FEMTOCLOCKSTM 680MHz, CRYSTAL-TO-3.3V DIFFERENTIAL LVPECL FREQUENCY SYNTHESIZER ### GENERAL DESCRIPTION The ICS843020-01 is a general purpose, dual output Crystal-to-3.3V Differential LVPECL High Frequency Synthesizer. The ICS843020-01 is based on IDT's 3rd generation VCO technology and is capable of sub-1ps RMS Phase Jitter performance, making it ideal for use in 10 Gigabit Ethernet, 10 Gigabit Fibre Channel, SONET and Serial ATA applications. The ICS843020-01 is a highly flexible programmable synthesizer capable of generating output frequencies over a range of 70MHz to 680MHz. The output frequency can be programmed in small step sizes as low as 250kHz when using a 16MHzcrystal, $\div 8$ input divider, and output divider = $\div 8$. ### **F**EATURES - Dual differential 3.3V LVPECL outputs - Selectable crystal oscillator interface or LVCMOS/LVTTL TEST CLK - Output frequency range: 70MHz to 680MHz - Crystal input frequency range: 12MHz to 32MHz - VCO range: 560MHz to 680MHz - Parallel or serial interface for programming feedback and output dividers - Input P_DIV under parallel load control - RMS phase jitter at 156.25MHz (1.875MHz to 20MHz): 0.49ps (typical), P_DIV = ÷1 - · 3.3V supply voltage - 0°C to 70°C ambient operating temperature - · Lead-Free package fully RoHS compliant # FEMTOCLOCKSTM 680MHz, CRYSTAL-TO-3.3V DIFFERENTIAL LVPECL FREQUENCY SYNTHESIZER #### **FUNCTIONAL DESCRIPTION** NOTE: The functional description that follows describes operation using a 25MHz crystal. Valid PLL loop divider values for different crystal or input frequencies are defined in the Input Frequency Characteristics, Table 5, NOTE 1. The ICS843020-01 features a fully integrated PLL and therefore requires no external components for setting the loop bandwidth. A fundamental crystal is used as the input to the onchip oscillator. The output of the oscillator is fed into the phase detector. A 25MHz crystal provides a 25MHz phase detector reference frequency. The VCO of the PLL operates over a range of 560MHz to 680MHz. The output of the M divider is also applied to the phase detector. The phase detector and the M divider force the VCO output frequency to be M times the reference frequency by adjusting the VCO control voltage. Note that for some values of M (either too high or too low), the PLL will not achieve lock. The output of the VCO is scaled by a divider prior to being sent to each of the LVPECL output buffers. The divider provides a 50% output duty cycle. The ICS843020-01 supports either serial or parallel programming modes to program the M feedback divider and N output divider. The input divider P can only be changed using the P_DIV pin. It cannot be changed from the default ÷1 setting using the serial interface. Figure 1 shows the timing diagram for each mode. In parallel mode, the nP_LOAD input is initially LOW. The data on inputs M0 through M8 and N0 and N1 is passed directly to the M divider and N output divider. On the LOW-to-HIGH transition of the nP_LOAD input, the data is latched and the M divider remains loaded until the next LOW transition on nP_LOAD or until a serial event occurs. As a result, the M and N bits can be hardwired to set the M divider and N output divider to a specific default state that will automatically occur during power-up. The TEST output is LOW when operating in the parallel input mode. The relation-ship between the VCO frequency, the crystal frequency and the M divider is defined as follows: $$fVCO = fxtal \times M$$ The M value and the required values of M0 through M8 are shown in Table 3B to program the VCO Frequency Function Table. Valid M values for which the PLL will achieve lock for a 25MHz reference are defined as $23 \le M \le 27$ (P = $\div 1$). The frequency out is defined as follows: FOUT = $$\frac{\text{fVCO}}{\text{N}}$$ = fxtal x $\frac{\text{M}}{\text{N x P}}$ Serial operation occurs when nP_LOAD is HIGH and S_LOAD is LOW. The shift register is loaded by sampling the S_DATA bits with the rising edge of S_CLOCK. The contents of the shift register are loaded into the M divider and N output divider when S_LOAD transitions from LOW-to-HIGH. The M divide and N output divide values are latched on the HIGH-to-LOW transition of S_LOAD. If S_LOAD is held HIGH, data at the S_DATA input is passed directly to the M divider and N output divider on each rising edge of S_CLOCK. The serial mode can be used to program the M and N bits and test bits T1 and T0. The internal registers T0 and T1 determine the state of the TEST output as follows: | П | 10 | <u> 1EST Output</u> | |---|----|------------------------------| | 0 | 0 | LOW | | 0 | 1 | S_Data, Shift Register Input | | 1 | 0 | Output of M divider | | 1 | 1 | CMOS Fout | FIGURE 1. PARALLEL & SERIAL LOAD OPERATIONS *NOTE: The NULL timing slot must be observed. # FEMTOCLOCKSTM 680MHz, CRYSTAL-TO-3.3V DIFFERENTIAL LVPECL FREQUENCY SYNTHESIZER TABLE 1. PIN DESCRIPTIONS | Number | Name | Ty | уре | Description | |-----------------------------------|--------------------------------------|--------|---------------------|---| | 1 | M5 | Input | Pullup | | | 2, 3, 4,
28, 29,
30, 31, 32 | M6, M7, M8,
M0, M1,
M2, M3, M4 | Input | Pulldown | M divider inputs. Data latched on LOW-to-HIGH transition of nP_LOAD input. LVCMOS / LVTTL interface levels. | | 5, 6 | N0, N1 | Input | Pulldown | Determines output divider value as defined in Table 3C,
Function Table. LVCMOS / LVTTL interface levels. | | 7 | P_DIV | Input | Pullup/
Pulldown | Input divide select. $0 = \div 8$, Float = $\div 1$ (default), $1 = \div 4$. | | 8, 16 | V_{EE} | Power | | Negative supply pins. | | 9 | TEST | Output | | Test output which is ACTIVE in the serial mode of operation. Output driven LOW in parallel mode. LVCMOS/LVTTL interface levels. | | 10 | V_{cc} | Power | | Core supply pin. | | 11, 12 | FOUT1, nFOUT1 | Output | | Differential output for the synthesizer. LVPECL interface levels. | | 13 | V _{cco} | Power | | Output supply pin. | | 14, 15 | FOUT0, nFOUT0 | Output | | Differential output for the synthesizer. LVPECL interface levels. | | 17 | MR | Input | Pulldown | Active High Master Reset. When logic HIGH, forces the internal dividers are reset causing the true outputs FOUTx to go low and the inverted outputs nFOUTx to go high. When logic LOW, the internal dividers and the outputs are enabled. Assertion of MR does not affect loaded M, N, and T values. LVCMOS / LVTTL interface levels. | | 18 | S_CLOCK | Input | Pulldown | Clocks in serial data present at S_DATA input into the shift register on the rising edge of S_CLOCK. LVCMOS/LVTTL interface levels. | | 19 | S_DATA | Input | Pulldown | Shift register serial input. Data sampled on the rising edge of S_CLOCK. LVCMOS/LVTTL interface levels. | | 20 | S_LOAD | Input | Pulldown | Controls transition of data from shift register into the dividers. LVCMOS / LVTTL interface levels. | | 21 | V_{CCA} | Power | | Analog supply pin. | | 22 | XTAL_SEL | Input | Pullup | Selects between crystal or test inputs as the PLL reference source. Selects XTAL inputs when HIGH. Selects TEST_CLK when LOW. LVCMOS / LVTTL interface levels. | | 23 | TEST_CLK | Input | Pulldown | Test clock input. LVCMOS / LVTTL interface levels. | | 24, 25 | XTAL_OUT,
XTAL_IN | Input | | Crystal oscillator interface. XTAL_IN is the input. XTAL_OUT is the output. | | 26 | nP_LOAD | Input | Pulldown | Parallel load input. Determines when data present at M8:M0 is loaded into M divider, and when data present at N1:N0 sets the N output divider value. LVCMOS / LVTTL interface levels. | | 27 | VCO_SEL | Input | Pullup | Determines whether synthesizer is in PLL or bypass mode. LVCMOS / LVTTL interface levels. | NOTE: Pullup and Pulldown refer to internal input resistors. See Table 2, Pin Characteristics, for typical values. TABLE 2. PIN CHARACTERISTICS | Symbol | Parameter | Test Conditions | Minimum | Typical | Maximum | Units | |-----------------------|-------------------------|-----------------|---------|---------|---------|-------| | C _{IN} | Input Capacitance | | | 4 | | pF | | R _{PULLUP} | Input Pullup Resistor | | | 51 | | kΩ | | R _{PULLDOWN} | Input Pulldown Resistor | | | 51 | | kΩ | # FEMTOCLOCKSTM 680MHz, CRYSTAL-TO-3.3V DIFFERENTIAL LVPECL FREQUENCY SYNTHESIZER TABLE 3A. PARALLEL AND SERIAL MODE FUNCTION TABLE | | | | In | puts | | | Conditions | |----|---------|------|------|--------------|---------|--------|---| | MR | nP_LOAD | М | N | S_LOAD | S_CLOCK | S_DATA | Conditions | | Н | Х | Χ | Х | Х | Х | Х | Reset. Forces outputs LOW. | | L | L | Data | Data | х | Х | Х | Data on M and N inputs passed directly to the M divider and N output divider. TEST output forced LOW. | | L | 1 | Data | Data | L | X | Х | Data is latched into input registers and remains loaded until next LOW transition or until a serial event occurs. | | L | Н | Х | Х | L | 1 | Data | Serial input mode. Shift register is loaded with data on S_DATA on each rising edge of S_CLOCK. | | L | Н | Х | Х | 1 | L | Data | Contents of the shift register are passed to the M divider and N output divider. | | L | Н | Х | Х | \downarrow | L | Data | M divider and N output divider values are latched. | | L | Н | Х | Х | L | Х | Х | Parallel or serial input do not affect shift registers. | | L | Н | Х | Х | Н | 1 | Data | S_DATA passed directly to M divider as it is clocked. | NOTE: L = LOW H = HIGH X = Don't care \uparrow = Rising edge transition \downarrow = Falling edge transition TABLE 3B. PROGRAMMABLE VCO FREQUENCY FUNCTION TABLE WITH P = +1 (P_DIV = FLOAT) | VCO Frequency | M Divido | 256 | 128 | 64 | 32 | 16 | 8 | 4 | 2 | 1 | |---------------|----------|-----|-----|----|----|----|----|----|----|----| | (MHz) | M Divide | M8 | M7 | M6 | M5 | M4 | М3 | M2 | M1 | МО | | 575 | 23 | 0 | 0 | 0 | 0 | 1 | 0 | 1 | 1 | 1 | | • | • | • | • | • | • | • | • | • | • | • | | 600 | 24 | 0 | 0 | 0 | 0 | 1 | 1 | 0 | 0 | 0 | | • | • | • | • | • | • | • | • | • | • | • | | 675 | 27 | 0 | 0 | 0 | 0 | 1 | 1 | 0 | 1 | 1 | NOTE 1: These M divide values and the resulting frequencies correspond to crystal or TEST_CLK input frequency of 25MHz. Table 3C. Programmable VCO Frequency Function Table with P = +4 (P_DIV = 1) | VCO Frequency | M Divide | 256 | 128 | 64 | 32 | 16 | 8 | 4 | 2 | 1 | |---------------|------------|-----|-----|----|----|----|----|----|----|----| | (MHz) | INI DIVIGE | M8 | M7 | M6 | M5 | M4 | М3 | M2 | M1 | МО | | 575 | 92 | 0 | 0 | 1 | 0 | 1 | 1 | 1 | 0 | 0 | | • | • | • | • | • | • | • | • | • | • | • | | 600 | 96 | 0 | 0 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | | • | • | • | • | • | • | • | • | • | • | • | | 675 | 108 | 0 | 0 | 1 | 1 | 0 | 1 | 1 | 0 | 0 | NOTE 1: These M divide values and the resulting frequencies correspond to crystal or TEST_CLK input frequency of 25MHz. FEMTOCLOCKSTM 680MHz, CRYSTAL-TO-3.3V DIFFERENTIAL LVPECL FREQUENCY SYNTHESIZER TABLE 3D. PROGRAMMABLE VCO FREQUENCY FUNCTION TABLE WITH P = +8 (P_DIV = 0) | VCO Frequency | M Divide | 256 | 128 | 64 | 32 | 16 | 8 | 4 | 2 | 1 | |---------------|------------|-----|-----|----|----|----|----|----|----|----| | (MHz) | INI DIVIGE | M8 | M7 | М6 | M5 | M4 | М3 | M2 | M1 | MO | | 575 | 184 | 0 | 1 | 0 | 1 | 1 | 1 | 0 | 0 | 0 | | • | • | • | • | • | • | • | • | • | • | • | | 600 | 192 | 0 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | | • | • | • | • | • | • | • | • | • | • | • | | 675 | 216 | 0 | 1 | 1 | 0 | 0 | 1 | 1 | 1 | 0 | NOTE 1: These M divide values and the resulting frequencies correspond to crystal or TEST_CLK input frequency of 25MHz. TABLE 3E. PROGRAMMABLE OUTPUT DIVIDER FUNCTION TABLE | Inp | outs | N Divider Value | Output Frequency (MHz) | | | | |-----|------|-----------------|------------------------|---------|--|--| | N1 | N0 | N Divider value | Minimum | Maximum | | | | 0 | 0 | 1 | 560 | 680 | | | | 0 | 1 | 2 | 280 | 340 | | | | 1 | 0 | 4 | 140 | 170 | | | | 1 | 1 | 8 | 70 | 85 | | | # FEMTOCLOCKSTM 680MHz, CRYSTAL-TO-3.3V DIFFERENTIAL LVPECL FREQUENCY SYNTHESIZER #### ABSOLUTE MAXIMUM RATINGS Supply Voltage, V_{CC} 4.6V Inputs, V_{I} -0.5V to V_{CC} + 0.5 V Outputs, V_O (LVCMOS) -0.5V to V_{DDO} + 0.5V Outputs, I_O (LVPECL) Continuous Current 50mA Surge Current 100mA Package Thermal Impedance, $\theta_{JA} = 47.9^{\circ}\text{C/W} (0 \text{ Ifpm})$ Storage Temperature, T_{STG} -65°C to 150°C NOTE: Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These ratings are stress specifications only. Functional operation of product at these conditions or any conditions beyond those listed in the *DC Characteristics* or *AC Characteristics* is not implied. Exposure to absolute maximum rating conditions for extended periods may affect product reliability. Table 4A. Power Supply DC Characteristics, $V_{CC} = V_{CCA} = V_{CCO} = 3.3V \pm 5\%$, $T_A = 0^{\circ}C$ to $70^{\circ}C$ | Symbol | Parameter | Test Conditions | Minimum | Typical | Maximum | Units | |------------------|-----------------------|-----------------|---------|---------|---------|-------| | V _{cc} | Core Supply Voltage | | 3.135 | 3.3 | 3.465 | V | | V _{CCA} | Analog Supply Voltage | | 3.135 | 3.3 | 3.465 | V | | V _{cco} | Output Supply Voltage | | 3.135 | 3.3 | 3.465 | ٧ | | I _{EE} | Power Supply Current | | | | 180 | mA | | I _{CCA} | Analog Supply Current | | | | 13 | mA | | I _{cco} | Output Supply Current | | | | 14 | mA | # FEMTOCLOCKSTM 680MHz, CRYSTAL-TO-3.3V DIFFERENTIAL LVPECL FREQUENCY SYNTHESIZER **Table 4B. LVCMOS / LVTTL DC Characteristics,** $V_{\text{CC}} = V_{\text{CCA}} = V_{\text{CCO}} = 3.3 \text{V} \pm 5\%$, Ta = 0°C to 70°C | Symbol | Parameter | | Test Conditions | Minimum | Typical | Maximum | Units | |-----------------|------------------------|--|--|--------------------------|---------|-----------------------|-------| | V _{IH} | Input
High Voltage | VCO_SEL, XTAL_SEL, MR,
S_LOAD, nP_LOAD, S_DATA,
S_CLOCK, TEST_CLK,
M0:M8, N0:N1 | | 2 | | V _{cc} + 0.3 | V | | | | P_DIV | | V _{cc} - 0.4 | | | V | | V _{IL} | Input
Low Voltage | VCO_SEL, XTAL_SEL, MR,
S_LOAD, nP_LOAD, S_DATA,
S_CLOCK, TEST_CLK,
M0:M8, N0:N1 | | -0.3 | | 0.8 | ٧ | | | | P_DIV | | | | V _{cc} + 0.4 | ٧ | | V _{IM} | Input
Mid Voltage | P_DIV | | V _{cc} /2 - 0.1 | | $V_{cc}/2 + 0.1$ | ٧ | | I _{IH} | Input
High Current | M0-M4, M6-M8, N0, N1, MR,
S_CLOCK, TEST_CLK, P_DIV
S_DATA, S_LOAD, nP_LOAD | V _{CC} = V _{IN} = 3.465V | | | 150 | μΑ | | | Triigir Current | M5, XTAL_SEL, VCO_SEL | $V_{CC} = V_{IN} = 3.465V$ | | | 5 | μΑ | | I _{IL} | Input | M0-M4, M6-M8, N0, N1, MR,
S_CLOCK, TEST_CLK,
S_DATA, S_LOAD, nP_LOAD | $V_{CC} = 3.465V,$ $V_{IN} = 0V$ | -5 | | | μΑ | | 'IL | Low Current | M5, P_DIV,
XTAL_SEL, VCO_SEL, | $V_{CC} = 3.465V,$ $V_{IN} = 0V$ | -150 | | | μΑ | | V _{OH} | Output
High Voltage | TEST; NOTE 1 | | 2.6 | | | V | | V _{OL} | Output
Low Voltage | TEST; NOTE 1 | | | | 0.5 | ٧ | NOTE 1: Outputs terminated with 50 $\!\Omega$ to V $_{\rm cco}\!/2$. Table 4C. LVPECL DC Characteristics, $V_{CC} = V_{CCA} = V_{CCO} = 3.3V \pm 5\%$, Ta = 0°C to 70°C | Symbol | Parameter | Test Conditions | Minimum | Typical | Maximum | Units | |--------------------|-----------------------------------|-----------------|------------------------|---------|------------------------|-------| | V _{OH} | Output High Voltage; NOTE 1 | | V _{cco} - 1.4 | | V _{cco} - 0.9 | V | | V _{OL} | Output Low Voltage; NOTE 1 | | V _{cco} - 2.0 | | V _{cco} - 1.7 | V | | V _{SWING} | Peak-to-Peak Output Voltage Swing | | 0.6 | | 1.0 | V | NOTE 1: Outputs terminated with 50 Ω to V_{cco} - 2V. See "Parameter Measurement Information" section, "3.3V Output Load Test Circuit". # FEMTOCLOCKSTM 680MHz, CRYSTAL-TO-3.3V DIFFERENTIAL LVPECL FREQUENCY SYNTHESIZER Table 5. Input Frequency Characteristics, $V_{CC} = V_{CCA} = V_{CCO} = 3.3V \pm 5\%$, Ta = 0°C to 70°C | Symbol | Parameter | | Test Conditions | Minimum | Typical | Maximum | Units | |---------------------------------|------------------|------------------------------|-----------------|---------|---------|---------|-------| | f _{IN} Input Frequency | TEST_CLK; NOTE 1 | | 12 | | 32 | MHz | | | | Input Frequency | XTAL_IN, XTAL_OUT;
NOTE 1 | | 12 | | 32 | MHz | | | | S_CLOCK | | | | 32 | MHz | NOTE 1: For the input crystal and TEST_CLK frequency range, the M value must be set for the VCO to operate within the 560MHz to 680MHz range. Using the minimum input frequency of 12MHz, valid values of M are $47 \le M \le 57$, with input divider $P = \div 1$ (P_DIV = Float). Using the maximum frequency of 32MHz, valid values of M are $18 \le M \le 21$. #### TABLE 6. CRYSTAL CHARACTERISTICS | Parameter | Test Conditions | Minimum | Typical | Maximum | Units | |------------------------------------|-----------------|-------------|---------|---------|-------| | Mode of Oscillation | | Fundamental | | | | | Frequency | | 12 | | 32 | MHz | | Equivalent Series Resistance (ESR) | | | | 50 | Ω | | Shunt Capacitance | | | | 7 | pF | | Drive Level | | | | 1 | mW | Table 7. AC Characteristics, $V_{CC} = V_{CCA} = V_{CCO} = 3.3V \pm 5\%$, Ta = 0°C to 70°C | Symbol | Parameter | | Test Conditions | Minimum | Typical | Maximum | Units | |--------------------------------|--|-------------------|----------------------------------|---------|---------|---------|-------| | F _{out} | Output Frequency | | | 70 | | 680 | MHz | | tjit(Ø) | RMS Phase Jitter, (Random);
NOTE 1, 4 | | 156.25MHz
(1.875MHz to 20MHz) | | 0.49 | | ps | | tsk(o) | Output Skew; NOTE 2, 3 | | | | | 10 | ps | | t _R /t _F | Output Rise/Fall Time | | 20% to 80% | 175 | | 800 | ps | | | Setup Time | M, N to nP_LOAD | | 5 | | | ns | | t _s | | S_DATA to S_CLOCK | | 5 | | | ns | | | | S_CLOCK to S_LOAD | | 5 | | | ns | | | Hold Time | M, N to nP_LOAD | | 5 | | | ns | | t _H | | S_DATA to S_CLOCK | | 5 | | | ns | | | | S_CLOCK to S_LOAD | | 5 | | | ns | | odc | Output Duty Cycle | | | 47 | | 53 | % | | t _{LOCK} | PLL Lock Time | | | | | 1 | ms | See Parameter Measurement Information section. NOTE 1: Please refer to the Phase Noise Plot. NOTE 2: Defined as skew between outputs at the same supply voltage and with equal load conditions. Measured at the output differential cross points. NOTE 3: This parameter is defined in accordance with JEDEC Standard 65. NOTE 4: Tested with $P_DIV = V_{CC}/2$. FEMTOCLOCKSTM 680MHz, CRYSTAL-TO-3.3V DIFFERENTIAL LVPECL FREQUENCY SYNTHESIZER ### Typical Phase Noise at 156.25MHz FEMTOCLOCKSTM 680MHz, CRYSTAL-TO-3.3V DIFFERENTIAL LVPECL FREQUENCY SYNTHESIZER ### PARAMETER MEASUREMENT INFORMATION ### 3.3V OUTPUT LOAD AC TEST CIRCUIT ### OUTPUT SKEW ### PHASE JITTER ### OUTPUT DUTY CYCLE/PULSE WIDTH/PERIOD #### **OUTPUT RISE/FALL TIME** FEMTOCLOCKSTM 680MHz, CRYSTAL-TO-3.3V DIFFERENTIAL LVPECL FREQUENCY SYNTHESIZER ### **APPLICATION INFORMATION** ### Power Supply Filtering Techniques As in any high speed analog circuitry, the power supply pins are vulnerable to random noise. The ICS843020-01 provides separate power supplies to isolate any high switching noise from the outputs to the internal PLL. $V_{\rm CC}, V_{\rm CCA},$ and $V_{\rm CCO}$ should be individually connected to the power supply plane through vias, and bypass capacitors should be used for each pin. To achieve optimum jitter performance, power supply isolation is required. Figure 2 illustrates how a 10Ω resistor along with a $10\mu F$ and a $.01\mu F$ bypass capacitor should be connected to each $V_{\rm CCA}$ pin. FIGURE 2. POWER SUPPLY FILTERING #### **CRYSTAL INPUT INTERFACE** A crystal can be characterized for either series or parallel mode operation. The ICS843020-01 has a built-in crystal oscillator circuit. This interface can accept either a series or parallel crystal without additional components and generate frequencies with accuracy suitable for most applications. Additional accuracy can be achieved by adding two small capacitors C1 and C2 as shown in *Figure 3*. # FEMTOCLOCKSTM 680MHz, CRYSTAL-TO-3.3V DIFFERENTIAL LVPECL FREQUENCY SYNTHESIZER ### TERMINATION FOR LVPECL OUTPUTS The clock layout topology shown below is a typical termination for LVPECL outputs. The two different layouts mentioned are recommended only as guidelines. FOUT and nFOUT are low impedance follower outputs that generate ECL/LVPECL compatible outputs. Therefore, terminating resistors (DC current path to ground) or current sources must be used for functionality. These outputs are designed to drive 50Ω transmission lines. Matched impedance techniques should be used to maximize operating frequency and minimize signal distortion. *Figures 4A and 4B* show two different layouts which are recommended only as guidelines. Other suitable clock layouts may exist and it would be recommended that the board designers simulate to guarantee compatibility across all printed circuit and clock component process variations. FIGURE 4A. LVPECL OUTPUT TERMINATION FIGURE 4B. LVPECL OUTPUT TERMINATION # FEMTOCLOCKSTM 680MHz, CRYSTAL-TO-3.3V DIFFERENTIAL LVPECL FREQUENCY SYNTHESIZER ### LAYOUT GUIDELINE The schematic of the ICS843020-01 layout example used in this layout guideline is shown in *Figure 5A*. The ICS843020-01 recommended PCB board layout for this example is shown in *Figure 5B*. This layout example is used as a general guide- line. The layout in the actual system will depend on the selected component types, the density of the components, the density of the traces, and the stack up of the P.C. board. FIGURE 5A. SCHEMATIC OF RECOMMENDED LAYOUT # FEMTOCLOCKSTM 680MHz, CRYSTAL-TO-3.3V DIFFERENTIAL LVPECL FREQUENCY SYNTHESIZER The following component footprints are used in this layout example: All the resistors and capacitors are size 0603. #### POWER AND GROUNDING Place the decoupling capacitors C14 and C15, as close as possible to the power pins. If space allows, placement of the decoupling capacitor on the component side is preferred. This can reduce unwanted inductance between the decoupling capacitor and the power pin caused by the via. Maximize the power and ground pad sizes and number of vias capacitors. This can reduce the inductance between the power and ground planes and the component power and ground pins. The RC filter consisting of R7, C11, and C16 should be placed as close to the $V_{\rm CCA}$ pin as possible. #### **CLOCK TRACES AND TERMINATION** Poor signal integrity can degrade the system performance or cause system failure. In synchronous high-speed digital systems, the clock signal is less tolerant to poor signal integrity than other signals. Any ringing on the rising or falling edge or excessive ring back can cause system failure. The shape of the trace and the trace delay might be restricted by the available space on the board and the component location. While routing the traces, the clock signal traces should be routed first and should be locked prior to routing other signal traces. - The differential 50Ω output traces should have the same length. - Avoid sharp angles on the clock trace. Sharp angle turns cause the characteristic impedance to change on the transmission lines. - Keep the clock traces on the same layer. Whenever possible, avoid placing vias on the clock traces. Placement of vias on the traces can affect the trace characteristic impedance and hence degrade signal integrity. - To prevent cross talk, avoid routing other signal traces in parallel with the clock traces. If running parallel traces is unavoidable, allow a separation of at least three trace widths between the differential clock trace and the other signal trace. - Make sure no other signal traces are routed between the clock trace pair. - The matching termination resistors should be located as close to the receiver input pins as possible. #### **CRYSTAL** The crystal X1 should be located as close as possible to the pins 25 (XTAL_IN) and 24 (XTAL_OUT). The trace length between the X1 and U1 should be kept to a minimum to avoid unwanted parasitic inductance and capacitance. Other signal traces should not be routed near the crystal traces. FIGURE 5B. PCB BOARD LAYOUT FOR ICS843020-01 # FEMTOCLOCKSTM 680MHz, CRYSTAL-TO-3.3V DIFFERENTIAL LVPECL FREQUENCY SYNTHESIZER ### **POWER CONSIDERATIONS** This section provides information on power dissipation and junction temperature for the ICS843020-01. Equations and example calculations are also provided. #### 1. Power Dissipation. The total power dissipation for the ICS843020-01 is the sum of the core power plus the power dissipated in the load(s). The following is the power dissipation for $V_{CC} = 3.3V + 5\% = 3.465V$, which gives worst case results. NOTE: Please refer to Section 3 for details on calculating power dissipated in the load. - Power (core)_{MAX} = V_{CC_MAX} * I_{EE_MAX} = 3.465V * 180mA = 623.7mW - Power (outputs)_{MAX} = 30mW/Loaded Output pair If all outputs are loaded, the total power is 2 * 30mW = 60mW Total Power MAX (3.465V, with all outputs switching) = 623.7mW + 60mW = 683.7mW #### 2. Junction Temperature. Junction temperature, Tj, is the temperature at the junction of the bond wire and bond pad and directly affects the reliability of the device. The maximum recommended junction temperature for the devices is 125°C. The equation for Tj is as follows: $Tj = \theta_{IA} * Pd_total + T_A$ Tj = Junction Temperature θ_{14} = Junction-to-Ambient Thermal Resistance Pd_total = Total Device Power Dissipation (example calculation is in section 1 above) T_{Δ} = Ambient Temperature In order to calculate junction temperature, the appropriate junction-to-ambient thermal resistance $\theta_{\rm JA}$ must be used. Assuming a moderate air flow of 200 linear feet per minute and a multi-layer board, the appropriate value is 42.1°C/W per Table 8 below. Therefore, Ti for an ambient temperature of 70°C with all outputs switching is: $70^{\circ}\text{C} + 0.684\text{W} * 42.1^{\circ}\text{C/W} = 98.8^{\circ}\text{C}$. This is well below the limit of 125°C . This calculation is only an example. Tj will obviously vary depending on the number of loaded outputs, supply voltage, air flow, and the type of board (single layer or multi-layer). Table 8. Thermal Resistance θ_{JA} for 32-pin LQFP, Forced Convection ## θ_{JA} by Velocity (Linear Feet per Minute) O 200 500 Single-Layer PCB, JEDEC Standard Test Boards 67.8°C/W 55.9°C/W 50.1°C/W Multi-Layer PCB, JEDEC Standard Test Boards 47.9°C/W 42.1°C/W 39.4°C/W NOTE: Most modern PCB designs use multi-layered boards. The data in the second row pertains to most designs. FEMTOCLOCKSTM 680MHz, CRYSTAL-TO-3.3V DIFFERENTIAL LVPECL FREQUENCY SYNTHESIZER #### 3. Calculations and Equations. The purpose of this section is to derive the power dissipated into the load. LVPECL output driver circuit and termination are shown in Figure 6. To calculate worst case power dissipation into the load, use the following equations which assume a 50Ω load, and a termination voltage of V_{CC} - 2V. • For logic high, $$V_{OUT} = V_{OH_MAX} = V_{CCO_MAX} - 0.9V$$ $$(V_{CCO_MAX} - V_{OH_MAX}) = 0.9V$$ • For logic low, $$V_{OUT} = V_{OL_MAX} = V_{CCO_MAX} - 1.7V$$ $$(V_{CCO_MAX} - V_{OL_MAX}) = 1.7V$$ Pd_H is power dissipation when the output drives high. Pd_L is the power dissipation when the output drives low. $$Pd_H = [(V_{OH_MAX} - (V_{CCO_MAX} - 2V))/R_{_{L}}] * (V_{CCO_MAX} - V_{OH_MAX}) = [(2V - (V_{CCO_MAX} - V_{OH_MAX}))/R_{_{L}}] * (V_{CCO_MAX} - V_{OH_MAX}) = [(2V - 0.9V)/50\Omega) * 0.9V = 19.8mW$$ $$Pd_L = [(V_{\text{OL_MAX}} - (V_{\text{CCO_MAX}} - 2V))/R_{\text{L}}] * (V_{\text{CCO_MAX}} - V_{\text{OL_MAX}}) = [(2V - (V_{\text{CCO_MAX}} - V_{\text{OL_MAX}}))/R_{\text{L}}] * (V_{\text{CCO_MAX}} - V_{\text{OL_MAX}}) = [(2V - 1.7V)/50\Omega) * 1.7V = 10.2mW$$ Total Power Dissipation per output pair = $Pd_H + Pd_L = 30mW$ FEMTOCLOCKSTM 680MHz, CRYSTAL-TO-3.3V DIFFERENTIAL LVPECL FREQUENCY SYNTHESIZER ### **RELIABILITY INFORMATION** ### Table 9. $\theta_{\text{JA}} \text{vs. Air Flow Table for 32 Lead LQFP}$ ### θ_{JA} by Velocity (Linear Feet per Minute) | | 0 | 200 | 500 | |--|----------|----------|----------| | Single-Layer PCB, JEDEC Standard Test Boards | 67.8°C/W | 55.9°C/W | 50.1°C/W | | Multi-Layer PCB, JEDEC Standard Test Boards | 47.9°C/W | 42.1°C/W | 39.4°C/W | **NOTE:** Most modern PCB designs use multi-layered boards. The data in the second row pertains to most designs. ### **TRANSISTOR COUNT** The transistor count for ICS843020-01 is: 5371 FEMTOCLOCKSTM 680MHz, CRYSTAL-TO-3.3V DIFFERENTIAL LVPECL FREQUENCY SYNTHESIZER ### PACKAGE OUTLINE - Y SUFFIX FOR 32 LEAD LQFP TABLE 10. PACKAGE DIMENSIONS | JEDEC VARIATION ALL DIMENSIONS IN MILLIMETERS | | | | | | |---|----------------|-----------|---------|--|--| | | ВВА | | | | | | SYMBOL | МІМІМИМ | NOMINAL | MAXIMUM | | | | N | | 32 | | | | | Α | | | 1.60 | | | | A1 | 0.05 | | 0.15 | | | | A2 | 1.35 | 1.40 | 1.45 | | | | b | 0.30 | 0.37 | 0.45 | | | | С | 0.09 | | 0.20 | | | | D | 9.00 BASIC | | | | | | D1 | 7.00 BASIC | | | | | | D2 | | 5.60 Ref. | | | | | E | 9.00 BASIC | | | | | | E1 | 7.00 BASIC | | | | | | E2 | 5.60 Ref. | | | | | | е | 0.80 BASIC | | | | | | L | 0.45 0.60 0.75 | | | | | | θ | 0° | | 7° | | | | ccc | 0.10 | | | | | Reference Document: JEDEC Publication 95, MS-026 # FEMTOCLOCKSTM 680MHz, CRYSTAL-TO-3.3V DIFFERENTIAL LVPECL FREQUENCY SYNTHESIZER #### **TABLE 11. ORDERING INFORMATION** | Part/Order Number | Marking | Package | Shipping Packaging | Temperature | |-------------------|--------------|--------------------------|--------------------|-------------| | 843020AY-01 | ICS843020A01 | 32 Lead LQFP | tray | 0°C to 70°C | | 843020AY-01T | ICS843020A01 | 32 Lead LQFP | 1000 tape & reel | 0°C to 70°C | | 843020AY-01LF | ICS43020A01L | 32 Lead "Lead-Free" LQFP | tray | 0°C to 70°C | | 843020AY-01LFT | ICS43020A01L | 32 Lead "Lead-Free" LQFP | 1000 tape & reel | 0°C to 70°C | NOTE: Parts that are ordered with an "LF" suffix to the part number are the Pb-Free configuration and are RoHS compliant. While the information presented herein has been checked for both accuracy and reliability, Integrated Device Technology, Inc. (IDT) assumes no responsibility for either its use or for infringement of any patents or other rights of third parties, which would result from its use. No other circuits, patents, or licenses are implied. This product is intended for use in normal commercial and industrial applications. Any other applications such as those requiring high reliability, or other extraordinary environmental requirements are not recommended without additional processing by IDT. IDT reserves the right to change any circuitry or specifications without notice. IDT does not authorize or warrant any IDT product for use in life support devices or critical medical instruments. # FEMTOCLOCKSTM 680MHz, CRYSTAL-TO-3.3V DIFFERENTIAL LVPECL FREQUENCY SYNTHESIZER | | REVISION HISTORY SHEET | | | | | | |-----|------------------------|----------------------------|--|---------|--|--| | Rev | Table | Page Description of Change | | Date | | | | | | 1 | Features section - changed Crystal frequency range bullet from 14MHz to 12MHz. | | | | | В | T5 | 8 | Input Frequency Characteristics Table - changed 14MHz to 12MHz, and changed M values to correspond with the 12MHz change. | 4/14/05 | | | | | T6 | 8 | Crystal Characteristics Table - Change Frequency min. from 14MHz to 12MHz. | | | | | В | T11 | 19 | Ordering Information Table - Added Lead Free Marking | 7/30/07 | | | | С | T11 | 19
21 | Updated datasheet's header/footer with IDT from ICS. Removed ICS prefix from Part/Order Number column. Added Contact Page. | 7/26/10 | | | FEMTOCLOCKSTM 680MHz, CRYSTAL-TO-3.3V DIFFERENTIAL LVPECL FREQUENCY SYNTHESIZER ## We've Got Your Timing Solution. 6024 Silver Creek Valley Road San Jose, CA 95138 **Sales** 800-345-7015 (inside USA) +408-284-8200 (outside USA) Fax: 408-284-2775 Tech Support netcom@idt.com © 2010 Integrated Device Technology, Inc. All rights reserved. Product specifications subject to change without notice. IDT, the IDT logo, ICS and HiPerClockS are trademarks of Integrated Device Technology, Inc. All other brands, product names and marks are or may be trademarks or registered trademarks used to identify products or services of their respective owners. Printed in USA