

PART NUMBER

6N140A/L2/L2S

COMPONENT

Issue 1

SPECIFICATION

September 2013

CERAMIC HERMETICALLY SEALED, RADIATION HARD HIGH GAIN OPTOCOUPLER

FEATURES

- Released to European Standard and complies to Mil-Std
- Total Ionizing Dose Tested to 30Krad(si)*
- Withstand Test Voltage 2500vdc
- 16-pin DIL Package
- Low Input Requirements 0.5mA
- Displacement Damage Tested to 3 MEV x10¹²
- High Current Transfer Ratio (Typically 1000%)
- Hermetically Sealed

APPLICATIONS

- Space Radiation Equipment
- Military/High Reliability Systems
- Medical Instruments
- MOS/CMOS Applications
- Logic Interfacing
- Power Supply
- Data Transmission
- Modems

DESCRIPTION

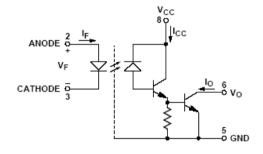
These devices are single, hermetically sealed optically coupled isolators. Each channel is composed of a Gallium Arsenide infra-red emitting diode and a high gain photon detector. The high gain output stage features an open collector output providing both lower output saturation and higher speed of operation than is possible with conventional photo-darlington type couplers.

The 6N140A series are being used in environments encounted by space applications. It is manufactured to meet the JANS standard in conjunction with MIL-PRF-19500 procedures (please see next page for all other applicable specifications). Package styles for this device include 16-pin DIL package with surface mount and solder dip options available. These packages have a shield effect to cut off ambient light as they are designed for high density mounting applications.

Absolute maximum ratings, recommended operating conditions, electrical specifications and performance characteristics are identical for all units. Any exceptions, due to packaging variations and limitations, are as noted.

STANDARDS

The following specifications have been included in the manufacturing of this product:


Military Compliance Specifications

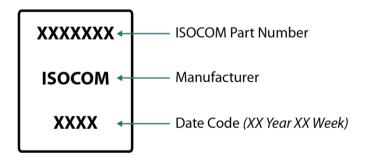
MIL-PRF-19500 – General Specification for Discrete Semiconductor Devices IECQ - M1077

Military Compliance Standards

MIL-STD-202 - Test Method Standard Electronic and Electrical Component Parts MIL-STD-883 – Test Method Standard Microcircuits MIL-STD-750 – Test Methods for Semiconductor Devices ISO 9001:2008 - Manufacturing of Optocouplers and Optoelectronic components.

SINGLE CHANNEL SCHEMATIC

SELECTION GUIDE PACKAGE STYLES AND CONFIGURATION OPTIONS

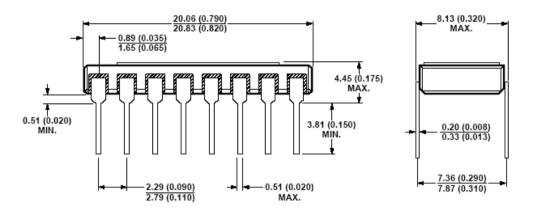

Package	16-pin DIL
Channels	4
Isocom Part Number a	and Options
Commercial	6N140A
Defense Screen Level	6N140A/L2
Space Screen Level	6N140A/L2S
Standard Gold Plate Finish	Gold Plate
Butt Joint	Option 10
Solder Dipped	Option 20
Gull Wing	Option 30
Butt Joint	Option 60

* Changes to lead formation style and common channel wiring is available upon request

FUNCTIONAL DIAGRAMS

6N140A
16-pin DIL
4 Channel
16 15 14 13 12 11 10 9 <u> </u>

DEVICE MARKING



OUTLINE DRAWINGS

ABSOLUTE MAXIMUM RATINGS

T_A = 25°C U.O.S.

Storage Temperature	-65°C to +150°C	-65°C to +150°C		
Operating Temperature	-55°C to +125°C	-55°C to +125°C		
Lead Soldering Temperature	260°C 1.6mm from	case for 10S		
Input-to-Output Isolation Voltage	企2500VDC	爺2500VDC		
Input Diode				
Peak Forward Current	20mA	≤ 1 mS duration, 500pps		
Average Forward Current	10mA	(see note 3)		
Reverse Voltage	5V			
Power Dissipation	35mW			
Output Detector				
Supply Voltage	0.5V to 20V	Vcc (see note 1)		
Average Current	40mA			
Collector Power Dissipation	50mW	(see note 2)		

ELECTRICAL CHARACTERISTICS

T_A = -55°C to +125°C U.O.S.

Parameter	Symbol	Test Conditions	Min	Туре	Max	Units
		Vcc =4.5V, Vo=0.4V, I _F = 0.5mA	300	700	-	%
Current Transfer Ratio (see notes 4&5)	CTR	Vcc =4.5V, Vo=0.4V, I _F = 1.6mA	200	1000	-	%
(,		Vcc =5V, Vo=0.4V, I _F = 5mA	200	600	-	%
Logic low output voltage (see	Vol	Vcc =4.5V, I _F = 1.0mA, I _{oL} =1.5mA	-	-	0.4	V
note 4)	VOL	Vcc =4.5V, I _F = 5mA, I _{oL} =10mA	-	0.15	0.4	V
Logic high output current (see notes 3,5 & 6)	І _{он}	$V_F = 0.7V$, $V_{0} = V_{CC} = 18V$, (channel under test) $V_F = 8mA$ (other channel)	-	0.001	250	μΑ
Logic high supply current	I _{ссн}	I _F = 0, Vcc=18V	-	0.1	40	μA
Logic low supply current (see note 4)	ICCL	Vcc=18V, I _F = 1.6mA	-	-	1.0	mA
Input forward voltage (see note 4)	V _F	I _F = 1.6mA, T _A = 25°C	-	1.45	1.7	V
Input-Output Insulation Leakage Current (see note 7 & 13)	I _{I-O}	RH=45%, t=5S, T _A = 25°C, V _{I-O} = 1500vdc	-	-	1.0	μΑ
Input reverse breakdown (see note 4)	V_{BR}	I _R = 10μΑ, T _A = 25°C	5	-	-	V
Propagation Delay	t PHL	R _L = 4.7KΩ, Vcc = 5V,I _F =1.0mA	-	35	100	μS
H-L (see note 4)	LPHL	$R_L = 680\Omega$, $V_{cc} = 5V$, $I_F = 5mA$	-	3	12	μS
Propagation Delay	t PLH	$R_L = 4.7 K\Omega$, $V_{CC} = 5 V$, $I_F = 1.0 mA$	-	8.0	20	μS
L-H (see note 4)	LPLH	$R_{L} = 680\Omega$, $V_{cc} = 5V$, $I_{F} = 5mA$	-	-	60	μS
Common Mode Transient Immunity at Logic High Output (see note 4, 10 &12)	СМ _Н	V_{cc} =5V, I_F = 0mA, V_{cm} =50Vp-p, R_L = 1.5K Ω	500	-1000	-	V/µS
Common Mode Transient Immunity at Logic Low Output (see note 4, 10 &12)	CM∟	V_{cc} =5V, I_F = 0mA, V_{cm} =50Vp-p, R_L = 1.5K Ω	-500	-1000	-	V/µS

TYPICAL CHARACTERISTICS

T_A = 25°C

Parameter	Symbol	Test Conditions	Notes	Min	Туре	Max	Units
Resistance	Rio	V ₁₀ = 500Vdc	4&8	-	10 ¹²	-	Ω
Capacitance	Cio	f = 1MHz	4&8	-	1.5	-	рF
Input Capacitance	CIN	$f = 1MHz, V_F = 0$	4	-	60	-	рF
Temperature Coefficient of Forward Voltage	$rac{\Delta_{VF}}{\Delta_{TA}}$	I _F = 1.6mA	1	-	-1.8	-	mV/°C
Input-Input Insulation Leakage Current	I _{I-1}	45% Relative Humidity V _{II} = 500Vdc, t = 5S, T _A = 25°C	9	-	0.5	-	nA
Resistance (input-output)	Ri-o	V _{I0} = 500Vdc	9	-	10 ¹²	-	Ω
Resistance (input-input)	R _{I-I}	V _{I0} = 500Vdc, T _A = 25°C	9	-	10 ¹²	-	Ω
Capacitance(input-output)	CI-O	f = 1MHz, T _A = 25°C	9	-	1.5	-	рF
Capacitance(input-input)	CI-I	f = 1MHz, T _A = 25°C	9	-	1.0	-	рF

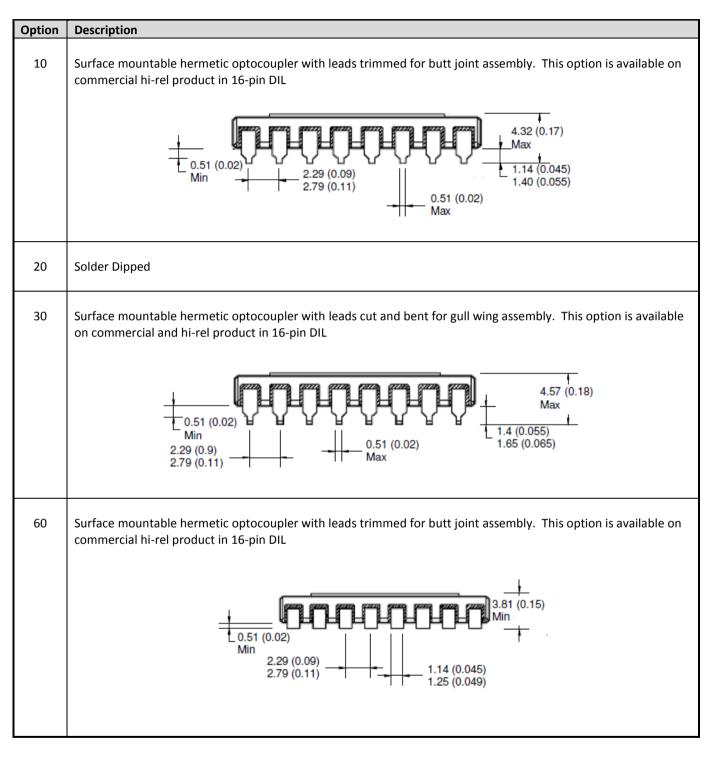
Notes:

- 1. The ground pin should be the most negative voltage at the detector side. Keeping V_{CC} as low as possible, but greater than 2.0V, will provide lowest total I_{OH} over temperature.
- 2. Output power is collector output plus one fourth of total supply power. Derate at 1.66mW/°C above 110°C.
- 3. Derate I_F at 0.33mA/°C above 110°C.
- 4. Each channel.
- 5. Current Transfer Ratio is defined as the ratio of output collector current, I_o, to the forward LED input current, I_F, times 100%.
- 6. I_{OHX} is the leakage current resulting from channel to channel optical crosstalk. $I_F = 2\mu A$ for channel under test. For all other channels, $I_F = 10$ mA.
- 7. Input pins are shorted together, and output pins are shorted together.
- 8. Measured between the LED anode and cathode shorted together and pins at output shorted together.
- 9. Measured between adjacent input pairs shorted together.
- 10. CM_H is the maximum tolerable common mode transient to assure that the output will remain in a high logic state (i.e., $V_0 > 2.0V$).
- CM_L is the maximum tolerable common mode transient to assure that the output will remain in the logic low state (i.e., V₀< 0.8V).
- 12. In applications where dV/dt may exceed $50,000V/\mu S$ (such as a static discharge), a series resistor, R_{CC}, should be included to protect the detector IC's from destructively high surge currents. The recommended value is:

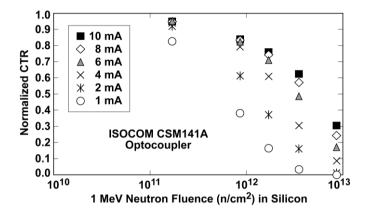
$$R_{CC} = \frac{1V}{0.6I_{F}(mA)} k\Omega$$

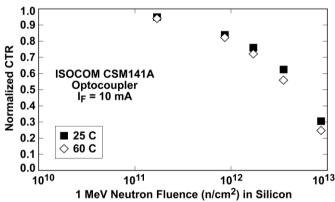
13. This is a momentary withstand test, not an operating condition.

ELECTRICAL CHARACTERISTICS



HERMETIC OPTOCOUPLER OPTIONS



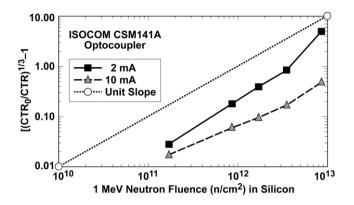

A. ISOCOM HIGH Gain Optoisolators family using samples of <u>6N140A</u>

Displays the average normalized CTR for four samples versus the neutron equivalence fluencies for each tested value of I_F (1, 2, 4, 6, 8 and 10 mA).

Normalized CTR versus the radiation level for the 6N140A.

In Figure below we compare the measured CTR at room temperature and elevated temperature of 60° C for the 6N140A. Contrary to our expectations, the measurements show very little temperature dependence. The small dependence that is seen is in the expected direction; that is, the CTR is lower at 60° C compare to CTR at room temperature.

Normalized CTR versus the radiation level for room temperature and 60° C for 6N140A.



The plotting format explained in the discussion of Fig. 4 using n = 1/3 for the 6N140A, produces

Values of $[(CTRo/CTR)^{1/3} - 1]$ for $I_F = 2$ and 10 mA for 6N140A.

GROUP TESTING to MIL-STD 750

GROUP	TEST	MIL-STD-750	READ AND RECORD
Group A			
SG1	Visual inspection & mechanical	Method 2071	
	dimensions		
SG2	DC static test at 25°C		yes
SG3	DC static test at 125°C and -55°C		yes
SG4	Dynamic test at 25°C		yes
Group B			
SG 1	Physical dimensions	Method 2066	
SG 2	Solderability	Method 2026	
	Resistance to solvents	Method 1022	
SG 3	Thermal Shock	Method 1056 Cond. B, 25	
		cycles	
	Temperature cycling	Method 1051	
		-55/+125°C	
	Hermetic seal fine and gross leak	Method 1071, Cond. H (fine),	
		Cond. C (gross)	
	Electrical measurement	pre and post	yes
	Decap internal visual inspection	2075	
	Bond strength	Method 2037, Cond. D	yes
	Die shear	Method 2017	yes
SG 4	Intermittent operation life	Method 1037, 1042, Cond D,	
		Tab.5-5	
	Hermetic seal fine and gross leak	Method 1071, Cond. H (fine),	
		Cond. C (gross)	
	Electrical measurement	pre and post	yes
	Bond strength	Method 2037, Cond. D	yes
SG 5	Acc. steady-state operation life	Method 1027	
	Electrical measurement	pre and post	yes
	Bond strength	Method 2037, Cond. D	yes
Group C			
SG 2	Thermal Shock	Method 1056, Cond. B, 25	
		shocks	
	Temperature cycling	Method 1051, Cond. C,	
		-55/+125°C , 25 cycles (total	
		45 cycles including screening)	
	Hermetic seal fine and gross leak	Method 1071, Cond. H (fine),	
		Cond. C (gross)	
	Moisture resistance	Method 1021	
	Electrical measurement	pre and post	yes
SG 3	Mechanical shock	Method 2016, non-operating,	
		1500 G, 0.5 ms, 5 blows in	
		each orientation (X1,Y1,Z1)	
	Vibration	Method 2056	
	Constant acceleration	Method 2006, at a peak level	
		of 5000 G	
	Electrical measurement	pre and post	yes
SG 6	Steady state operating life Not required		
	as B5 is available on same lot		

100% SCREENING to MIL-STD 750

TEST	MIL-STD-750	READ AND RECORD
Internal Visual	2072	
	· · · · · · · · · · · · · · · · · · ·	
Sealing		
(Fine Leak)	1071, Condition H1	
(Gross Leak)	1071, Condition C	
Temp Cycling	1051, Condition B-55/+125°C, 20 Cycles.	
Const. Acceler	2006, 5000G, Y1 only.	
PIND	2052, Condition A	
Radiography	2076	
Initial Electrical	125°C, -55°C, 25°C	R & R
HTRB	1039	
Interim Electrical	25°C only	R & R
Burn-In	1039	
Final Electrical	125°C, -55°C, 25°C	R & R
PDA	Max. 5%, pre/post B1 electrical and delta at RT only	Calculate & R
(Fine Leak)	1071, Condition H1	
(Gross Leak)	1071, Condition C	
Solder Dip		
Fine Leak	1071, Condition H1	
Gross Leak	1071, Condition C	

Space Qualification PROCESS FLOW CHART FOR PACKAGED DEVICES

QA INSPECTION

100% DC PROBE

WAFER SCRIBE & BREAK

BOND PULL TEST

DIE SHEAR TEST

HIGH TEMPERATURE BAKE

WAFER SELECTION

VISUAL INSPECTION

ANALYSIS

MIL QA VISUAL INSPECTION & SPACE ONLY

SERIALISATION

ASSEMBLE

100% RTH MEASUREMENT

100% PRE-CAP VISUAL INSPECTION

PACKAGE SEAL

MARKING

100% TEMP CYCLE - 20 CYCLES

100% CONSTANT ACCELERATION 5000G

HERMETIC SEAL TEST 100% FINE & GROSS

100% GROUP A ELECTRICAL TEST R&R

100% GROUP A ELECTRICAL TEST R&R

100% DC POWER BURN-IN: 240hr @ Tch=125°C

100% ELECTRICAL DELTA EVALUATION

PDA ONLY SAMPLES

100% QA FINAL INSPECTION

SHIP

Page 13 of 15

SGS

Space Qualification PROCESS FLOW CHART FOR PACKAGED DEVICES

Group B Testing	*MIL-STD-883	*MIL-STD-750
Physical Dimensions	Method 2016	Method 2066
Solderability	Method 2003	Method 2023
Resistance to Solvents	Method 2015	Method 1022
Temperature Cycling	Method 1010	Method 1051
Military Grade	25 cycles	25 cycles
Space Grade	50 cycles	50 cycles
Steady State Life (Tch 175°C / 340hr minimum)	Method 1005	Method 1027
DPA	*MIL-STD-1580A	*MIL-STD-1580A
	*Unless otherwise indicated	*Unless otherwise indicated

Environmental & Mechanical Testing Specifications				
	*MIL-STD-883	*MIL-STD-750		
Hermetic Seal Test	Method 1014	Method 1071		
Fine Leak	Condition A1	Condition G or H		
Gross Leak	Condition C	Method 1051		
Temperature Cycle (Standard Military Level)	Method 1010, Condition C	Method 1051, Condition C		
Temperature Cycle (Standard Space Level)	Method 1010, Condition C	Method 1051, Condition C		
Constant Acceleration	Method 2001	Method 2006		
PIND Test	Method 2020	Method 2052, Condition A		
RTH Measurement	Method 1012			
HTRB (High Temperature Reverse Bias)	Method 1015, Condition A	Method 1042, Condition B		
DPA	*MIL-STD-1580A	*MIL-STD-1580A		
	*Unless otherwise indicated	*Unless otherwise indicated		

Inspection Table

COMMERCIAL AQL Sampling Plan Isocom Internal Specifications

MILITARY

MIL-STD-883, Method 2010, Class Level B MIL-STD-750, Method 2070, 2071,2072

HI-REL / SPACE

MIL-STD-883, Method 2010, Class Level S MIL-STD-750, Method 2070, 2071,2072

DISCLAIMER

The information provided on the datasheet is for preliminary and general information only. We do not warrant that the information contained on the datasheet is suitable for your intended use, nor do we accept responsibility for loss suffered as a result of reliance by you upon the accuracy or currency of information contained on the datasheet. In particular, you should not make any investment or commercial decision on the basis of the information contained on the datasheet. You should obtain independent professional advice and make your own further enquiries before making any investment or commercial decision or taking any further action in any way related to the information contained on the datasheet.

We are not aware of any inaccuracy in the information contained on the datasheet. However, we do not warrant the accuracy, adequacy or completeness of such information.

We reserve the right to remove or alter any of the information contained on the datasheet at any time. However, we do not guarantee the currency of the information contained on the datasheet, nor do we undertake to keep the datasheet updated.

Isocom Limited 48 Hutton Close Crowther Industrial Estate Washington Tyne & Wear NE38 OAH United Kingdom

T: +44 (0)191 416 6546 F: +44 (0)191 415 5055 E: <u>sales@isocom.uk.com</u>

www.isocom.uk.com

