**