- Independent Registers and Enables for A and B Buses - Multiplexed Real-Time and Stored Data - Flow-Through Architecture Optimizes PCB Layout - Center-Pin V_{CC} and GND Configurations Minimize High-Speed Switching Noise - EPIC™ (Enhanced-Performance Implanted CMOS) 1-µm Process - 500-mA Typical Latch-Up Immunity at 125°C ### description This device consists of bus transceiver circuits. D-type flip-flops, and control circuitry arranged for multiplexed transmission of data directly from the data bus or from the internal storage registers. Enable GAB and GBA are provided to control the transceiver functions. SAB and SBA control pins are provided to select whether real-time or stored data is transferred. The circuitry used for select control eliminates the typical decoding glitch that occurs in a multiplexer during the transition between stored and real-time data. A low input level selects real-time data, and a high selects stored data. Figure 1 illustrates the four fundamental bus-management functions that can be performed with the octal bus transceivers and registers. Data on the A or B data bus, or both, can be stored in the internal D flip-flops by low-to-high transitions at the appropriate clock pins (CAB or CBA), regardless of the select or enable control pins. When SAB and SBA are in the real-time transfer mode, it is also possible to store data without using the internal D-type flip-flops by simultaneously enabling GAB and $\overline{G}BA$. In this configuration, each output reinforces its input. Thus, when all other data sources to the two sets of bus lines are at high impedance, each set of bus lines remains at its last state. The 74ACT11652 is characterized for operation from -40°C to 85°C. Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet. EPIC is a trademark of Texas Instruments Incorporated. SCAS087A - APRIL 1993 - REVISED APRIL 1996 **BUSA** BUS B BUS B **BUSA** GAB GBA CAB СВА SAB SBA GAB GBA CAB СВА SAB SBA L L Х Х Χ L Н Н Х Х L Χ **REAL-TIME TRANSFER BUS B TO BUS A REAL-TIME TRANSFER BUS A TO BUS B BUSA** BUS B BUS B GBA GAB CAB CBA SAB SBA GAB GBA CAB CBA SAB SBA L Н Χ Н 1 Х Χ Х L H or L H or L Х Figure 1. Bus Transfer Diagram TRANSFER STORED DATA TO A AND/OR B L L Х Н Х 1 STORAGE FROM A AND/OR B 1 Х Χ Х Χ #### **FUNCTION TABLE** | INPUTS | | | UTS | | | DATA | · I/O† | OPERATION OR FUNCTION | |--------|-----|--------|----------|-----|-----|--------------------------|--------------------------|---| | GAB | GBA | CAB | СВА | SAB | SBA | A1-A8 | B1-B8 | OPERATION OR FUNCTION | | L | Ι | H or L | H or L | Х | Х | lnnut | lanut | Isolation | | L | Н | 1 | 1 | Х | Х | Input | Input | Store A and B data | | Х | Н | 1 | H or L | Х | Х | Input | Unspecified [†] | Store A, hold B | | Н | Н | 1 | † | χ‡ | X | Input | Output | Store A in both registers | | L | Χ | H or L | 1 | Х | Х | Unspecified [†] | Input | Hold A, store B | | L | L | 1 | 1 | Х | χ‡ | Output | Input | Store B in both registers | | L | L | Х | Х | Х | L | Output | lanut | Real-time B data to A bus | | L | L | Х | H or L | Х | Н | Output | Input | Stored B data to A bus | | Н | Ι | Х | Х | L | Х | lnnut | Output | Real-time A data to B bus | | Н | Н | H or L | Χ | Н | Х | Input | Output | Stored A data to B bus | | н | L | H or L | H or L | Н | Н | Output | Output | Stored A data to B bus and stored B data to A bus | [†] The data-output functions may be enabled or disabled by various signals at the GAB or GBA inputs. Data-input functions are always enabled, i.e., data at the bus terminals is stored on every low-to-high transition on the clock inputs. ### logic symbol§ § This symbol is in accordance with ANSI/IEEE Std 91-1984 and IEC Publication 617-12. [‡] Select control = L: clocks can occur simultaneously. Select control = H: clocks must be staggered to load both registers. ### logic diagram (positive logic) ### absolute maximum rating over operating free-air temperature range (unless otherwise noted) | Supply voltage, V _{CC} | –0.5 V to 7 V | |---|-----------------------------------| | Input voltage range, V _I (see Note 1) | –0.5 V to V _{CC} + 0.5 V | | Output voltage range, V _O (see Note 1) | –0.5 V to V _{CC} + 0.5 V | | Input clamp current, I_{IK} ($V_I < 0$ or $V_I > V_{CC}$) | ±20 mA | | Output clamp current, I _{OK} (V _O < 0 or V _O > V _{CC}) | ±50 mA | | Continuous output current, I _O (V _O = 0 to V _{CC}) | ±50 mA | | Continuous current through V _{CC} or GND | ±200 mA | | Maximum power dissipation at $T_A = 55^{\circ}C$ (in still air) (see Note 2) | 1.7 W | | Storage temperature range, T _{stq} | –65°C to 150°C | [†] Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability. ### recommended operating conditions (see Note 3) | | | MIN | MAX | UNIT | |----------------|------------------------------------|-----|-----|------| | Vcc | Supply voltage | 4.5 | 5.5 | V | | V_{IH} | High-level input voltage | 2 | | ٧ | | V_{IL} | Low-level input voltage | | 0.8 | ٧ | | V _I | Input voltage | 0 | Vcc | V | | Vo | Output voltage | 0 | Vcc | ٧ | | IOH | High-level output current | | -24 | mA | | loL | Low-level output current | | 24 | mA | | Δt/ΔV | Input transition rise or fall rate | 0 | 10 | ns/V | | TA | Operating free-air temperature | -40 | 85 | °C | NOTE 3: Unused inputs must be held high or low to prevent them from floating. NOTES: 1. The input and output voltage ratings may be exceeded if the input and output current ratings are observed. ^{2.} The maximum package power dissipation is calculated using a junction temperature of 150°C and a board trace length of 750 mils. ## electrical characteristics over recommended operating free-air temperature range (unless otherwise noted) | PARAMETER | | TEST CONDITIONS | | T _A = 25°C | | | MIN | MAX | UNIT | |---|---------------|---|-------|-----------------------|-----|------|--------|------|------| | P# | ANAIVIETEN | TEST CONDITIONS | Vcc | MIN | TYP | MAX | IVIIIV | WAX | UNIT | | | | I _{OH} = - 50 μA | | 4.4 | | | 4.4 | | | | | | | | 5.4 | | | 5.4 | | | | Voн | | I _{OH} = – 24 mA | | 3.94 | | | 3.8 | | V | | | | | | 4.94 | | | 4.8 | | | | V _{OL} I _{OZ} A or B ports‡ | | I _{OH} = - 75 mA [†] | 5.5 V | | | | 3.85 | | | | | | Ι _{ΟL} = 50 μΑ | | | | 0.1 | | 0.1 | | | | | | | | | 0.1 | | 0.1 | | | VOL | | L 04 mA | 4.5 V | | | 0.36 | | 0.44 | V | | | | I _{OL} = 24 mA | | | | 0.36 | | 0.44 | | | | | I _{OL} = 75 mA [†] | 5.5 V | | | | | 1.65 | | | loz | A or B ports‡ | V _O = V _{CC} or GND | 5.5 V | | | ±0.5 | | ±5 | μА | | Ч | GAB or GBA | V _I = V _{CC} or GND | 5.5 V | | | ±0.1 | | ±1 | μА | | Icc | | V _I = V _{CC} or GND, I _O = 0 | 5.5 V | | | 8 | | 80 | μА | | Δlcc | § | One input at 3.4 V, Other inputs at GND or V _{CC} | 5.5 V | | | 0.9 | | 1 | mA | | Ci | GAB or GBA | V _I = V _{CC} or GND | 5 V | | 4.5 | | | | рF | | Со | A or B ports | V _O = V _{CC} or GND | 5 V | | 12 | | | | pF | [†] Not more than one output should be tested at a time, and the duration of the test should not exceed 10 ms. ## timing requirements over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) (see Figure 2) | | PARAMETER | | T _A = 25°C | | мах | UNIT | |-----------------|--|-----|-----------------------|-----|-------|------| | | | | MAX | MIN | IVIAA | UNIT | | fclock | Clock frequency | 0 | 105 | 0 | 105 | MHz | | t _W | Pulse duration, CAB or CBA high or low | 4.8 | | 4.8 | | ns | | t _{su} | Setup time, A before CLK↑ or B before CBA↑ | 4 | | 4 | | ns | | t _h | Hold time, A after CAB↑ or B after CBA↑ | 2.5 | | 2.5 | | ns | $[\]ensuremath{^{\ddagger}}$ For I/O ports, the parameter IOZ includes the input leakage current. [§] This is the increase in supply current for each input that is at one of the specified TTL voltage levels rather than 0 V or V_{CC}. ## 74ACT11652 OCTAL BUS TRANSCEIVER AND REGISTER WITH 3-STATE OUTPUTS SCAS087A - APRIL 1993 - REVISED APRIL 1996 # switching characteristics over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) (see Figure 2) | PARAMETER | FROM | то | T _A = 25°C | | | MIN | MAX | UNIT | |------------------|---|----------|-----------------------|-----|------|--------|------|------| | PANAMETEN | (INPUT) | (OUTPUT) | MIN | TYP | MAX | IVIIIN | WAX | UNIT | | f _{max} | | | 105 | | | 105 | | MHz | | ^t PLH | A or B | B or A | 3.8 | 7 | 9.9 | 3.8 | 11.1 | ns | | ^t PHL | AOID | B 01 X | 3.4 | 6.7 | 10.7 | 3.4 | 11.6 | 10 | | ^t PLH | CBA or CAB | A or B | 5.4 | 8.4 | 11.8 | 5.4 | 13.1 | ns | | t _{PHL} | CBA or CAB | AUID | 6.1 | 9.4 | 13.1 | 6.1 | 14.4 | 10 | | ^t PLH | SBA or SAB [†]
with A or B high | A or B | 2.8 | 6.2 | 10.1 | 2.8 | 11 | | | t _{PHL} | | AOID | 5.5 | 8.7 | 12.1 | 5.5 | 13.3 | ns | | ^t PLH | SBA or SAB† | A or B | 4.9 | 7.8 | 11 | 4.9 | 12.2 | | | t _{PHL} | with A or B low | AUID | 3.9 | 7.5 | 11.6 | 3.9 | 12.6 | ns | | ^t PZH | GBA | | 3.3 | 7.2 | 11.4 | 3.3 | 12.6 | ns | | ^t PZL | GBA | А | 4.1 | 7.8 | 12.6 | 4.1 | 13.8 | 120 | | ^t PHZ | - CDA | ٨ | 5.2 | 7.2 | 9.3 | 5.2 | 9.9 | 50 | | tPLZ | GВА | А | 4.8 | 6.7 | 8.6 | 4.8 | 9.3 | ns | | ^t PZH | 0.15 | D | 5.1 | 9.1 | 13.4 | 5.1 | 15.2 | | | tpzL | GAB | В | 5.8 | 9.7 | 14.2 | 5.8 | 16.1 | ns | | t _{PHZ} | GAB | D | 3.4 | 6.8 | 9.7 | 3.4 | 10.3 | 20 | | t _{PLZ} | GAB | В | 3.1 | 6 | 8.8 | 3.1 | 9.3 | ns | [†]These parameters are measured with the internal output state of the storage register opposite that of the bus input. ## operating characteristics, $V_{CC} = 5 \text{ V}$, $T_A = 25^{\circ}\text{C}$ | PARAMETER | | | | TEST CONDITIONS | | | | |-----------------|---|------------------|-------------------------|-----------------|----|----|--| | C _{pd} | Dower dissinction appointment per transcriver | Outputs enabled | C. = 50 pF | f = 1 MHz | 59 | рF | | | | Power dissipation capacitance per transceiver | Outputs disabled | C _L = 50 pF, | f = 1 MHz | 14 | | | #### PARAMETER MEASUREMENT INFORMATION NOTES: A. C_L includes probe and jig capacitance. - B. Waveform 1 is for an output with internal conditions such that the output is low except when disabled by the output control. Waveform 2 is for an output with internal conditions such that the output is high except when disabled by the output control. - C. All input pulses are supplied by generators having the following characteristics: PRR \leq 1 MHz, Z_O = 50 Ω , t_f = 3 ns. t_f = 3 ns. - D. The outputs are measured one at a time with one input transition per measurement. Figure 2. Load Circuit and Voltage Waveforms