FDH40N50F

FDH40N50F

N-Channel Fast Body-Diode SMPS Power MOSFET

42A, 500V, 0.130 Ohm

Applications

Switch Mode Power Supplies(SMPS), such as

- · Half-Bridge
- Full-Bridge
- UPS
- Motor Drive
- PWM Inverters
- Phase Shifted PWMFB-ZVS Converters

Features

- Reduced R_{DS(ON)}
- Higher Gate Threshold Voltage, 4V Typical
- Lower Qgd/Qgs Ratio, Low Gate Charge $\mathbf{Q}_{g(tot)}$ results in Simple Drive Requirement
- Low Input Capacitance, Reduced Miller Capacitance
- Improved Switching Speed with Low EMI
- Optimized Antiparallel Diode with Low Trr and Soft Recovery
- 150°C Rated Junction Temperature
- High Reapplied dv/dt Ruggedness 80V/nsec

Package Symbol

Absolute Maximum Ratings T_J = 25°C unless otherwise noted

Symbol	Parameter	Ratings	Units
V _{DSS}	Drain to Source Voltage	500	V
V _{GS}	Gate to Source Voltage	±30	V
	Drain Current		
	Continuous ($T_C = 25^{\circ}C$, $V_{GS} = 10V$)	42	Α
I_{D}	Continuous ($T_C = 100^{\circ}C$, $V_{GS} = 10V$)	27	Α
	Pulsed	Figure 10	Α
D	Power dissipation	625	W
P_{D}	Derate above 25°C	5.0	W/°C
E _{AS}	Single Pulse Avalanche Energy ²	1500	mJ
I _{AR}	Avalanche Current	42	Α
dv/dt	Peak Diode Recovery ³	20	V/ns
T _J , T _{STG}	Operating and Storage Temperature	-55 to 150	°C
	Soldering Temperature for 10 seconds	300 (1.6mm from case)	°C

Thermal Characteristics

$R_{\theta JC}$	Thermal Resistance Junction to Case	0.20	°C/W
$R_{\theta CS}$	Thermal Resistance Case to Sink, Flat, Greased Surface	0.24 TYP	°C/W
$R_{\theta JA}$	Thermal Resistance Junction to Ambient	40	°C/W

Device Marking	Device	Package	Reel Size	Tape Width	Quantity
FDH40N50 FDH40N50F		TO-247	N/A	N/A	30

Electrical Characteristics T_J = 25°C (unless otherwise noted)

Symbol	Parameter	Test Conditions		Min	Тур	Max	Units
Statics							
B _{VDSS}	Drain to Source Breakdown Voltage	$I_D = 250 \mu A, V_{GS} = 0 V$		500	-	-	V
$\Delta B_{VDSS}/\Delta T_{J}$	Breakdown Voltage Temp. Coefficient	Reference to 25°C, ID = 1mA		-	0.42	-	V/°C
r _{DS(ON)}	Drain to Source On-Resistance	$V_{GS} = 10V, I_D = 21.0A$		-	0.119	0.130	Ω
V _{GS(th)}	Gate Threshold Voltage	$V_{DS} = V_{GS}, I_{D} = 250 \mu A$		3.0	4.0	5.0	V
	Zero Gate Voltage Drain Current	$V_{DS} = 500V$	$T_C = 25^{\circ}C$	-	-	25	
I _{DSS}	Zero Gate voltage Dialii Current	$V_{GS} = 0V$	$T_{\rm C} = 150^{\rm o}{\rm C}$	-	-	500	μΑ
I _{GSS}	Gate to Source Leakage Current	$V_{GS} = \pm 30V$		-	-	±100	nA

Dynamics

	I=			1		_
9 _{fs}	Forward Transconductance	$V_{DS} = 50V, I_{D} = 21A$	26	-	-	S
$Q_{g(TOT)}$	Total Gate Charge	$V_{GS} = 10V,$	-	85	108	nC
Q _{gs}	Gate to Source Gate Charge	V _{DS} = 400V,	-	27	35	nC
Q _{gd}	Gate to Drain "Miller" Charge	I _D = 42A	-	30	37	nC
t _{d(ON)}	Turn-On Delay Time	$V_{DD} = 250V$,	-	22	-	ns
t _r	Rise Time	$I_D = 42A$,	-	123	-	ns
t _{d(OFF)}	Turn-Off Delay Time	$R_G = 2.15\Omega$,	-	32	-	ns
t _f	Fall Time	$R_D = 5.95\Omega$	-	65	-	ns
C _{ISS}	Input Capacitance	V 05V V 0V	-	4800	-	pF
C _{OSS}	Output Capacitance	$V_{DS} = 25V, V_{GS} = 0V,$ $V_{DS} = 1MHz$	-	640	-	pF
C _{RSS}	Reverse Transfer Capacitance	1 - 11/11/2	-	47	-	pF
C _{O(er)}	Effective Output Capacitance,energy related	V _{GS} = 0V, V _{DS} = 0V to 400V	-	275	-	pF

Drain-Source Diode Characteristics

I _S	Continuous Source Current (Body Diode)	MOSFET symbol showing the integral reverse	-	-	42	Α
I _{SM}	Pulsed Source Current ¹ (Body Diode)	integral reverse p-n junction diode.	-	-	168	Α
V _{SD}	Source to Drain Diode Voltage	I _{SD} = 42A	-	0.93	1.2	V
t _{rr}	Reverse Recovery Time	$T_J = 25$ °C	-	165	215	ns
Q _{RR}	Reverse Recovered Charge	$I_{SD} = 42A$, $dI_{SD}/dt = 100A/\mu s$	-	0.720	0.940	μС
t _{rr}	Reverse Recovery Time	T _J = 125°C	-	240	350	ns
Q_{RR}	Reverse Recovered Charge	$I_{SD} = 42A$, $dI_{SD}/dt = 100A/\mu s$	-	1.4	2.1	μС

Repetitive rating; pulse width limited by maximum junction temperature.
 Starting T_J = 25°C, L = 1.78mH, I_{AS} = 42A
 I_{SD} < 42A, di/dt < 1000A/usec, V_{DD} = 400Vdc, T_J = 125°C

Typical Characteristics

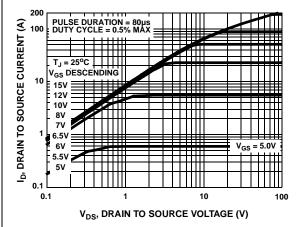


Figure 1. Output Characteristics

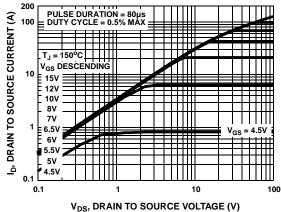


Figure 2. Output Characteristics

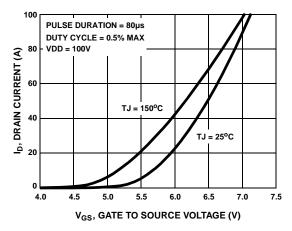


Figure 3. Transfer Characteristics

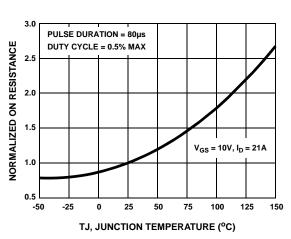


Figure 4. Normalized Drain To Source On Resistance vs Junction Temperature

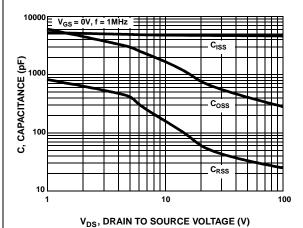
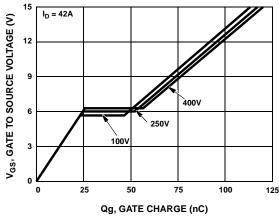
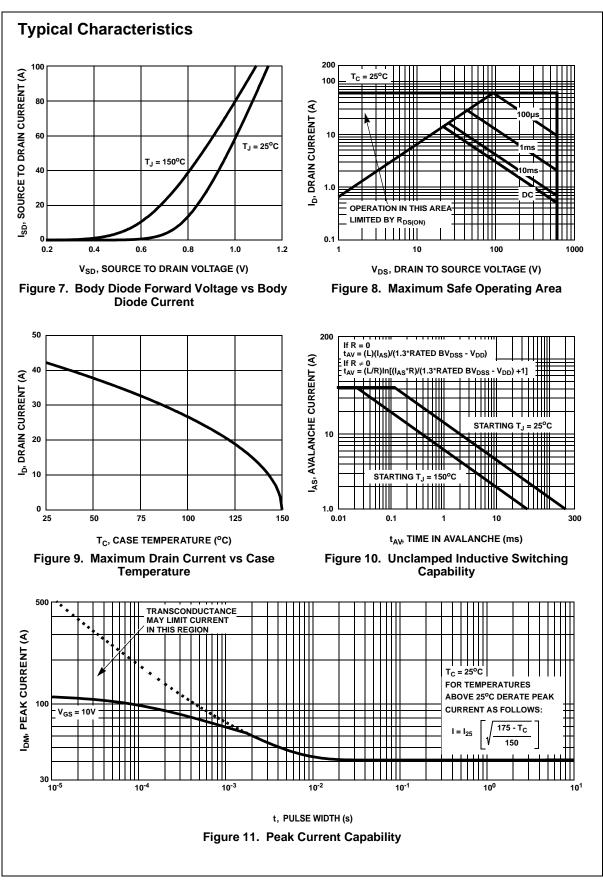
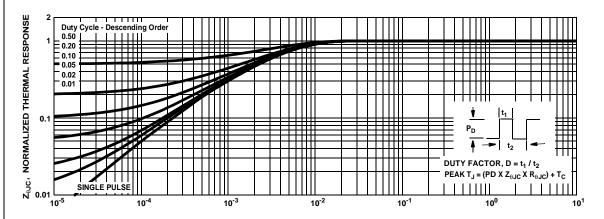


Figure 5. Capacitance vs Drain To Source Voltage


Figure 6. Gate Charge Waveforms For Constant Gate Current

©2003 Fairchild Semiconductor Corporation FDH40N50F revA2

©2003 Fairchild Semiconductor Corporation FDH40N50F revA2

 $\mathbf{t_{1}},\;\mathbf{RECTANGULAR}\;\mathbf{PULSE}\;\mathbf{DURATION}\;\mathbf{(s)}$

Figure 12. Normalized Transient Thermal Impedance, Junction to Case

Test Circuits and Waveforms

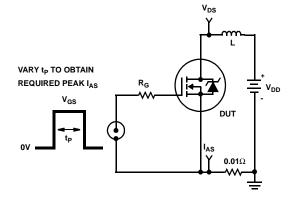


Figure 13. Unclamped Energy Test Circuit

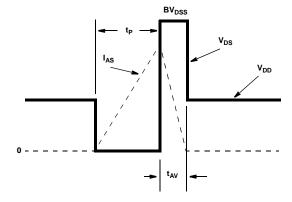


Figure 14. Unclamped Energy Waveforms

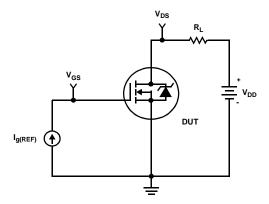


Figure 15. Gate Charge Test Circuit

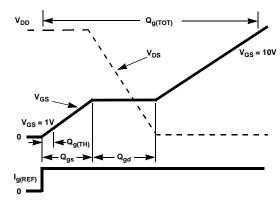


Figure 16. Gate Charge Waveforms

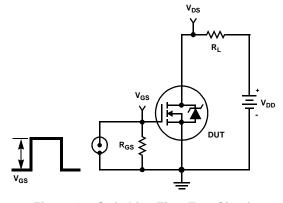


Figure 17. Switching Time Test Circuit

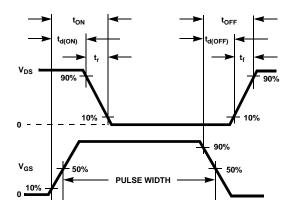


Figure 18. Switching Time Waveform

TRADEMARKS

The following are registered and unregistered trademarks Fairchild Semiconductor owns or is authorized to use and is not intended to be an exhaustive list of all such trademarks.

 $ACEx^{TM}$ FACT Quiet Series™ Power247™ SuperSOT™-6 FAST[®] PowerTrench® ActiveArray™ MICROCOUPLER™ SuperSOT™-8 QFET[®] Bottomless™ FASTr™ MicroFET™ SyncFET™ OS^{TM} TinyLogic[®] CoolFET™ FRFET™ MicroPak™ $\mathsf{CROSSVOLT}^{\mathsf{TM}}$ TINYOPTO™ GlobalOptoisolator™ MICROWIRE™ QT Optoelectronics™ TruTranslation™ $\mathsf{DOME}^\mathsf{TM}$ GTO™ MSX^{TM} Quiet Series™ HiSeC™ RapidConfigure™ EcoSPARK™ $MSXPro^{TM}$ UHC™ I²C™ UltraFET® E²CMOS™ OCX^{TM} RapidConnect™ SILENT SWITCHER® EnSigna™ ImpliedDisconnect™ $OCXPro^{TM}$ VCX^{TM} OPTOLOGIC® $FACT^{TM}$ ISOPLANAR™ SMART START™ SPM^TM Across the board. Around the world.™ **OPTOPLANAR™**

Across the board. Around the world.™ OPTOPLANAR™ SPM™
The Power Franchise™ PACMAN™ Stealth™
Programmable Active Droop™ POP™ SuperSOT™-3

DISCLAIMER

FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION OR DESIGN. FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS.

LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF FAIRCHILD SEMICONDUCTOR CORPORATION.

As used herein:

1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, or (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in significant injury to the user.

2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

PRODUCT STATUS DEFINITIONS Definition of Terms

Datasheet Identification	Product Status	Definition
Advance Information	Formative or In Design	This datasheet contains the design specifications for product development. Specifications may change in any manner without notice.
Preliminary	First Production	This datasheet contains preliminary data, and supplementary data will be published at a later date. Fairchild Semiconductor reserves the right to make changes at any time without notice in order to improve design.
No Identification Needed	Full Production	This datasheet contains final specifications. Fairchild Semiconductor reserves the right to make changes at any time without notice in order to improve design.
Obsolete	Not In Production	This datasheet contains specifications on a product that has been discontinued by Fairchild semiconductor. The datasheet is printed for reference information only.