512K x 36, 1M x 18
2.5V Synchronous ZBTTM ${ }^{\text {TM }}$ SRAMs
2.5V I/O, Burst Counter

Pipelined Outputs

Features

- $512 \mathrm{~K} \times 36,1 \mathrm{M} \times 18$ memory configurations
- Supports high performance system speed - 200 MHz (3.0ns Clock-to-Data Access)
- ZBT ${ }^{\text {TM }}$ Feature - No dead cycles between write and read cycles
- Internally synchronized output buffer enable eliminates the need to control $\overline{O E}$
- Single R/W (READ/WRITE) control pin
- Positive clock-edge triggered address, data, and control signal registers for fully pipelined applications
- 4-word burst capability (interleaved or linear)
- Individual byte write ($\overline{\mathrm{BW}}_{1}$ - BW_{4}) control (May tie active)
- Three chip enables for simple depth expansion
- 2.5 V power supply ($\pm 5 \%$)
- 2.5 V I/O Supply (VDDQ)
- Power down controlled by ZZ input
- Packaged in a JEDEC standard 100-pin plastic thin quad flatpack (TQFP), 119 ball grid array (BGA)

Description

The IDT71T75612/812 are 2.5 V high-speed 18,874,368-bit (18 Megabit) synchronous SRAMs. They are designedtoeliminate dead bus cycles when turning the bus around between reads and writes, or writes and reads. Thus, they have been given the name ZBT $^{\text {TM }}$, or Zero Bus Turnaround.

Address and control signals are applied to the SRAM during one clock cycle, and two cycles later the associated data cycle occurs, be it read or write.

The IDT71T75612/812 contain datal/O, address and control signal registers. Outputenable is the only asynchronous signal and canbe used to disable the outputs at any given time.

A Clock Enable CEN pin allows operation of the IDT71T75612/812 tobe suspendedas long as necessary. Allsynchronousinputsareignored when (CEN) is high and the internal device registers will hold theirprevious values.

There are three chip enable pins ($\overline{\mathrm{CE}} 1, \mathrm{CE} 2, \overline{\mathrm{CE}} 2$) that allow the userto deselect the device when desired. If any one of these three is not asserted when ADV/LD is low, no new memory operation can be initiated. However, any pending datatransfers (reads orwrites) will be completed.

Pin Description Summary

A0-A19	Address Inputs	Input	Synchronous
$\overline{C E}_{1}, \mathrm{CE} 2, \bar{C}_{2}$	Chip Enables	Input	Synchronous
$\overline{\mathrm{OE}}$	Output Enable	Input	Asynchronous
R / \bar{W}	Read/Write Signal	Input	Synchronous
$\overline{\mathrm{CEN}}$	Clock Enable	Input	Synchronous
$\overline{\mathrm{BW}}_{1}, \overline{\mathrm{BW}}_{2}, \overline{\mathrm{BW}}_{3}, \overline{\mathrm{BW}}_{4}$	Individual Byte Write Selects	Input	Synchronous
CLK	Clock	Input	N/A
ADV/ $\overline{\mathrm{LD}}$	Advance burst address / Load new address	Input	Synchronous
$\overline{\mathrm{LBO}}$	Linear / Interleaved Burst Order	Input	Static
TMS	Test Mode Select	Input	N/A
TDI	Test Data Input	Input	N/A
TCK	Test Clock	Input	N/A
TDO	Test Data Input	Output	N/A
Z	Sleep Mode	Input	Synchronous
I/O0-I/O31, //Op1-I/Op4	Data Input / Output	I/O	Synchronous
Vdd, VdDQ	Core Power, I/O Power	Supply	Static
Vss	Ground	Supply	Static

Description (cont.)

The databus will tri-state two cycles after the chip is deselected or a write is initiated.

The IDT71T75612/812 have an on-chip burst counter. In the burst mode, the IDT71T75612/812 can provide four cycles of data for a single address presented to the SRAM. The order of the burst sequence is defined by the $\overline{\mathrm{LBO}}$ input pin. The $\overline{\mathrm{LBO}}$ pin selects between linear and interleaved burst sequence. The ADV/ $\overline{\mathrm{LD}}$ signal is used to load a new
externaladdress(ADV/ $\overline{\mathrm{LD}}=\mathrm{LOW}$) orincrementthe internalburstcounter (ADV/ $\overline{L D}=\mathrm{HIGH}$).

The IDT71T75612/812 SRAMsutilizeIDT's latesthigh-performance 2.5V CMOS process, and are packaged in a JEDEC Standard 14 mmx 20mm 100pinthin plastic quad flatpack (TQFP) as well as a 119 ball grid array (BGA).

Pin Definitions ${ }^{(1)}$

Symbol	Pin Function	I/0	Active	Description
A0-A19	Address Inputs	1	N/A	Synchronous Address inputs. The address register is triggered by a combination of the rising edge of CLK, ADV/ $\overline{\mathrm{LD}}$ low, $\overline{\mathrm{CEN}}$ low, and true chip enables.
ADV/LD	Advance / Load	1	N/A	ADV/ $\overline{L D}$ is a synchronous input that is used to load the intermal registers with new address and control when it is sampled low at the rising edge of clock with the chip selected. When ADV/LD is low with the chip deselected, any burst in progress is teminated. When ADV/ $\overline{\mathrm{D}}$ is sampled high then the internal burst counter is advanced for any burst that was in progress. The extermal addresses are ignored when ADV/L̄D is sampled high.
$\mathrm{R} \bar{W}$	Read / Write	1	N/A	$R \bar{W}$ signal is a synchronous input that identifies whether the current load cycle initiated is a Read or Write access to the memory array. The data bus activity for the current cycle takes place two clock cycles later.
$\overline{C E N}$	Clock Enable	1	LOW	Synchronous Clock Enable Input. When $\overline{\text { CEN }}$ is sampled high, all other synchronous inputs, including clock are ignored and outputs remain unchanged. The effect of CEN sampled high on the device outputs is as if the low to high clock transition did not occur. For normal operation, CEN must be sampled low at rising edge of clock.
$\overline{\mathrm{BW}} 1-\overline{\mathrm{BW}} 4$	Individual Byte Write Enables	1	LOW	Synchronous byte write enables. Each 9-bit byte has its own active low byte write enable. On load write cycles (when $\mathrm{R} / \overline{\mathrm{W}}$ and $\mathrm{ADV} / \overline{\mathrm{LD}}$ are sampled low) the appropriate byte write signal $\left(\overline{\mathrm{BW}_{1}}-\overline{\mathrm{B}} \bar{W}_{4}\right)$ must be valid. The byte write signal must also be valid on each cycle of a burst write. Byte Write signals are ignored when R / \bar{W} is sampled high. The appropriate byte(s) of data are written into the device two cycles later. $\overline{\mathrm{BW}}_{1}-\overline{\mathrm{BW}}_{4}$ can all be tied low if always doing write to the entire 36 -bit word.
$\overline{\mathrm{C}} \mathrm{E}_{1}, \bar{C}^{2} 2$	Chip Enables	1	LOW	Synchronous active low chip enable. $\overline{\mathrm{CE}} \mathrm{E}_{1}$ and $\overline{\mathrm{CE}}_{2}$ are used with CE_{2} to enable the IDT71T75612/812 ($\overline{\mathrm{CE}}_{1}$ or $\overline{\mathrm{CE}}_{2}$ sampled high or CE2 sampled low) and ADV/(̄) low at the rising edge of clock, initiates a deselect cycle. The ZBTM has a two cycle deselect, i.e., the data bus will tri-state two clock cycles after deselect is initiated.
CE2	Chip Enable	1	HIGH	Synchronous active high chip enable. CE_{2} is used with $\overline{\mathrm{C}} \bar{E}_{1}$ and $\overline{\mathrm{C}}_{2}$ to enable the chip. CE_{2} has inverted polarity but otherwise identical to $\overline{\mathrm{CE}} 1$ and $\overline{\mathrm{CE}} 2$.
CLK	Clock	1	N/A	This is the clock input to the IDT71T75612/812. Except for $\overline{\mathrm{OE}}$, all timing references for the device are made with respect to the rising edge of CLK.
$\begin{aligned} & \hline 1 / O_{0-/ / O 31} \\ & 1 / O_{P 1} 1 / / O_{P 4} \end{aligned}$	Data Input/Output	I/	N/A	Synchronous data input/output (//O) pins. Both the data input path and data outputpath are registered and triggered by the rising edge of CLK.
$\overline{\text { LBO }}$	Linear Burst Order	1	LOW	Burst order selection input. When $\overline{\overline{B O}}$ is high the Interleaved burst sequence is selected. When $\overline{\mathrm{LBO}}$ is low the Linear burst sequence is selected. $\overline{\mathrm{BO}}$ is a static input and it must not change during device operation.
$\overline{\mathrm{OE}}$	Output Enable	1	LOW	Asynchronous output enable. $\overline{\mathrm{OE}}$ must be low to read data from the $71775612 / 812$. When $\overline{\mathrm{OE}}$ is high the VO pins are in a high-impedance state. $\overline{\mathrm{OE}}$ does not need to be actively controlled for read and write cycles. In normal operation, $\overline{\mathrm{OE}}$ can be tied low.
TMS	Test Mode Select	1	N/A	Gives input command for TAP controller. Sampled on rising edge of TDK.
TDI	Test Data Input	1	N/A	Serial input of registers placed between TDI and TDO. Sampled on rising edge of TCK.
TCK	Test Clock	1	N/A	Clock input of TAP controller. Each TAP event is clocked. Test inputs are captured on rising edge of TCK, while test outputs are driven from the falling edge of TCK.
TDO	Test Data Output	0	N/A	Serial outout of registers placed between TDI and TDO. This outout is active depending on the state of the TAP controller.
ZZ	Sleep Mode	1	HGGH	Synchronous sleep mode input. ZZ HIGH will gate the CLK internally and power down the IDT71T75612/812 to its lowest power consumption level. Data retention is guaranteed in Sleep Mode.
VDD	Power Supply	N/A	N/A	2.5 V core power supply.
VDDQ	Power Supply	N/A	N/A	2.5V I/O Supply.
Vss	Ground	N/A	N/A	Ground.

NOTE:

1. All synchronous inputs must meet specified setup and hold times with respect to CLK.

Functional Block Diagram

Recommended DC Operating Conditions

Symbol	Parameter	Min.	Typ.	Max.	Unit
VDD	Core Supply Voltage	2.375	2.5	2.625	V
VDDQ	I/O Supply Voltage	2.375	2.5	2.625	V
VSS	Ground	0	0	0	V
$\mathrm{~V}_{\mathrm{H}}$	Input High Voltage - Inputs	1.7	-	$\mathrm{VDD}+0.3$	V
$\mathrm{~V}_{\mathrm{H}}$	Input High Voltage - I/O	1.7	-	$\mathrm{VDDQ}+0.3$	V
$\mathrm{~V}_{\mathrm{IL}}$	Input Low Voltage	$-0.3^{(1)}$	-	0.7	V

NOTE:

1. VIL (min.) $=-0.8 \mathrm{~V}$ for pulse width less than tcyc/2, once per cycle.

Recommended Operating Temperature and Supply Voltage

Grade	Temperature $^{(1)}$	Vss	VDD	VDDQ
Commercial	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	0 V	$2.5 \mathrm{~V} \pm 5 \%$	$2.5 \mathrm{~V} \pm 5 \%$

NOTE:
5318 tbl 05

1. TA is the "instant on" case temperature.

Pin Configuration - 512K x 36

NOTES:

1. Pins 14, 16, and 66 do not have to be connected directly to VDD as long as the input voltage is $\geq \mathrm{VIH}$.
2. Pins 38,39 and 43 will be pulled internally to Vod if not actively driven. To disable the TAP controller without interfering with normal operation, several settings are possible. Pins 38,39 and 43 could be tied to VdD or Vss and pin 42 should be left unconnected. Or all JTAG inputs (TMS, TDI and TCK) pins 38,39 and 43 could be left unconnected "NC" and the JTAG circuit will remain disabled from power up.
3. Pin 43 is reserved for the 36 M address. JTAG is not offered in the 100 -pin TQFP package for the 36M ZBT device.

Pin Configuration - 1 Mx 18

Top View 100 TQFP

NOTES:

1. Pins 14,16 , and 66 do not have to be connected directly to VdD as long as the input voltage is \geq VIH.
2. Pins 38,39 and 43 will be pulled internally to Vdd if not actively driven. To disable the TAP controller without interfering with normal operation, several settings are possible. Pins 38,39 and 43 could be tied to VDD or Vss and pin 42 should be left unconnected. Or all JTAG inputs (TMS, TDI and TCK) pins 38, 39 and 43 could be left unconnected "NC" and the JTAG circuit will remain disabled from power up.
3. Pin 43 is reserved for the 36 M address. JTAG is not offered in the 100 -pin TQFP package for the 36M ZBT device.

100-Pin TQFP Capacitance
 ($\mathbf{T A}=\mathbf{+ 2 5} \mathbf{C}, \mathrm{f}=\mathbf{1 . 0} \mathrm{MHz}$)

Symbol	Parameter $^{(1)}$	Conditions	Max.	Unit
CIN	Input Capacitance	$\mathrm{V} \mathbb{N}=3 \mathrm{dV}$	5	pF
CVo	I/O Capacitance	Vout $=3 \mathrm{dV}$	7	pF

Absolute Maximum Ratings ${ }^{(1)}$

Symbol	Rating	Commercial	Unit
VTERM $^{(2)}$	Terminal Voltage with Respect to GND	-0.5 to +3.6	V
VTERM $^{(3,6)}$	Terminal Voltage with Respect to GND	-0.5 to VDD	V
VTERM $^{(4,6)}$	Terminal Voltage with Respect to GND	-0.5 to VDD +0.5	V
VTERM $^{(5,6)}$	Terminal Voltage with Respect to GND	-0.5 to VDDQ +0.5	V
TAA $^{(7)}$	Operating Temperature	0 to +70	${ }^{\circ} \mathrm{C}$
TBIAS	Temperature Under Bias	-55 to +125	${ }^{\circ} \mathrm{C}$
TSTG	Storage Temperature	-55 to +125	${ }^{\circ} \mathrm{C}$
PT	Power Dissipation	2.0	W
lout	DC Output Current	50	mA

NOTES:
5318 tbl 06

1. Stresses greater than those listed under ABSOLUTE MAXIMUM RATINGS may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect reliability.
2. VDD terminals only.
3. VDDQ terminals only.
4. Input terminals only
5. I/O terminals only.
6. This is a steady-state DC parameter that applies after the power supply has reached its nominal operating value. Power sequencing is not necessary; however, the voltage on any input or I/O pin cannot exceed VDDQ during power supply ramp up.
7. TA is the "instant on" case temperature.

165 fBGA Capacitance
($\mathrm{TA}=+25^{\circ} \mathrm{C}, \mathrm{f}=1.0 \mathrm{MHz}$)

Symbol	Parameter $^{(1)}$	Conditions	Max.	Unit
CIN	Input Capacitance	$\mathrm{VIN}=3 \mathrm{dV}$	TDB	pF
C / V	I/O Capacitance	Vout $=3 \mathrm{dV}$	TDB	pF

5318 tbl 07

531 ib 07

119 BGA Capacitance

($\mathrm{TA}=+25^{\circ} \mathrm{C}, \mathrm{f}=1.0 \mathrm{MHz}$)

Symbol	Parameter $^{(1)}$	Conditions	Max.	Unit
CIN	Input Capacitance	$\mathrm{V} \mathbb{N}=3 \mathrm{dV}$	7	pF
C / o	I/O Capacitance	Vout $=3 \mathrm{dV}$	7	pF

NOTE:

1. This parameter is guaranteed by device characterization, but not production tested.

Pin Configuration - 512K X 36, 119 BGA $^{(1,2)}$
Top View

	1	2	3	4	5	6	7
A	VDDQ	A_{6}	A_{4}	A_{18}	A_{8}	A_{16}	VDDQ
B	NC	CE_{2}	A_{3}	ADV/LD	A_{9}	$\overline{\mathrm{C}} \mathrm{E}_{2}$	NC
C	NC	A_{7}	A_{2}	VDD	A_{12}	A_{15}	NC
D	$1 /{ }_{16}$	$1 / \mathrm{P}_{\text {P3 }}$	Vss	NC	Vss	$1 \mathrm{O}_{\mathrm{p} 2}$	$1 / 0_{15}$
E	$1 / 0_{17}$	$1 /{ }_{18}$	Vss	$\overline{\mathrm{C}} \mathrm{E}_{1}$	Vss	$1 / 0_{13}$	$1 / 0_{14}$
F	VDDQ	$1 / 0_{19}$	Vss	$\overline{\mathrm{O}}$	Vss	$1 \mathrm{O}_{12}$	VDDQ
G	$1 / \mathrm{O}_{20}$	$1 / \mathrm{O}_{21}$	$\overline{B W}_{3}$	A_{17}	$\overline{B W}_{2}$	$1 / 0_{11}$	$1 / 0_{10}$
H	$1 / \mathrm{O}_{22}$	$1 / \mathrm{O}_{23}$	Vss	$\mathrm{R} \bar{W}$	Vss	VO_{9}	$1 / \mathrm{O}_{8}$
J	VDDQ	VDD	VDD ${ }^{(1)}$	VDD	VDD ${ }^{(1)}$	VDD	VDDQ
K	$1 /{ }_{24}$	$1 / 0_{26}$	Vss	CLK	Vss	$1 / 0_{6}$	$1 / \mathrm{O}_{7}$
L	$1 / \mathrm{O}_{25}$	$1 /{ }_{27}$	$\overline{B W}_{4}$	NC	$\overline{\mathrm{B}} \mathrm{W}_{1}$	$1 \mathrm{O}_{4}$	$1 / 0_{5}$
M	VDDQ	$1 / \mathrm{O}_{28}$	Vss	CEN	Vss	$1 / 0_{3}$	VDDQ
N	$1 / 0_{29}$	$1 / 0_{30}$	Vss	A_{1}	Vss	$1 \mathrm{O}_{2}$	$1 / 0_{1}$
P	$1 / 0_{31}$	$1 / \mathrm{P}_{\text {P4 }}$	Vss	A_{0}	Vss	$1 / 0_{0}$	$1 / \mathrm{P}_{\mathrm{P} 1}$
R	NC	A_{5}	$\overline{\text { LBO }}$	VDD	VDD ${ }^{(1)}$	A_{13}	NC
T	NC	NC	A_{10}	A_{11}	A_{14}	$\mathrm{NC}^{(3)}$	Z
U	VDDQ	NC/TMS ${ }^{2}$	NC/TD1 ${ }^{2}$	NC/TCK21	NC/TDO2	NC/TRST"	VDDQ

Pin Configuration - $1 \mathrm{M} \times 18$, $119 \mathrm{BGA}^{(\mathbf{1 , 2})}$

Top View

NOTES:

1	2	3	4	5	6	7
VDDQ	A_{6}	A_{4}	A_{19}	A_{8}	A_{16}	VDDQ
NC	CE_{2}	A_{3}	ADV/LD	A_{9}	$\overline{\mathrm{C}} \mathrm{E}_{2}$	NC
NC	A_{7}	A_{2}	VDD	A_{13}	A_{17}	NC
$1 / \mathrm{O}_{8}$	NC	Vss	NC	Vss	$1 / 0_{7}$	NC
NC	$1 / 0_{9}$	Vss	$\overline{\mathrm{C}} \mathrm{E}_{1}$	Vss	NC	$1 / 0_{6}$
VDDQ	NC	Vss	$\overline{\mathrm{OE}}$	Vss	$1 \mathrm{O}_{5}$	VDDQ
NC	$1 / 0_{10}$	$\overline{\mathrm{BW}}_{2}$	A_{18}	Vss	NC	$1 / \mathrm{O}_{4}$
$1 / 0_{11}$	NC	Vss	R/W	Vss	$1 \mathrm{O}_{3}$	NC
VDDQ	VDD	VDD ${ }^{(1)}$	VDD	VDD ${ }^{(1)}$	VDD	VDDQ
NC	$1 / 0_{12}$	Vss	CLK	Vss	NC	VO_{2}
//013	NC	Vss	NC	$\overline{\mathrm{BW}} 1$	V/01	NC
VDDQ	$1 / 0_{14}$	Vss	CEN	Vss	NC	VDDQ
$1 / 0_{15}$	NC	Vss	A_{1}	Vss	$1 \mathrm{O}_{0}$	NC
NC	$1 / \mathrm{P}_{\mathrm{p} 2}$	Vss	A_{0}	Vss	NC	$1 / \mathrm{O}_{\mathrm{p} 1}$
NC	A_{5}	$\overline{\text { LBO }}$	VDD	VDD ${ }^{(1)}$	A_{12}	NC
NC	A_{10}	A_{15}	NC ${ }^{(3)}$	A_{14}	A_{11}	Z
VDDQ	NCTMS ${ }^{29}$	NC/TDI ${ }^{(2)}$	NC/TCK ${ }^{2}$	NC/TDO2)	NC/TRST2	VDDQ

1. J 3 , R5, and J 5 do not have to be directly connected to VDD as long as the input voltage is $\geq \mathrm{V} / \mathrm{I}$.
2. U2, U3, U4 and U6 will be pulled internally to VDD if not actively driven. To disable the TAP controller without interfering with normal operation, several settings are possible. U2, U3, U4 and U6 could be tied to VDD or VSS and U5 should be left unconnected. Or all JTAG inputs(TMS, TDI, and TCK and TRST) U2, U3, U4 and U6 could be left unconnected "NC" and the JTAG circuit will remain disabled from power up.
3. The 36 M address will be ball T 6 (for the $512 \mathrm{~K} \times 36$ device) and ball T 4 (for the $1 \mathrm{M} \times 18$ device.)

Synchronous Truth Table ${ }^{(1)}$

$\overline{C E N}$	R/W	Chip ${ }^{(5)}$ Enable	ADV/LD	$\overline{\mathrm{BW}} \mathrm{x}$	ADDRESS USED	PREVIOUS CYCLE	CURRENT CYCLE	I/0 (2 cycles later)
L	L	Select	L	Valid	External	X	LOAD WRITE	$D^{(7)}$
L	H	Select	L	X	External	X	LOAD READ	$Q^{(7)}$
L	X	X	H	Valid	Internal	LOAD WRITE / BURST WRITE	BURST WRITE (Advance burst counter) ${ }^{(2)}$	$D^{(7)}$
L	X	X	H	X	Internal	LOAD READ / BURST READ	BURST READ (Advance burst counter) ${ }^{(2)}$	$Q^{(7)}$
L	X	Deselect	L	X	X	X	DESELECT or STOP ${ }^{(3)}$	HiZ
L	X	X	H	X	X	DESELECT / NOOP	NOOP	HiZ
H	X	X	X	X	X	X	SUSPEND ${ }^{(4)}$	Previous Value

NOTES:

1. $\mathrm{L}=\mathrm{V}$ IL, $\mathrm{H}=\mathrm{VIH}, \mathrm{X}=$ Don't Care.
2. When $\operatorname{ADV} / \overline{L D}$ signal is sampled high, the internal burst counter is incremented. The $\mathrm{R} / \overline{\mathrm{W}}$ signal is ignored when the counter is advanced. Therefore the nature of the burst cycle (Read or Write) is determined by the status of the $\mathrm{R} \bar{W}$ signal when the first address is loaded at the beginning of the burst cycle.
3. Deselect cycle is initiated when either ($\overline{\mathrm{CE}} 1$, or $\overline{\mathrm{CE}}_{2}$ is sampled high or CE_{2} is sampled low) and $\mathrm{ADV} / \overline{\mathrm{LD}}$ is sampled low at rising edge of clock. The data bus will tri-state two cycles after deselect is initiated.
4. When $\overline{\mathrm{CEN}}$ is sampled high at the rising edge of clock, that clock edge is blocked from propogating through the part. The state of all the internal registers and the I/Os remains unchanged.
5. To select the chip requires $\overline{\mathrm{CE}}_{1}=\mathrm{L}, \overline{\mathrm{CE}}_{2}=\mathrm{L}, \mathrm{CE} 2=\mathrm{H}$ on these chip enables. Chip is deselected if any one of the chip enables is false.
6. Device Outputs are ensured to be in High-Z after the first rising edge of clock upon power-up.
7. Q - Data read from the device, D - data written to the device.

Partial Truth Table for Writes ${ }^{(1)}$

OPERATION	$\mathrm{R} / \overline{\mathrm{W}}$	$\overline{\mathrm{BW}} 1$	$\overline{\mathrm{BW}} 2_{2}$	$\overline{\mathrm{BW}}_{3}{ }^{(3)}$	$\overline{\mathrm{BW}} 4^{(3)}$
READ	H	X	X	X	X
WRITE ALL BYTES	L	L	L	L	L
WRITE BYTE 1 (//O[0:7], //OP1) ${ }^{(2)}$	L	L	H	H	H
WRITE BYTE 2 (/O[8:15], //OP2) ${ }^{(2)}$	L	H	L	H	H
WRITE BYTE 3 (//O[16:23], //OP3) ${ }^{(2,3)}$	L	H	H	L	H
WRITE BYTE 4 (//O[24:31], //OP4) ${ }^{(2,3)}$	L	H	H	H	L
NO WRITE	L	H	H	H	H

NOTES:

1. $\mathrm{L}=\mathrm{VIL}, \mathrm{H}=\mathrm{V} I \mathrm{H}, \mathrm{X}=$ Don't Care.
2. Multiple bytes may be selected during the same cycle.
3. N/A for X18 configuration.

Interleaved Burst Sequence Table ($\overline{\mathrm{LBO}}=\mathrm{VdD}$)

	Sequence 1		Sequence 2		Sequence 3		Sequence 4	
	A1	A0	A1	A0	A1	A0	A1	A0
First Address	0	0	0	1	1	0	1	1
Second Address	0	1	0	0	1	1	1	0
Third Address	1	0	1	1	0	0	0	1
Fourth Address ${ }^{(1)}$	1	1	1	0	0	1	0	0

NOTE:
5318 tbl 10

1. Upon completion of the Burst sequence the counter wraps around to its initial state and continues counting.

Linear Burst Sequence Table ($\overline{\text { LBO }}=\mathbf{V s s}$)

	Sequence 1		Sequence 2		Sequence 3		Sequence 4	
	A1	A0	A1	A0	A1	A0	A1	A0
First Address	0	0	0	1	1	0	1	1
Second Address	0	1	1	0	1	1	0	0
Third Address	1	0	1	1	0	0	0	1
Fourth Address ${ }^{(1)}$	1	1	0	0	0	1	1	0

NOTE:

1. Upon completion of the Burst sequence the counter wraps around to its initial state and continues counting.

Functional Timing Diagram ${ }^{(1)}$

NOTES:

1. This assumes $\overline{\mathrm{CEN}}, \overline{\mathrm{CE}} 1, \mathrm{CE} 2, \overline{\mathrm{CE}} 2$ are all true.
2. All Address, Control and Data_In are only required to meet set-up and hold time with respect to the rising edge of clock. Data_Out is valid after a clock-to-data delay from the rising edge of clock.

Device Operation - Showing Mixed Load, Burst, Deselect and NOOP Cycles ${ }^{(2)}$

Cycle	Address	R/W	ADV/LD	$\overline{\mathrm{C}} \mathrm{E}^{1)}$	$\overline{C E N}$	$\overline{\mathrm{BW}} \mathrm{x}$	$\overline{\mathrm{OE}}$	I/0	Comments
n	A0	H	L	L	L	X	X	X	Load read
$\mathrm{n}+1$	X	X	H	X	L	X	X	X	Burst read
n+2	A_{1}	H	L	L	L	X	L	Q0	Load read
n+3	X	X	L	H	L	X	L	Q0+1	Deselect or STOP
n+4	X	X	H	X	L	X	L	Q1	NOOP
$\mathrm{n}+5$	A2	H	L	L	L	X	X	Z	Load read
n+6	X	X	H	X	L	X	X	Z	Burst read
n+7	X	X	L	H	L	X	L	Q2	Deselect or STOP
n+8	А3	L	L	L	L	L	L	Q2+1	Load write
n+9	X	X	H	X	L	L	X	Z	Burst write
n+10	A4	L	L	L	L	L	X	D3	Load write
n+11	X	X	L	H	L	X	X	D3+1	Deselect or STOP
$\mathrm{n}+12$	X	X	H	X	L	X	X	D4	NOOP
n+13	A5	L	L	L	L	L	X	Z	Load write
n+14	A6	H	L	L	L	X	X	Z	Load read
n+15	A7	L	L	L	L	L	X	D5	Load write
n+16	X	X	H	X	L	L	L	Q6	Burst write
$\mathrm{n}+17$	A8	H	L	L	L	X	X	D7	Load read
n+18	X	X	H	X	L	X	X	D7+1	Burst read
n+19	A9	L	L	L	L	L	L	Q8	Load write

NOTES:

1. $\overline{\mathrm{CE}}=\mathrm{L}$ is defined as $\overline{\mathrm{CE}}_{1}=\mathrm{L}, \overline{\mathrm{CE}}_{2}=\mathrm{L}$ and $\mathrm{CE}_{2}=\mathrm{H} . \overline{\mathrm{CE}}=\mathrm{H}$ is defined as $\overline{\mathrm{CE}}_{1}=\mathrm{H}, \overline{\mathrm{CE}}_{2}=\mathrm{H}$ or $\mathrm{CE} 2=\mathrm{L}$.
2. $\mathrm{H}=$ High; $\mathrm{L}=$ Low; $\mathrm{X}=$ Don't Care; $\mathrm{Z}=$ High Impedance.

Read Operation ${ }^{(1)}$

Cycle	Address	$\mathrm{R} / \overline{\mathrm{W}}$	$\mathrm{ADV} / \overline{\mathrm{LD}}$	$\overline{\mathrm{CE}}^{(2)}$	$\overline{\mathrm{CEN}}$	$\overline{\mathrm{BW}} \mathrm{X}$	$\overline{\mathrm{OE}}$	$\mathrm{I} / \mathbf{0}$	Comments
n	A 0	H	L	L	L	X	X	X	Address and Control meet setup
$\mathrm{n}+1$	X	X	X	X	L	X	X	X	Clock Setup Valid
$\mathrm{n}+2$	X	X	X	X	X	X	L	Q_{0}	Contents of Address Ao Read Out

NOTES:

1. $\mathrm{H}=$ High; $\mathrm{L}=$ Low; $\mathrm{X}=$ Don't Care; $\mathrm{Z}=$ High Impedance.
2. $\overline{\mathrm{CE}}=\mathrm{L}$ is defined as $\overline{\mathrm{CE}}_{1}=\mathrm{L}, \overline{\mathrm{CE}}_{2}=\mathrm{L}$ and $\mathrm{CE} 2=\mathrm{H}$. $\overline{\mathrm{CE}}=\mathrm{H}$ is defined as $\overline{\mathrm{CE}}_{1}=\mathrm{H}, \overline{\mathrm{CE}}_{2}=\mathrm{H}$ or $\mathrm{CE} 2=\mathrm{L}$

Burst Read Operation ${ }^{(1)}$

Cycle	Address	R/W	ADV/ $\overline{L D}$	$\overline{\mathrm{CE}}{ }^{2)}$	$\overline{C E N}$	$\overline{\mathrm{BW}} \mathrm{x}$	$\overline{\mathrm{OE}}$	I/0	Comments
n	A0	H	L	L	L	X	X	X	Address and Control meet setup
n+1	X	X	H	X	L	X	X	X	Clock Setup Valid, Advance Counter
n+2	X	X	H	X	L	X	L	Q0	Address A0 Read Out, Inc. Count
n+3	X	X	H	X	L	X	L	Q0+1	Address A0+1 Read Out, Inc. Count
n+4	X	X	H	X	L	X	L	Q0+2	Address A0+2 Read Out, Inc. Count
n+5	A1	H	L	L	L	X	L	Q0+3	Address A0+3 Read Out, Load A1
n+6	X	X	H	X	L	X	L	Q0	Address A0 Read Out, Inc. Count
n+7	X	X	H	X	L	X	L	Q1	Address A1 Read Out, Inc. Count
n+8	A2	H	L	L	L	X	L	Q1+1	Address A1+1 Read Out, Load A2

NOTES:

1. $H=$ High; $L=$ Low; $X=$ Don't Care $; Z=$ High Impedance.
2. $\overline{\mathrm{CE}}=\mathrm{L}$ is defined as $\overline{\mathrm{CE}}_{1}=\mathrm{L}, \overline{\mathrm{CE}}_{2}=\mathrm{L}$ and $\mathrm{CE} 2=\mathrm{H} . \overline{\mathrm{CE}}=\mathrm{H}$ is defined as $\overline{\mathrm{CE}}_{1}=\mathrm{H}, \overline{C E}_{2}=\mathrm{H}$ or $\mathrm{CE}_{2}=\mathrm{L}$.

Write Operation ${ }^{(1)}$

Cycle	Address	$\mathrm{R} / \overline{\mathrm{W}}$	$\mathrm{ADV} / \overline{\mathrm{LD}}$	$\overline{\mathrm{C}}^{(2)}$	$\overline{\mathrm{CEN}}$	$\overline{\mathrm{BW}} \mathrm{x}$	$\overline{\mathrm{OE}}$	$\mathrm{I} / 0$	Comments
n	A 0	L	L	L	L	L	X	X	Address and Control meet setup
$\mathrm{n}+1$	X	X	X	X	L	X	X	X	Clock Setup Valid
$\mathrm{n}+2$	X	X	X	X	L	X	X	D 0	Write to Address A_{0}

NOTES:

1. $\mathrm{H}=$ High; $\mathrm{L}=$ Low; $\mathrm{X}=$ Don't Care; $\mathrm{Z}=$ High Impedance.
2. $\overline{\mathrm{CE}}=\mathrm{L}$ is defined as $\overline{\mathrm{CE}}_{1}=\mathrm{L}, \overline{\mathrm{CE}}_{2}=\mathrm{L}$ and $\mathrm{CE} 2=\mathrm{H} . \overline{\mathrm{CE}}=\mathrm{H}$ is defined as $\overline{\mathrm{CE}}_{1}=\mathrm{H}, \overline{\mathrm{CE}}_{2}=\mathrm{H}$ or $\mathrm{CE} 2=\mathrm{L}$.

Burst Write Operation ${ }^{(1)}$

Cycle	Address	R/W	ADV/LD	$\overline{\mathrm{C}} \mathrm{E}^{2)}$	CEN	$\overline{\mathrm{BW}} \mathrm{X}$	$\overline{\mathrm{OE}}$	I/0	Comments
n	A0	L	L	L	L	L	X	X	Address and Control meet setup
n+1	X	X	H	X	L	L	X	X	Clock Setup Valid, Inc. Count
n+2	X	X	H	X	L	L	X	Do	Address Ao Write, Inc. Count
n+3	X	X	H	X	L	L	X	Do+1	Address A0+1 Write, Inc. Count
n+4	X	X	H	X	L	L	X	D0+2	Address A0+2 Write, Inc. Count
n+5	A1	L	L	L	L	L	X	D $0+3$	Address A0+3 Write, Load A1
n+6	X	X	H	X	L	L	X	Do	Address Ao Write, Inc. Count
n+7	X	X	H	X	L	L	X	D1	Address A1 Write, Inc. Count
n+8	A2	L	L	L	L	L	X	D1+1	Address A1+1 Write, Load A2

NOTES:

1. $\mathrm{H}=$ High; $\mathrm{L}=$ Low; $\mathrm{X}=$ Don't Care; ? = Don't Know; $\mathrm{Z}=$ High Impedance.
2. $\overline{\mathrm{CE}}=\mathrm{L}$ is defined as $\overline{\mathrm{CE}}_{1}=\mathrm{L}, \overline{\mathrm{CE}}_{2}=\mathrm{L}$ and $\mathrm{CE}_{2}=\mathrm{H} . \overline{\mathrm{CE}}=\mathrm{H}$ is defined as $\overline{\mathrm{CE}}_{1}=\mathrm{H}, \overline{\mathrm{CE}}_{2}=\mathrm{H}$ or $\mathrm{CE} 2=\mathrm{L}$.

Read Operation with Clock Enable Used ${ }^{(1)}$

Cycle	Address	R/ \bar{W}	ADV/LD	$\overline{\mathrm{C}} \mathrm{E}^{(2)}$	CEN	$\overline{\mathrm{BW}} \mathrm{x}$	$\overline{\mathrm{OE}}$	I/0	Comments
n	A0	H	L	L	L	X	X	X	Address and Control meet setup
n+1	X	X	X	X	H	X	X	X	Clock n+1 Ignored
n+2	A1	H	L	L	L	X	X	X	Clock Valid
n+3	X	X	X	X	H	X	L	Q0	Clock Ignored. Data Qo is on the bus.
n+4	X	X	X	X	H	X	L	Qo	Clock Ignored. Data Qo is on the bus.
n+5	A2	H	L	L	L	X	L	Qo	Address A0 Read out (bus trans.)
n+6	A3	H	L	L	L	X	L	Q1	Address A1 Read out (bus trans.)
n+7	A4	H	L	L	L	X	L	Q2	Address A2 Read out (bus trans.)

NOTES:

1. $\mathrm{H}=$ High; $\mathrm{L}=$ Low; $\mathrm{X}=$ Don't Care; $\mathrm{Z}=$ High Impedance.
2. $\overline{\mathrm{CE}}=\mathrm{L}$ is defined as $\overline{\mathrm{CE}}_{1}=\mathrm{L}, \overline{\mathrm{CE}}_{2}=\mathrm{L}$ and $\mathrm{CE}_{2}=\mathrm{H} . \overline{\mathrm{CE}}=\mathrm{H}$ is defined as $\overline{\mathrm{CE}}_{1}=\mathrm{H}, \overline{\mathrm{CE}}_{2}=\mathrm{H}$ or $\mathrm{CE}_{2}=\mathrm{L}$.

Write Operation with Clock Enable Used ${ }^{(1)}$

Cycle	Address	$\mathrm{R} / \overline{\mathrm{W}}$	$\mathrm{ADV} / \overline{\mathrm{LD}}$	$\overline{\mathrm{CE}}^{2)}$	$\overline{\mathrm{CEN}}$	$\overline{\mathrm{BW}} \mathbf{x}$	$\overline{\mathrm{OE}}$	$\mathrm{I} / \mathbf{0}$	Comments
n	A 0	L	L	L	L	L	X	X	Address and Control meet setup.
$\mathrm{n}+1$	X	X	X	X	H	X	X	X	Clock n+1 lgnored.
$\mathrm{n}+2$	A 1	L	L	L	L	L	X	X	Clock Valid.
$\mathrm{n}+3$	X	X	X	X	H	X	X	X	Clock lgnored.
$\mathrm{n}+4$	X	X	X	X	H	X	X	X	Clock lgnored.
$\mathrm{n}+5$	$\mathrm{~A}_{2}$	L	L	L	L	L	X	D 0	Write Data D0
$\mathrm{n}+6$	$\mathrm{~A}_{3}$	L	L	L	L	L	X	D 1	Write Data D1
$\mathrm{n}+7$	$\mathrm{~A}_{4}$	L	L	L	L	L	X	D 2	Write Data D2

NOTES:

1. $\mathrm{H}=$ High; $\mathrm{L}=$ Low; $\mathrm{X}=$ Don't Care; $\mathrm{Z}=$ High Impedance.
2. $\overline{\mathrm{CE}}=\mathrm{L}$ is defined as $\overline{\mathrm{CE}}_{1}=\mathrm{L}, \overline{\mathrm{CE}}_{2}=\mathrm{L}$ and $\mathrm{CE} 2=\mathrm{H} . \overline{\mathrm{CE}}=\mathrm{H}$ is defined as $\overline{\mathrm{CE}}_{1}=\mathrm{H}, \overline{\mathrm{CE}}_{2}=\mathrm{H}$ or $\mathrm{CE} 2=\mathrm{L}$.

Read Operation with Chip Enable Used (1)

Cycle	Address	R/ \bar{W}	ADV/LD	$\overline{\mathrm{C}} \mathrm{E}^{2)}$	$\overline{C E N}$	$\overline{\mathrm{BW}} \mathrm{x}$	$\overline{\mathrm{OE}}$	$1 / 0^{(3)}$	Comments
n	X	X	L	H	L	X	X	?	Deselected.
n+1	X	X	L	H	L	X	X	?	Deselected.
n+2	A0	H	L	L	L	X	X	Z	Address and Control meet setup.
n+3	X	X	L	H	L	X	X	Z	Deselected or STOP.
n+4	A1	H	L	L	L	X	L	Q0	Address A0 Read out. Load A1.
n+5	X	X	L	H	L	X	X	Z	Deselected or STOP.
n+6	X	X	L	H	L	X	L	Q1	Address A1 Read out. Deselected.
n+7	A2	H	L	L	L	X	X	Z	Address and control meet setup.
n+8	X	X	L	H	L	X	X	Z	Deselected or STOP.
n+9	X	X	L	H	L	X	L	Q2	Address A2 Read out. Deselected.

NOTES:

1. $\mathrm{H}=$ High; $\mathrm{L}=$ Low; $\mathrm{X}=$ Don't Care; ? = Don't Know; $\mathrm{Z}=$ High Impedance.
2. $\overline{\mathrm{CE}}=\mathrm{L}$ is defined as $\overline{\mathrm{CE}}_{1}=\mathrm{L}, \overline{\mathrm{CE}}_{2}=\mathrm{L}$ and $\mathrm{CE} 2=\mathrm{H} . \overline{\mathrm{CE}}=\mathrm{H}$ is defined as $\overline{\mathrm{CE}}_{1}=\mathrm{H}, \overline{\mathrm{CE}}_{2}=\mathrm{H}$ or $\mathrm{CE} 2=\mathrm{L}$.
3. Device Outputs are ensured to be in High-Z after the first rising edge of clock upon power-up.

Write Operation with Chip Enable Used(1)

Cycle	Address	R/W	ADVİLD	$\overline{\mathrm{C}} \overline{\mathrm{E}}^{2)}$	$\overline{C E N}$	$\overline{\mathrm{BW}} \mathrm{x}$	$\overline{\mathrm{OE}}$	I/O	Comments
n	X	X	L	H	L	X	X	?	Deselected.
$\mathrm{n}+1$	X	X	L	H	L	X	X	?	Deselected.
n+2	A0	L	L	L	L	L	X	Z	Address and Control meet setup.
n+3	X	X	L	H	L	X	X	Z	Deselected or STOP.
n+4	A1	L	L	L	L	L	X	Do	Address Do Write in. Load A1.
n+5	X	X	L	H	L	X	X	Z	Deselected or STOP.
n+6	X	X	L	H	L	X	X	D1	Address D1 Write in. Deselected.
n+7	A2	L	L	L	L	L	X	Z	Address and control meet setup.
n+8	X	X	L	H	L	X	X	Z	Deselected or STOP.
$\mathrm{n}+9$	X	X	L	H	L	X	X	D2	Address D2 Write in. Deselected.

NOTES:

1. $\mathrm{H}=$ High; $\mathrm{L}=$ Low; $\mathrm{X}=$ Don't Care; ? = Don't Know; $\mathrm{Z}=$ High Impedance.
2. $\overline{\mathrm{CE}}=L$ is defined as $\overline{\mathrm{CE}}_{1}=\mathrm{L}, \overline{\mathrm{CE}}_{2}=L$ and $\mathrm{CE} 2=H . \overline{\mathrm{CE}}=\mathrm{H}$ is defined as $\overline{\mathrm{CE}}_{1}=\mathrm{H}, \overline{\mathrm{CE}}_{2}=\mathrm{H}$ or $\mathrm{CE} 2=\mathrm{L}$.

DC Electrical Characteristics Over the Operating

Temperature and Supply Voltage Range ($\mathrm{VdD}=\mathbf{2 . 5 V} \pm 5 \%$)

Symbol	Parameter	Test Conditions	Min.	Max.	Unit		
\|	LI		Input Leakage Current	VdD = Max., VIN = OV to VdD	-	5	$\mu \mathrm{A}$
\|	Lı		$\overline{\mathrm{LBO}}$ Input Leakage Current ${ }^{(1)}$	$\mathrm{V} D \mathrm{D}=\mathrm{Max} ., \mathrm{V}$ IN $=0 \mathrm{~V}$ to V DD	-	30	$\mu \mathrm{A}$
\|ILO		Output Leakage Current	Vout $=0 \mathrm{~V}$ to VDDQ, Device Deselected	-	5	$\mu \mathrm{A}$	
VOL	Output Low Voltage	$\mathrm{IOL}=+6 \mathrm{~mA}, \mathrm{VDD}=\mathrm{Min}$.	-	0.4	V		
VOH	Output High Voltage	$\mathrm{IOH}=-6 \mathrm{~mA}, \mathrm{VdD}=\mathrm{Min}$.	2.0	-	V		

NOTE:
5318 tbl 21

1. The $\overline{\mathrm{LBO}}$ pin will be internally pulled to VDD if it is not actively driven in the application, and the $Z Z$ pin will be internally pulled to Vss if not activelly driven.

DC Electrical Characteristics Over the Operating

Temperature and Supply Voltage Range ${ }^{(1)}$ (VDD $=\mathbf{2 . 5 V} \pm \mathbf{5 \%}$)

Symbol	Parameter	Test Conditions	200MHz	166MHz	Unit
IDD	Operating Power Supply Current	Device Selected, Outputs Open, $A D V / \overline{L D}=X, V D D=M a x$., $\mathrm{VIN}_{\mathrm{I}} \geq \mathrm{VIH}_{\mathrm{H}}$ or $\leq \mathrm{VIL}_{\mathrm{IL}} \mathrm{f}=\mathrm{fmax}^{(2)}$	400	350	mA
ISB1	CMOS Standby Power Supply Current	Device Deselected, Outputs Open, $\operatorname{VdD}=\mathrm{Max} ., \mathrm{VIN} \geq \mathrm{VhD}$ or $\leq \mathrm{VLD}$, $f=0^{(2,3)}$	40	40	mA
ISB2	Clock Running Power Supply Current	Device Deselected, Outputs Open, Vdd = Max., Vin \geq Vhd or < Vld, $f=$ fmax $^{(2.3)}$	130	120	mA
ISB3	Idle Power Supply Current	Device Selected, Outputs Open, $\overline{\mathrm{CEN}} \geq \mathrm{V}_{\mathrm{H}}, \mathrm{V}_{\mathrm{DD}}=\mathrm{Max}$., $\mathrm{VIN} \geq$ VHD or $\leq \operatorname{VLD}, \mathrm{f}=\mathrm{fmax}^{(2,3)}$	40	40	mA
Izz	Full Sleep Mode Supply Current	Device Selected, Outputs Open, $\begin{aligned} & \overline{\mathrm{CEN}} \leq \mathrm{VH}_{\mathrm{H}}, \mathrm{VDD}=\mathrm{Max}^{\prime}, \\ & \mathrm{VIN} \geq \mathrm{VHD} \text { or } \leq \mathrm{VLD}, \mathrm{f}=\text { fMAX }^{(2,3)}, \mathrm{ZIN} \geq \mathrm{VHD} \end{aligned}$	40	40	mA

NOTES:
5318 tbl 22

1. All values are maximum guaranteed values.
2. At $f=f$ max, inputs are cycling at the maximum frequency of read cycles of $1 / t c y c ; f=0$ means no input lines are changing.
3. For I/Os Vhd $=\mathrm{V} d \mathrm{dQ}-0.2 \mathrm{~V}$, V ld $=0.2 \mathrm{~V}$. For other inputs $\mathrm{Vhd}=\mathrm{VdD}-0.2 \mathrm{~V}$, V Ld $=0.2 \mathrm{~V}$.

AC Test Load

AC Test Conditions

Input Pulse Levels	0 to 2.5 V	
Input Rise/Fall Times	2 ns	
Input Timing Reference Levels	(VDDQ/2)	
Output Timing Reference Levels	(VDDQ/2)	
AC Test Load	See Figure 1	
5318 til 23		

Figure 2. Lumped Capacitive Load, Typical Derating

AC Electrical Characteristics (VDD $=2.5 \mathrm{~V}+/-5 \%, \mathrm{TA}=0$ to $\mathbf{7 0}{ }^{\circ} \mathrm{C}$)

Symbol	Parameter	200MHz		166MHz		Unit
		Min.	Max.	Min.	Max	
tcyc	Clock Cycle Time	5	-	6	-	ns
$\mathrm{tF}^{(1)}$	Clock Frequence	-	200	-	166	MHz
tch ${ }^{(2)}$	Clock High Pulse Width	1.8	-	1.8	-	ns
tcL ${ }^{(2)}$	Clock Low Pulse Width	1.8	-	1.8	-	ns
Output Parameters						
tcD	Clock High to Valid Data	-	3.0	-	3.5	ns
tcDC	Clock High to Data Change	1	-	1	-	ns
tçz z $^{(3,4,5)}$	Clock High to Output Active	1	-	1	-	ns
tch $Z^{(3,4,5)}$	Clock High to Data High-Z	1	3	1	3	ns
toe	Output Enable Access Time	-	3.0	-	3.5	ns
tozz $z^{(3,4)}$	Outp ut Enable Low to Data Active	0	-	0	-	ns
tor $\mathrm{z}^{(3,4)}$	Output Enable High to Data High-Z	-	3.5	-	3.5	ns
Set Up Times						
tse	Clock Enable Setup Time	1.5	-	1.5	-	ns
tSA	Address Setup Time	1.5	-	1.5	-	ns
tSD	Data In Setup Time	1.5	-	1.5	-	ns
tsw	Read/Write (R/W) Setup Time	1.5	-	1.5	-	ns
tsadv	Advance/Load (ADV/[̄D) Setup Time	1.5	-	1.5	-	ns
tsc	Chip Enable/Select Setup Time	1.5	-	1.5	-	ns
tsb	Byte Write Enable ($\overline{\mathrm{BW}} \mathrm{x}$) Setup Time	1.5	-	1.5	-	ns
Hold Times						
tHE	Clock Enable Hold Time	0.5	-	0.5	-	ns
tha	Address Hold Time	0.5	-	0.5	-	ns
thD	Data In Hold Time	0.5	-	0.5	-	ns
thw	Read/Write (R/W) Hold Time	0.5	-	0.5	-	ns
thadv		0.5	-	0.5	-	ns
thc	Chip Enable/Select Hold Time	0.5	-	0.5	-	ns
tнв	Byte Write Enable ($\overline{\mathrm{BW}} \mathrm{x}$) Hold Time	0.5	-	0.5	-	ns

NOTES:

1. $\mathrm{tF}=1 / \mathrm{tcyc}$.
2. Measured as HIGH above 0.6 V dod and LOW below 0.4 V ddo.
3. Transition is measured $\pm 200 \mathrm{mV}$ from steady-state.
4. These parameters are guaranteed with the AC load (Figure 1) by device characterization. They are not production tested.
5. Toavoid bus contention, the outputbuffers are designed such thattchz (deviceturn-off) isfasterthantclz (device turn-on) at a giventemperature and voltage. The specs as shown do not imply bus contention because tclz is a Min. parameter that is worse case at totally different test conditions (0 deg. $\mathrm{C}, 2.625 \mathrm{~V}$) than tchz, which is a Max. parameter (worse case at 70 deg. C, 2.375V).

Timing Waveform of Read Cycle ${ }^{(1,2,3,4)}$

[^0]Timing Waveform of Write Cycles ${ }^{(1,2,3,4,5)}$

1. $D\left(A_{1}\right)$ represents the first input to the external address A_{1}. $D\left(A_{2}\right)$ represents the first input to the external address $A_{2} ; D\left(A_{2+1}\right)$ represents the next input data in the burst sequence of the base address A_{2}, etc. where address bits A_{0} and A_{1} are advancing for the four word burst in the sequence defined by the state of the LBO input. 3. Burst ends when new address and control are loaded into the SRAM by sampling ADV/LD LOW.
2. R / \bar{W} is don't care when the SRAM is bursting (ADV/ $\overline{\mathrm{LD}}$ sampled HIGH). The nature of the burst access (Read or Write) is fixed by the state of the R / \bar{W} signal when new address and control are Ioaded into the SRAM. cycles before the actual data is presented to the SRAM.

Timing Waveform of Combined Read and Write Cycles ${ }^{(1.2 .3)}$

Timing Waveform of CEN Operation ${ }^{(1,2,3,4)}$

[^1]
Timing Waveform of $\overline{\mathbf{C S}}$ Operation ${ }^{(1,2,3,4)}$

100-Pin Thin Quad Flatpack (TQFP) Package Diagram Outline

119 Ball Grid Array (BGA) Package Diagram Outline

(119 BALL)

Timing Waveform of $\overline{\mathrm{OE}}$ Operation ${ }^{(1)}$

NOTE:

1. A read operation is assumed to be in progress.

Ordering Information

5318 drw 12

Advanced Datsheet:

"Advance Information" datasheets contain intial descriptions, subject to change, for products which are in development, including features and block diagrams.

Datasheet Document History

$\underline{\text { Rev }}$	$\underline{\text { Date }}$	Pages	
0	$05 / 25 / 00$		Description
1	$08 / 24 / 01$	p. $1,2,24$	
		p. 7	Created New Datasheet
		R.23	
		Removed reference of the BQ165 package page of the 165 BGA pin configuration	
2	$10 / 16 / 01$	p. 6	Removed page of the 165 BGA package diagram
3	$12 / 21 / 01$	p. $4-6$	Corrected 3.3V to 2.5V in Note 2

CORPORATE HEADQUARTERS
2975 Stender Way
Santa Clara, CA 95054
for SALES:
800-345-7015 or 408-727-6116
fax: 408-492-8674
www.idt.com
for Tech Support:
sramhelp@idt.com
800-544-7726, x4033

[^0]: 1. $Q\left(A_{1}\right)$ represents the first output from the external address A_{1}. $Q\left(A_{2}\right)$ represents the first output from the external address $A_{2} ; Q\left(A_{2}+1\right)$ represents the next output data in the burst sequence
 2. CE_{2} timing transitions are identical but inverted to the $\overline{\mathrm{CE}}_{1}$ and $\overline{\mathrm{C}}_{2}$ signals. For example, when $\overline{\mathrm{CE}}_{1}$ and $\overline{\mathrm{CE}}_{2}$ are LOW on this waveform, CE_{2} is HIGH^{2}.
 3. CE2 timing transions are identical but invered to the CE and CE2 signals. For example, when
 4. $R \bar{W}$ is don't care when the SRAM is bursting (ADV/ $\overline{\mathrm{L}}$ sampled HIGH). The nature of the burst access (Read or Write) is fixed by the state of the R/W signal when new address and control are loaded into the SRAM.
[^1]: NOTES:

 1. Q (A_{1}) represents the first output from the external address $A_{1} . D\left(A_{2}\right)$ represents the input data to the SRAM corresponding to address A_{2}.
 2. CE_{2} timing transitions are identical but inverted to the $\overline{\mathrm{CE}}_{1}$ and $\overline{\mathrm{CE}}_{2}$ signals. For example, when $\overline{\mathrm{CE}}_{1}$ and $\overline{\mathrm{CE}}_{2}$ are LOW on this waveform, CE 2 is HIGH .
 3. $\overline{C E N}$ when sampled high on the rising edge of clock will block that L-H transition of the clock from propogating into the SRAM. The part will behave as if the L-H clock transition did not
 occur. All internal registers in the SRAM will retain their previous state.
 4. Individual Byte Write signals $(\overline{\mathrm{BW}} \mathrm{x})$ must be valid on all write and burst-write cycles. A write cycle is initiated when $\mathrm{R} \overline{\mathrm{W}}$ signal is sampled LOW. The byte write information comes in two
 cycles before the actual data is presented to the SRAM.
