January 1990 Revised December 1998

74ACQ646 • 74ACTQ646 Quiet Series™ Octal Transceiver/Register with 3-STATE Outputs

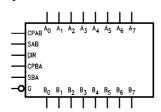
General Description

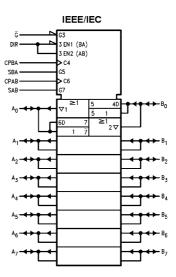
The ACQ/ACTQ646 consist of registered bus transceiver circuits, with outputs, D-type flip-flops, and control circuitry providing multiplexed transmission of data directly from the input bus or from the internal storage registers. Data on the A or B bus will be loaded into the respective registers on the LOW-to-HIGH transition of the appropriate clock pin (CPAB or CPBA). The four fundamental handling functions available are illustrated in Figure 1, Figure 2, Figure 3 and Figure 4.

The ACQ/ACTQ utilizes Fairchild Quiet Series™ technology to guarantee quiet output switching and improved dynamic threshold performance. FACT Quiet Series™ fea-

tures GTO^{IM} output control and undershoot corrector in addition to a split ground bus for superior performance.

Features


- Guaranteed simultaneous switching noise level and dynamic threshold performance
- Guaranteed pin-to-pin skew AC performance
- Independent registers for A and B busses
- Multiplexed real-time and stored data transfers
- 300 mil slim dual-in-line package
- Outputs source/sink 24 mA
- Faster prop delays than the standard AC/ACT646


Ordering Code:

Order Number	Package Number	Package Description
74ACQ646SC	M24B	24-Lead Small Outline Integrated Circuit (SOIC), JEDEC MS-013, 0.300" Wide Body
74ACQ464ASPC	N24C	24-Lead Plastic Dual-In-Line Package (PDIP), JEDEC MS-100, 0.300" Wide

Device also available in Tape and Reel. Specify by appending suffix letter "X" to the ordering code.

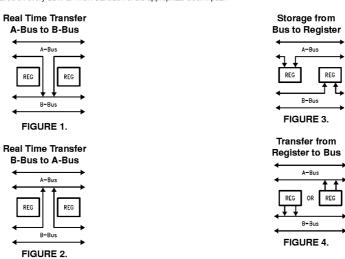
Logic Symbols

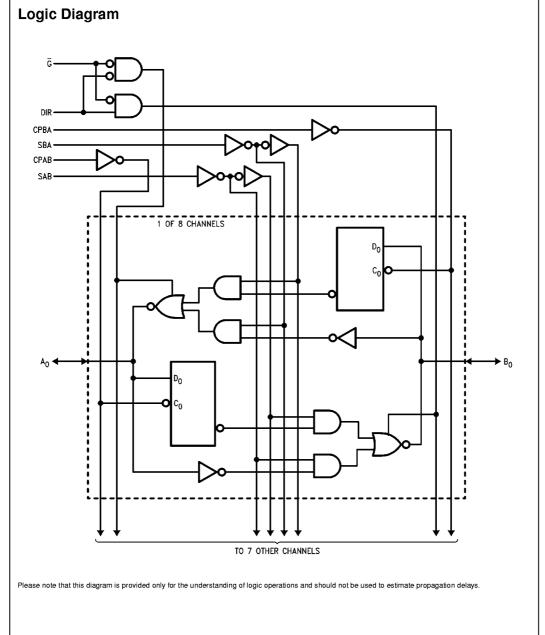
FACT™, Quiet Series™, FACT Quiet Series™ and GTO™ are trademarks of Fairchild Semiconductor Corporation

Connection Diagram

Pin Assignment for DIP and SOIC

Pin Descriptions


Pin Names	Descriptions
A ₀ -A ₇	Data Register A Inputs
	Data Register A Outputs
B ₀ –B ₇	Data Register B Inputs
	Data Register B Outputs
CPAB, CPBA	Clock Pulse Inputs
SAB, SBA	Transmit/Receive Inputs
G	Output Enable Input
DIR	Direction Control Input


Function Table

		Inp	uts			Data I/O (Note 1)		Function
G	DIR	CPAB	СРВА	SAB	SBA	A ₀ -A ₇	B ₀ –B ₇	
Н	Χ	H or L	H or L	Χ	Х			Isolation
Н	Χ	~	Χ	Χ	Х	Input	Input	Clock A _n Data into A Register
Н	Χ	X	~	Χ	Χ			Clock B _n Data into B Register
L	Н	Х	Х	L	Х			A _n to B _n —Real Time (Transparent Mode)
L	Н	~	Χ	L	Х	Input	Output	Clock A _n Data into A Register
L	Н	H or L	X	Н	X			A Register to B _n (Stored Mode)
L	Н	~	Х	Н	Χ			Clock A _n Data into A Register and Output to B _n
L	L	Х	Х	Χ	L			B _n to A _n —Real Time (Transparent Mode)
L	L	Χ	~	Χ	L	Output	Input	Clock B _n Data into B Register
L	L	Χ	H or L	Χ	Н			B Register to A _n (Stored Mode)
L	L	Χ	~	Х	Н			Clock B _n Data into B Register and Output to A _n

- H = HIGH Voltage Level
- L = LOW Voltage Level
- X = Immaterial
 __ = LOW-to-HIGH Transition

Note 1: The data output functions may be enabled or disabled by various signals at the G and DIR inputs. Data input functions are always enabled; i.e., data at the bus pins will be stored on every LOW-to-HIGH transition of the appropriate clock inputs.

Absolute Maximum Ratings(Note 2)

Supply Voltage (V_{CC}) -0.5V to +7.0V

DC Input Diode Current (I_{IK})

 $\begin{array}{ccc} \text{V}_{\text{I}} = -0.5\text{V} & -20 \text{ mA} \\ \text{V}_{\text{I}} = \text{V}_{\text{CC}} + 0.5\text{V} & +20 \text{ mA} \\ \text{DC Input Voltage (V}_{\text{I}}) & -0.5\text{V to V}_{\text{CC}} + 0.5\text{V} \end{array}$

DC Output Diode Current (I_{OK})

 $V_{O} = -0.5V$ -20 mA $V_{O} = V_{CC} + 0.5V$ +20 mA

-0.5V to $V_{CC} + 0.5$ V

DC Output Voltage (V_O)

DC Output Source

or Sink Current (I_O) $\pm 50 \text{ mA}$

DC V_{CC} or Ground Current

per Output Pin (I_{CC} or I_{GND}) ± 50 mA Storage Temperature (T_{STG}) -65° C to +150°C

DC Latch-Up Source

or Sink Current ±300 mA

Junction Temperature (T_J)

PDIP

Recommended Operating Conditions

Supply Voltage (V_{CC})

 $\begin{array}{ccc} ACQ & 2.0V \text{ to } 6.0V \\ ACTQ & 4.5V \text{ to } 5.5V \\ \text{Input Voltage } (V_I) & 0V \text{ to } V_{CC} \\ \text{Output Voltage } (V_O) & 0V \text{ to } V_{CC} \\ \end{array}$

Operating Temperature (T_A) —40°C to +85°C

Minimum Input Edge Rate ΔV/Δt

ACQ Devices

 $V_{\mbox{\scriptsize IN}}$ from 30% to 70% of $V_{\mbox{\scriptsize CC}}$

V_{CC} @ 3.0V, 4.5V, 5.5V 125 mV/ns

Minimum Input Edge Rate ΔV/Δt

ACTQ Devices

 V_{IN} from 0.8V to 2.0V

V_{CC} @ 4.5V, 5.5V

±300 mA

Note 2: Absolute maximum ratings are those values beyond which damage to the device may occur. The databook specifications should be met, without exception, to ensure that the system design is reliable over its power supply, temperature, and output/input loading variables. Fairchild does not recommend operation of FACT™ circuits outside databook specifications.

DC Electrical Characteristics for ACQ

Symbol	Parameter	V _{cc}	T _A =	+25°C	T _A = -40°C to +85°C	Units	Conditions	
Symbol		(V)	Тур	Gu	aranteed Limits	Units	Conditions	
V _{IH}	Minimum HIGH Level	3.0	1.5	2.1	2.1		V _{OUT} = 0.1V	
	Input Voltage	4.5	2.25	3.15	3.15	V	or V _{CC} – 0.1V	
		5.5	2.75	3.85	3.85			
V _{IL}	Maximum LOW Level	3.0	1.5	0.9	0.9		V _{OUT} = 0.1V	
	Input Voltage	4.5	2.25	1.35	1.35	V	or V _{CC} – 0.1V	
		5.5	2.75	1.65	1.65			
V _{OH}	Minimum HIGH Level	3.0	2.99	2.9	2.9		I _{OUT} = -50 μA	
	Output Voltage	4.5	4.49	4.4	4.4	V		
		5.5	5.49	5.4	5.4			
							$V_{IN} = V_{IL}$ or V_{IH}	
		3.0		2.56	2.46		I _{OH} = -12 mA	
		4.5		3.86	3.76	V	I _{OH} = -24 mA	
		5.5		4.85	4.76		I _{OH} = -24 mA (Note 3)	
V _{OL}	Maximum LOW Level	3.0	0.002	0.1	0.1		I _{OUT} = 50 μA	
	Output Voltage	4.5	0.001	0.1	0.1	V		
		5.5	0.001	0.1	0.1			
							$V_{IN} = V_{IL}$ or V_{IH}	
		3.0		0.36	0.44		I _{OL} = 12 mA	
		4.5		0.36	0.44	V	I _{OL} = 24 mA	
		5.5		0.36	0.44		I _{OL} = 24 mA (Note 3)	
I _{IN}	Maximum Input	5.5		± 0.1	± 1.0	μΑ	V _I = V _{CC} , GND	
(Note 5)	Leakage Current							
I _{OLD}	Minimum Dynamic	5.5			75	mA	V _{OLD} = 1.65V Max	
I _{OHD}	Output Current (Note 4)	5.5			-75	mA	V _{OHD} = 3.85V Min	
Icc	Maximum Quiescent	5.5		8.0	80.0	μΑ	V _{IN} = V _{CC} or GND	
(Note 5)	Supply Current							
l _{OZT}	Maximum I/O						$V_I(OE) = V_{IL}, V_{IH}$	
	Leakage Current	5.5		±0.6	±6.0	μΑ	$V_I = V_{CC}$, GND	
	(A _n , B _n Inputs)						V _O = V _{CC} , GND	

DC Electrical Characteristics for ACQ (Continued)

Symbol	Parameter	V _{cc}	$T_A = +25$ °C $T_A = -40$ °C t		T _A = -40°C to +85°C	Units	Conditions
- Cyllibor	l arameter	(V)	Тур	Gu	aranteed Limits	- Oiiii	Containons
V _{OLP}	Quiet Output	5.0	1.1	1.5		V	Figure 5, Figure 6
	Maximum Dynamic V _{OL}						(Note 6)(Note 7)
V _{OLV}	Quiet Output	5.0	-0.6	-1.2		٧	Figure 5, Figure 6
	Minimum Dynamic V _{OL}						(Note 6)(Note 7)
V _{IHD}	Minimum HIGH Level	5.0	3.1	3.5		٧	(Note 6)(Note 8)
	Dynamic Input Voltage						
V _{ILD}	Maximum LOW Level	5.0	1.9	1.5		٧	(Note 6)(Note 8)
	Dynamic Input Voltage						

Note 3: Maximum of 8 outputs loaded; thresholds on input associated with output under test.

Note 4: Maximum test duration 2.0 ms, one output loaded at a time.

Note 5: I $_{\rm IN}$ and I $_{\rm CC}$ @ 3.0V are guaranteed to be less than or equal to the respective limit @ 5.5V V $_{\rm CC}$.

Note 6: Plastic DIP package.

Note 7: Max number of outputs defined as (n). Data inputs are driven 0V to 5V. One output @ GND.

Note 8: Max number of Data Inputs (n) switching. (n-1) inputs switching 0V to 5V (ACQ). Input-under-test switching 5V to threshold (V_{ILD}) , 0V to threshold (V_{IHD}) f=1 MHz.

DC Electrical Characteristics for ACTQ

Symbol	Davana atau	V _{cc}	T _A =	+25°C	T _A = -40°C to +85°C	Units	Conditions	
Зупівої	Parameter	(V)	Тур	Gu	aranteed Limits	Units	Conditions	
V _{IH}	Minimum HIGH Level	4.5	1.5	2.0	2.0	V	V _{OUT} = 0.1V	
	Input Voltage	5.5	1.5	2.0	2.0		or V _{CC} – 0.1V	
V _{IL}	Maximum LOW Level	4.5	1.5	0.8	0.8	V	V _{OUT} = 0.1V	
	Input Voltage	5.5	1.5	0.8	0.8		or V _{CC} – 0.1V	
V _{OH}	Minimum HIGH Level	4.5	4.49	4.4	4.4	V	I _{OUT} = -50 μA	
	Output Voltage	5.5	5.49	5.4	5.4			
							$V_{IN} = V_{IL}$ or V_{IH}	
		4.5		3.86	3.76	V	I _{OH} = -24 mA	
		5.5		4.86	4.76		I _{OH} = -24 mA (Note 9)	
V _{OL}	Maximum LOW Level	4.5	0.001	0.1	0.1	V	I _{OUT} = 50 μA	
	Output Voltage	5.5	0.001	0.1	0.1			
							$V_{IN} = V_{IL}$ or V_{IH}	
		4.5		0.36	0.44	V	I _{OL} = 24 mA	
		5.5		0.36	0.44		I _{OL} = 24 mA (Note 9)	
I _{IN}	Maximum Input	5.5		±0.1	±1.0	μΑ	$V_I = V_{CC}$, GND	
	Leakage Current							
lozt	Maximum I/O						$V_I = V_{IL}, \ V_{IH}$	
	Leakage Current	5.5		±0.6	±6.0	μΑ	$V_O = V_{CC}$, GND	
	(A _n , B _n Inputs)							
Гсст	Maximum I _{CC} /Input	5.5	0.6		1.5	mA	$V_I = V_{CC} - 2.1V$	
I _{OLD}	Minimum Dynamic	5.5			75	mA	V _{OLD} = 1.65V Max	
I _{OHD}	Output Current (Note 10)	5.5			-75	mA	V _{OHD} = 3.85V Min	
Icc	Maximum Quiescent	5.5		8.0	80.0	μΑ	$V_{IN} = V_{CC}$	
	Supply Current						or GND	
V _{OLP}	Quiet Output	5.0	1.1	1.5		V	Figure 5, Figure 6	
	Maximum Dynamic V _{OL}						(Note 6)(Note 11)	
V _{OLV}	Quiet Output	5.0	-0.6	-1.2		٧	Figure 5, Figure 6	
	Minimum Dynamic V _{OL}						(Note 6)(Note 11)	
V _{IHD}	Minimum HIGH Level	5.0	1.7	2.0		٧	(Note 6)(Note 12)	
	Dynamic Input Voltage							
V _{ILD}	Maximum LOW Level	5.0	1.2	0.8		٧	(Note 6)(Note 12)	
	Dynamic Input Voltage							

Note 9: All outputs loaded; thresholds on input associated with output under test.

Note 10: Maximum test duration 2.0 ms, one output loaded at a time.

DC Electrical Characteristics for ACTQ (Continued)

Note 11: Max number of outputs defined as (n). Data inputs are driven 0V to 3V. One output @ GND.

Note 12: Max number of data inputs (n) switching. (n – 1) inputs switching 0V to 3V (ACTQ). Input-under-test switching: 3V to threshold (V_{ILD}), 0V to threshold (V_{IHD}), f = 1 MHz.

AC Electrical Characteristics for ACQ

		Vcc		T _A = +25°C		T _A = -40°	C to +85°C	
Symbol	Parameter	(V)		C _L = 50 pF		C _L =	50 pF	Units
		(Note 13)	Min	Тур	Max	Min	Max	
t _{PLH}	Propagation Delay	3.3	3.5	9.0	12.0	3.5	13.0	ns
	Bus to Bus	5.0	2.5	6.5	9.0	2.5	9.5	
t _{PHL}	Propagation Delay	3.3	3.5	9.0	12.0	3.5	13.0	ns
	Bus to Bus	5.0	2.5	6.5	9.0	2.5	9.5	
t _{PLH}	Propagation Delay	3.3	3.5	10.0	13.0	3.5	14.0	ns
	Clock to Bus	5.0	2.5	7.0	9.5	2.5	10.5	
t _{PHL}	Propagation Delay	3.3	3.5	10.0	13.0	3.5	14.0	ns
	Clock to Bus	5.0	2.5	7.0	9.5	2.5	10.5	
t _{PLH}	Propagation Delay	3.3	3.5	9.5	12.5	3.5	13.5	
	SBA or SAB to A _n or B _n	5.0	2.5	6.5	9.0	2.5	10.0	ns
	(w/A _n or B _n HIGH or LOW)							
t _{PHL}	Propagation Delay	3.3	3.5	9.5	12.5	3.5	13.5	
	SBA or SAB to A _n or B _n	5.0	2.5	6.5	9.0	2.5	10.0	ns
	(w/A _n or B _n HIGH or LOW)							
t _{PZH}	Enable Time	3.3	3.5	10.5	14.5	3.5	15.5	ns
	G to A _n or B _n	5.0	2.5	8.0	10.5	2.5	11.5	
t _{PZL}	Enable Time	3.3	3.5	10.5	14.5	3.5	15.5	ns
	G to A _n or B _n	5.0	2.5	8.0	10.5	2.5	11.5	
t _{PHZ}	Disable Time	3.3	2.5	8.0	11.0	2.5	12.0	ns
	G to A _n or B _n	5.0	1.5	5.0	7.5	1.5	8.0	
t _{PLZ}	Disable Time	3.3	2.5	8.0	11.0	2.5	12.0	ns
	G to A _n or B _n	5.0	1.5	5.0	7.5	1.5	8.0	
t _{PZH}	Enable Time	3.3	4.5	11.0	15.5	4.5	17.0	ns
	DIR to A _n or B _n	5.0	3.0	8.5	11.0	3.0	11.5	
t _{PZL}	Enable Time	3.3	4.5	11.0	15.5	4.5	17.0	ns
	DIR to A _n or B _n	5.0	3.0	8.5	11.0	3.0	11.5	
t _{PHZ}	Disable Time	3.3	1.5	8.0	11.0	1.5	12.0	ns
	DIR to A _n or B _n	5.0	1.0	5.0	7.5	1.0	8.0	
t _{PLZ}	Disable Time	3.3	1.5	8.0	11.0	1.5	12.0	ns
	DIR to A _n or B _n	5.0	1.0	5.0	7.5	1.0	8.0	
tos	Output to Output Skew (Note 14)	3.3 5.0		1.0 0.5	1.5 1.0		1.5 1.0	ns

Note 13: Voltage Range 3.3 is $3.3V \pm 0.3V$. Voltage Range 5.0 is $5.0V \pm 0.5V$

Note 14: Skew is defined as the absolute value of the difference between the actual propagation delay for any two outputs within the same packaged device. The specification applies to any outputs switching in the same direction, either HIGH-to-LOW (toshil) or LOW-to-HIGH (toslin). Parameter guaranteed by design. Not tested.

AC Operating Requirements for ACQ

Symbol	Parameter	V _{cc}	T _A = +25°C		T _A = -40°C to +85°C	Units
Cymbol	i arameter	(Note 15)(Note 16)	Тур	Gua	ranteed Minimum	Oilles
t _S	Setup Time, HIGH or LOW	3.3		3.0	3.0	ns
	Bus to Clock	5.0		3.0	3.0	
t _H	Hold Time, HIGH or LOW	3.3		1.5	1.5	ns
	Bus to Clock	5.0		1.5	1.5	
t _W	Clock Pulse Width	3.3		4.0	4.0	ns
	HIGH or LOW	5.0		4.0	4.0	

Note 15: Voltage Range 3.3 is $3.3V \pm 0.3V$. Note 16: Voltage Range 5.0 is $5.0V \pm 0.5V$

AC Electrical Characteristics for ACTQ

	V _{cc}		$T_A = +25^{\circ}C$		T _A = -40°	C to +85°C	
Symbol Parameter		C _L = 50 pF			C _L =	50 pF	Units
	(Note 17)	Min	Тур	Max	Min	Max	
Propagation Delay	5.0	2.5	8.5	10.5	2.5	11.0	ns
Clock to Bus							
Propagation Delay	5.0	2.0	8.0	10.0	2.0	10.5	ns
Bus to Bus							
Propagation Delay							
SBA or SAB to An or Bn	5.0	2.5	8.5	10.5	2.5	11.0	ns
(w/A _n or B _n HIGH or LOW)							
Enable Time	5.0	2.5	10.0	12.0	2.5	12.5	ns
\overline{G} to A_n or B_n							
Disable Time	5.0	1.0	7.0	8.5	1.0	9.0	ns
G to A _n or B _n							
Enable Time	5.0	2.5	10.0	12.0	2.5	12.5	ns
DIR to A _n or B _n							
Disable Time	5.0	1.0	7.0	8.5	1.0	9.0	ns
DIR to A _n or B _n							
Output to Output							
Skew (Note 18) Select to Bus	5.0		0.5	1.0		1.0	ns
or Clock to Bus							
Output to Output							
Skew (Note 18)	5.0		1.0	1.5		1.5	ns
Bus to Bus							
	Propagation Delay Clock to Bus Propagation Delay Bus to Bus Propagation Delay SBA or SAB to An or Bn (w/An or Bn HIGH or LOW) Enable Time G to An or Bn Disable Time G to An or Bn Enable Time DIR to An or Bn Disable Time DIR to An or Bn Output to Output Skew (Note 18) Select to Bus or Clock to Bus Output to Output Skew (Note 18)	Parameter (V) (Note 17) (Note 17) Propagation Delay 5.0 Clock to Bus 5.0 Propagation Delay 5.0 Bus to Bus 5.0 Propagation Delay 5.0 SBA or SAB to An or Bn 5.0 (w/An or Bn HIGH or LOW) 5.0 Enable Time 5.0 Disable Time 5.0 DIR to An or Bn 5.0 Disable Time 5.0 DIR to An or Bn 5.0 Output to Output 5.0 Skew (Note 18) Select to Bus 5.0 or Clock to Bus 0utput to Output Skew (Note 18) 5.0	Parameter (V) (Note 17) Min Propagation Delay 5.0 2.5 Clock to Bus 5.0 2.0 Propagation Delay 5.0 2.0 Bus to Bus Propagation Delay 5.0 2.5 SBA or SAB to An or Bn 5.0 2.5 (w/An or Bn HIGH or LOW) Enable Time 5.0 2.5 G to An or Bn 5.0 1.0 Disable Time 5.0 2.5 DIR to An or Bn 5.0 1.0 Disable Time 5.0 1.0 DIR to An or Bn 5.0 1.0 Output to Output 5.0 5.0 Skew (Note 18) Select to Bus or Clock to Bus 5.0 Output to Output 5.0 5.0	Parameter (V) C _L = 50 pF (Note 17) Min Typ Propagation Delay 5.0 2.5 8.5 Clock to Bus 2.0 8.0 Propagation Delay 5.0 2.0 8.0 Bus to Bus 8.5 8.5 8.5 Propagation Delay 5.0 2.5 8.5 (w/A _n or B _n HIGH or LOW) 5.0 2.5 8.5 Enable Time 5.0 2.5 10.0 G to A _n or B _n 5.0 1.0 7.0 Disable Time 5.0 2.5 10.0 DIR to A _n or B _n 5.0 1.0 7.0 DIR to A _n or B _n 5.0 0.5 0.5 Output to Output 5.0 0.5 0.5 Skew (Note 18) Select to Bus 5.0 0.5 Output to Output 5.0 1.0 Skew (Note 18) 5.0 1.0	Parameter (V) C _L = 50 pF Propagation Delay 5.0 2.5 8.5 10.5 Clock to Bus 5.0 2.0 8.0 10.0 Propagation Delay 5.0 2.0 8.0 10.0 Bus to Bus 70 2.5 8.5 10.0 Propagation Delay 5.0 2.5 8.5 10.5 (w/A _n or B _n HIGH or LOW) 5.0 2.5 8.5 10.5 Enable Time 5.0 2.5 10.0 12.0 Disable Time 5.0 2.5 10.0 12.0 DIR to A _n or B _n 5.0 2.5 10.0 12.0 DIR to A _n or B _n 5.0 1.0 7.0 8.5 DIR to A _n or B _n 5.0 0.5 1.0 Output to Output 5.0 0.5 1.0 Skew (Note 18) Select to Bus 5.0 0.5 1.0 Or Clock to Bus 5.0 1.0 1.5	Parameter (V) C _L = 50 pF C _L = (Note 17) Min Typ Max Min Propagation Delay 5.0 2.5 8.5 10.5 2.5 Clock to Bus 5.0 2.0 8.0 10.0 2.0 Bus to Bus Propagation Delay 5.0 2.5 8.5 10.5 2.5 Propagation Delay SBA or SAB to An or Bn 5.0 2.5 8.5 10.5 2.5 (w/An or B, HIGH or LOW) Enable Time 5.0 2.5 10.0 12.0 2.5 G to An or Bn 5.0 1.0 7.0 8.5 1.0 Disable Time 5.0 2.5 10.0 12.0 2.5 DIR to An or Bn 5.0 1.0 7.0 8.5 1.0 DIR to An or Bn 5.0 0.5 1.0 1.0 Output to Output 5.0 0.5 1.0 0.5 1.0 Skew (Note 18) 5.0 0.5 1.0 1.5	Parameter (V) C _L = 50 pF C _L = 50 pF Propagation Delay 5.0 2.5 8.5 10.5 2.5 11.0 Clock to Bus Propagation Delay 5.0 2.0 8.0 10.0 2.0 10.5 Bus to Bus Propagation Delay 5.0 2.5 8.5 10.0 2.0 10.5 Bable Time 5.0 2.5 8.5 10.5 2.5 11.0 Cw/An or Bn 5.0 2.5 8.5 10.5 2.5 11.0 Enable Time 5.0 2.5 10.0 12.0 2.5 12.5 Direction Time 5.0 2.5 10.0 12.0 2.5 12.5 DIR to An or Bn 5.0 2.5 10.0 12.0 2.5 12.5 DIR to An or Bn 5.0 1.0 7.0 8.5 1.0 9.0 DIR to An or Bn 5.0 0.5 1.0 1.0 1.0 Output to Output 5.0 0.5

Note 17: Voltage Range 5.0 is 5.0V ±0.5V

Note 18: Skew is defined as the absolute value of the difference between the actual propagation delay for any two outputs within the same packaged device. The specification applies to any outputs switching in the same direction, either HIGH-to-LOW (t_{OSHL}) or LOW-to-HIGH (t_{OSLH}). Parameter guaranteed by design. Not tested.

AC Operating Requirements for ACTQ

Symbol	Parameter	V _{CC} (V)	T _A = +25°C C _L = 50 pF		$T_A = -40^{\circ}C \text{ to } +85^{\circ}C$ $C_L = 50 \text{ pF}$	Units
		(Note 19)	Тур	Guara	anteed Minimum	
ts	Setup Time, HIGH or LOW	5.0		3.0	3.0	ns
	Bus to Clock					
t _H	Hold Time, HIGH or LOW	5.0		1.5	1.5	ns
	Bus to Clock					
t _W	Clock Pulse Width	5.0		4.0	4.0	ns
	HIGH or LOW					

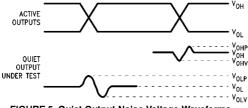
Note 19: Voltage Range 5.0 is 5.0V ±0.5V

Capacitance

Symbol	Parameter	Тур	Units	Conditions
C _{IN}	Input Capacitance	4.5	pF	V _{CC} = OPEN
C _{I/O}	Input/Output Capacitance	15.0	pF	V _{CC} = 5.0V
C _{PD}	Power Dissipation Capacitance	90.0	pF	V _{CC} = 5.0V

FACT Noise Characteristics

The setup of a noise characteristics measurement is critical to the accuracy and repeatability of the tests. The following is a brief description of the setup used to measure the noise characteristics of FACT.


Equipment:

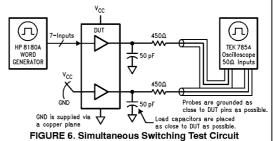
Hewlett Packard Model 8180A Word Generator PC-163A Test Fixture

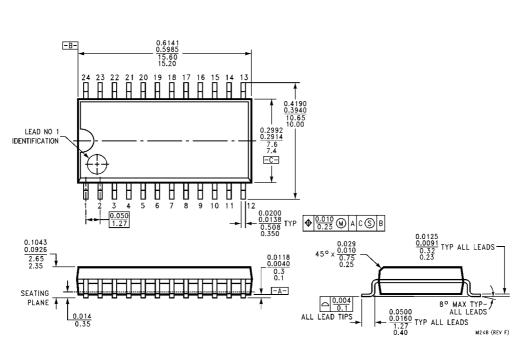
Tektronics Model 7854 Oscilloscope

Procedure:

- 1. Verify Test Fixture Loading: Standard Load 50 pF, 500Ω .
- Deskew the HFS generator so that no two channels have greater than 150 ps skew between them. This requires that the oscilloscope be deskewed first. It is important to deskew the HFS generator channels before testing. This will ensure that the outputs switch simultaneously.
- Terminate all inputs and outputs to ensure proper loading of the outputs and that the input levels are at the correct voltage.
- Set the HFS generator to toggle all but one output at a frequency of 1 MHz. Greater frequencies will increase DUT heating and effect the results of the measurement
- Set the HFS generator input levels at 0V LOW and 3V HIGH for ACT devices and 0V LOW and 5V HIGH for AC devices. Verify levels with an oscilloscope.

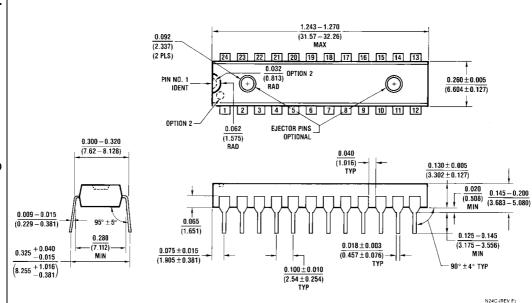
FIGURE 5. Quiet Output Noise Voltage Waveforms


Note 20: V_{OHV} and V_{OLP} are measured with respect to ground reference. Note 21: Input pulses have the following characteristics: f = 1 MHz, $t_r = 3 \text{ ns}$, $t_t = 3 \text{ ns}$, $t_t = 3 \text{ ns}$, skew < 150 ps.


VOLP/VOLV and VOHP/VOHV:

- Determine the quiet output pin that demonstrates the greatest noise levels. The worst case pin will usually be the furthest from the ground pin. Monitor the output voltages using a 50Ω coaxial cable plugged into a standard SMB type connector on the test fixture. Do not use an active FET probe.
- Measure V_{OLP} and V_{OLV} on the quiet output during the worst case transition for active and enable. Measure V_{OHP} and V_{OHV} on the quiet output during the worst case active and enable transition.
- Verify that the GND reference recorded on the oscilloscope has not drifted to ensure the accuracy and repeatability of the measurements.

V_{ILD} and V_{IHD} :


- Monitor one of the switching outputs using a 50Ω coaxial cable plugged into a standard SMB type connector on the test fixture. Do not use an active FET probe.
- First increase the input LOW voltage level, V_{IL}, until the output begins to oscillate or steps out a min of 2 ns.
 Oscillation is defined as noise on the output LOW level that exceeds V_{IL} limits, or on output HIGH levels that exceed V_{IH} limits. The input LOW voltage level at which oscillation occurs is defined as V_{ILD}.
- Next decrease the input HIGH voltage level, V_{IH}, until the output begins to oscillate or steps out a min of 2 ns. Oscillation is defined as noise on the output LOW level that exceeds V_{IL} limits, or on output HIGH levels that exceed V_{IH} limits. The input HIGH voltage level at which oscillation occurs is defined as V_{IHD}.
- Verify that the GND reference recorded on the oscilloscope has not drifted to ensure the accuracy and repeatability of the measurements.

Physical Dimensions inches (millimeters) unless otherwise noted

24-Lead Small Outline Integrated Circuit (SOIC), JEDEC MS-013, 0.300" Wide Body Package Number M24B

Physical Dimensions inches (millimeters) unless otherwise noted (Continued)

24-Lead Slim Plastic Dual-In-Line Package (PDIP), JEDEC MS-100, 0.300" Wide Package Number N24C

LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF FAIRCHILD SEMICONDUCTOR CORPORATION. As used herein:

- 1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the user.
- A critical component in any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

www.fairchildsemi.com