JM38510/10106

IAN DUAL LOW-INPUT-CURRENT OPERATIONAL AMPLIFIER (EXTERNALLY COMPENSATED)

Precision Monolithics Inc

GENERAL DESCRIPTION

This data sheet covers the electrical requirements for a dual low input-current, externally-compensated operational amplifier as specified in MIL-M-38510/101 for device type 06.

Devices supplied to this data sheet are manufactured and tested at PMI's MIL-M-38510 certified facility and are listed in QPL-38510.

Complete device requirements will be found in MIL-M-38510 and MIL-M-38510/101 for Class B processed devices.

GENERIC CROSS-REFERENCE INFORMATION

This cross-reference information is presented for the convenience of the user. The generic industry types listed may not have identical operational performance characteristics across the military temperature range or reliability factors equivalent to the MIL-M-38510 device.

Military Device Type **Generic Industry Type** LM2108A

CASE OUTLINE

Per MIL-M-38510, Appendix C, Case Outline D-2 (16-pin DIP). Package Type Designator "E".

PIN CONNECTIONS

ORDERING INFORMATION

Jan Device Type	PMI Device Type		
JM38510/10106BEB	PM2108AQ2/38510		
JM38510/10106BEA	PM2108AQ5/38510		

POWER AND THERMAL CHARACTERISTICS

Package	Case outline	Maximum allowable power dissipation	Maximum θJC	Maximum θJ—A
Dual-in-line	E	400mW at T _A = 125°C	35°C/W	120°C/W

SIMPLIFIED SCHEMATIC (Each Amplifier)

ELECTRICAL CHARACTERISTICS at $5V \le \pm V_{CC} \le 20V$ and -55° C $\le T_{A} \le +125^{\circ}$ C, unless otherwise noted.

PARAMETER	SYMBOL	CONDITIONS	MIN	MAX	UNITS
Input Offset Voltage	V _{IO}	(Note 2) T _A = 25°C	-0.5	+0.5	mV
		$R_{S} = 50\Omega \qquad -55^{\circ} C \le T_{A} \le 125^{\circ} C$	-1.0	- 1.0	
input Offset Voltage	$7\Lambda^{1O}$	ΔT _A from −55°C to +25°C	-5.0	~ 5.0	μV/° C
Temperature Sensitivity	71	ΔT _A from +25° C to +125° C	-5.0	-5.0	,,,,,
Input Offset Current I _{IO}	I _{1O}	Note 2: T _A = 25° C	0.2	₹ 0.2	nA
	10	-55°C ≤ T _A ≤ 125°C	-0.4	+0.4	
Input Offset Current	0،الد	∆T _A from −55°C to +25°C	-2.5	÷ 2.5	pA/°C
Temperature Sensitivity	TL	ΔT _A from +25°C to +125°C	-2.5	- 2.5	ρΛ, O
		25° C ≤ T _A ≤ 125° C	~1.0	+2.0	nA
nput Bias Current	+118	(Note 2) -55° C ≤ T _A ≤ +25° C	-0.1	+3.0	IIA
ilput Bias Current	-1 _{IB}	25° C ≤ T _A ≤ 125° C	-1.0	+2.0	n.A
	118	-55°C ≤ T _A ≤ +25°C	-0.1	+ 3.0	
B B B H B	Bono	+V _{CC} = 10V T _A = 25°C	-16	+16	1/0/
Power Supply Rejection Ratio	+PSRR	$ \begin{array}{ll} + V_{CC} = 10V \\ - V_{CC} = -20V \end{array} R_S = 50\Omega \qquad \begin{array}{ll} T_A = 25^{\circ}C \\ -55^{\circ}C \leq T_A \lesssim 125^{\circ}C \end{array} $	- 16	+ 16	μV/V
			- 16	÷ 16	
Power Supply Rejection Ratio	-PSRR	$V_{CC} = 20V$ $P_{S} = 50\Omega$ $I_{A} = 25^{\circ}C$ $-55^{\circ}C \le T_{A} \le 125^{\circ}C$	16	- 16	μV/V
Input Voitage	CMR	± V _{CC} = 20V	96		dB
Common-Mode Rejection	CIVIA	$V_{IN} = \pm 15V$ $R_S = 50\Omega$	90		UL
		ng - our	No E	vtornal	
Adjustment For	V _{IO}	$\pm V_{CC} = 20V$	No External Adjustment		mV
Input Offset Voltage	ADJ (+)				
Adjustment For	V _{IO}	$\pm V_{CC} = 20V$	No External		mV
Input Offset Voltage	ADJ (-)	± V _{CC} - 20V Adjustment		siment	
Output Short-Circuit Current	lan .	$\pm V_{CC} = 15V t \le 25 ms$	15		m,A
(For Positive Output)	los (+)	(Note 3)			
Output Short-Circuit Current		$\pm V_{CC} = 15V t \le 25 \text{ms}$			
(For Negative Output)	1 _{OS (-1}	(Note 3)	_	15	m.A
		T _A = -55° C		0.8	
Supply Current	Icc	$\pm V_{CC} = 15V$ $T_A = +25^{\circ}C$		0.6	m/
Supply Current	-00	T _A = + 125° C	_	0.6	
O day a Malana Surina		$\pm V_{CC} = 20V, R_L = 10k\Omega$	±16		
Output Voltage Swing (Maximum)	VOP	• •		_	,
(Maximum)		$\pm V_{CC} = 20V, R_L = 2k\Omega$			
Open-Loop Voltage Gain		$\pm V_{CC} = 20V$ $T_A = 25^{\circ} C$	80		
(Single Ended) (Note 1)	A _{VS (±)}	HL = 10K1! -55°C < T < 136°C	40	-	V/m
		V _{OUT} = ±15V			
Open-Loop Voltage Gain		$\pm V_{CC} = 5V$			
(Single Ended) (Note 1)	A _{VS}	$R_L = 10k\Omega$	20		V/m ¹
(Single Lines) (Note 1)		V _{OUT} = ±2V			
Transient Response Rise Time	TR _(tr)	C _F = 10pF	_	1000	nse
Transient Response Overshoot	TR _(OS)	C _F = 10pF		50	q
Noise (Referred to Input)					
	N _I (BB)	T _A = 25° C	_	15	μV rm
•	14 (00)	Bandwidth = 5kHz ^			
Broadband		V _{CC} = 20V Bandwidth = 5kHz T _A = 25°C			
•	N _E (PC)	Bandwidth = $5kHz$ $\pm V_{CC} = 20V$ Bandwidth = $5kHz$ $T_A = 25^{\circ}C$		40	μV peal

NOTES:

- Note that gain is not specified at V_{IO (ADJ)} extremes. Some gain reduction
 is usually seen at V_{IO (ADJ)} extremes. For closed-loop applications
 (closed-loop gain less than 1,000), the open-loop tests (A_{VS}) prescribed
 herein should guarantee a positive, reasonably linear, transfer characteristic. They do not, however, guarantee that the open-loop gain is linear, or
 even positive, over the operating range. If either of these requirements
 exist (positive open-loop gain or open-loop gain linearity), they should be
 specified in the individual procurement document as additional
 requirements.
- 2. Tests at common-mode $V_{CM} = 0$, $V_{CM} = -15V$, and $V_{CM} = +15V$.
- Continuous short-circuit limits will be considerably less than the indicated test limits. Continuous I_{OS} at T_A ≤ 75° C will cause T_j to exceed the maximum of 175° C. For dual devices, I_{OS} is measured one channel at a time.

ELECTRICAL CHARACTERISTICS at $5V \le \pm V_{CC} \le 20V$ and $-55^{\circ}C \le T_{A} \le +125^{\circ}C$, unless otherwise noted. (Continued)

PARAMETER	SYMBOL	CONDITIONS	MIN	MAX	UNITS
Siew Rate	SR (+)	$A_V = 1$ $-55^{\circ} C \le T_A \le 25^{\circ} C$	0.05		V/µsec
	3n (T;	V _{IN} = +5V T _A = 125°C	0.05	_	
Slew Rate SR (-	CD ($A_V = 1$ $-55^{\circ} C \le T_A \le 25^{\circ} C$	0.05	_	V/µsec
	5h (=)	$V_{IN} = \pm 5V$ $T_A = 125^{\circ}C$	0.05	_	
Settling Time $t_{S}\left(+\right)$		T _A = 25° C	_	_	
	t _S (≠ :	-55° C ≤ T _A ≤ 125° C		_	ns
	to (=)	T _A = 25° C	_	_	ns
		-55° C ≤ T _A ≤ 125° C		-	
Channel Separation CS	CS	$\pm V_{CC} = 20V$	80		dB
	C3	T _A = 25° C	00	- Control of the Cont	08

NOTES:

Note that gain is not specified at V_{IO IADJ} extremes. Some gain reduction
is usually seen at V_{IO IADJ} extremes. For closed-loop applications
(closed-loop gain is less than 1,000), the open-loop tests (A_{VS}) prescribed
herein should guarantee a positive, reasonably linear, transfer characteristic. They do not, however, guarantee that the open-loop gain is linear, or
even positive, over the operating range. If either of these requirements
exist (positive open-loop gain or open-loop gain linearity), they should be

specified in the individual procurement document as additional requirements.

- Tests at common-mode V_{CM} = 0, V_{CM} = -15V, and V_{CM} = +15V.
- Continuous short-circuit limits will be considerably less than the indicated test limits. Continuous I_{OS} at T_A ≤ 75° C will cause T_j to exceed the maximum of 175° C. For dual devices, I_{OS} is measured one channel at a time.

For other Test Circuit Diagrams, See MIL-M-38510/101

BURN-IN CIRCUIT

