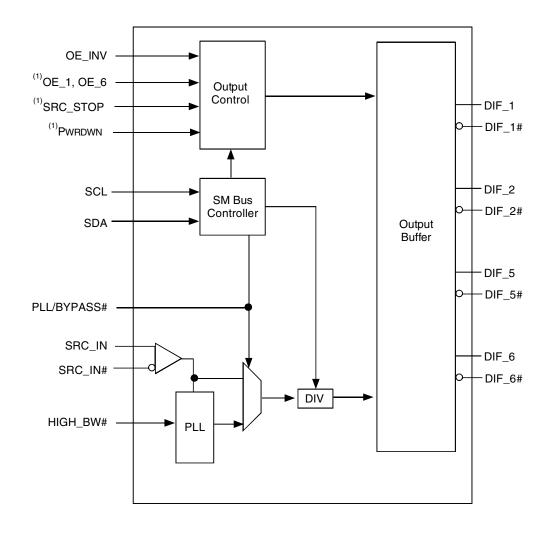


1-TO-4 DIFFERENTIAL CLOCK BUFFER

IDTCV143


FFATURFS:

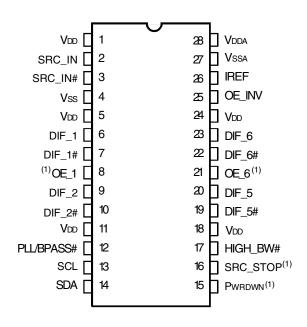
- · Compliant with Intel DB400 spec
- · Four differential clock pairs at 0.7V
- 50ps skew
- 50ps cycle-to-cycle jitter
- · Programmable Bandwidth
- · PLL bypass configurable
- · Available in SSOP package

DESCRIPTION:

The CV143 differential buffer is compliant with Intel DB400 specifications. It is intended to distribute the SRC (serial reference clock) as a companion chip to the main clock of the CK409, CK410/CK410M, CK410B, etc. PLL is off in bypass mode and has no clock detect.

FUNCTIONAL BLOCK DIAGRAM

NOTE:


1. See OE_INV table for active HIGH or active LOW.

The IDT logo is a registered trademark of Integrated Device Technology, Inc.

COMMERCIAL TEMPERATURE RANGE

MARCH 18, 2008

PIN CONFIGURATION

NOTE:

1. See OE_INV table for active HIGH or active LOW.

SSOP TOP VIEW

ABSOLUTE MAXIMUM RATINGS(1)

Symbol	Description	Min	Max	Unit
Vdda	3.3V Core Supply Voltage		4.6	V
VDDIN	3.3V Logic Input Supply Voltage	GND - 0.5	4.6	V
Tstg	Storage Temperature	-65	+150	°C
TAMBIENT	Ambient Operating Temperature	0	+70	°C
TCASE	Case Temperature		+115	°C
ESD Prot	Input ESD Protection	2000		٧
	Human Body Model			

NOTE:

1. Stresses greater than those listed under ABSOLUTE MAXIMUM RATINGS may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect reliability.

HIGH_BW# SELECTION

	HIGH_BW# = 0			HIGH_BW#=1			
	Min.	Тур.	Max.	Min.	Тур.	Max.	Unit
PLL BW	2	3	4	0.7	1	1.4	MHz
PLL Peaking	_	1	3	_	1	3	dB

OE_INV

	OE_INV = 0	OE_INV = 1
OE_1, OE_6	Active HIGH	Active LOW
Pwrdwn	Active LOW	Active HIGH
SRC_STOP	Active LOW	Active HIGH

OE FUNCTIONALITY [OE_INV = 0]

OE_1, OE_6 Pin	OE_1, OE_6 SMBus bit	DIF_1, DIF_6	DIF_1#, DIF_6#
1	1	Normal	Normal
1	0	Tristate	Tristate
0	1	Tristate	Tristate
0	0	Tristate	Tristate

OE FUNCTIONALITY [OE_INV = 1]

OE_1, OE_6 Pin	OE_1, OE_6 SMBus bit	DIF_1, DIF_6	DIF_1#, DIF_6#
1	1	Tristate	Tristate
1	0	Tristate	Tristate
0	1	Normal	Normal
0	0	Tristate	Tristate

PIN DESCRIPTION

Pin Name	Туре	Pin #	Description
SRC_IN, SRC_IN#	IN, DIF	2,3	0.7V differential SRC input
DIF_[2:1], DIF_ [2:1]#	OUT, DIF	6, 7, 9, 10	0.7V differential clock output
DIF_[6:5], DIF_ [6:5]#	OUT, DIF	19, 20, 22, 23	0.7V differential clock output
OE_1, OE_6 ⁽¹⁾	IN	8, 21	3.3V LVTTL input for enabling differential outputs
PLL/Bypass#	IN	12	1 = PLL mode, 0 = bypass, PLL OFF
SCL	IN	13	SMBus clock
SDA	I/O, Open Collector	14	SMBus data
Pwrdwn	IN	15	3.3V LVTTL power down (see OE_INV table)
SRC_STOP	IN	16	SRC stop (see OE_INV table)
HIGH_BW#	IN	17	0 = HIGH BW, 1 = LOW BW (see HIGH_BW# Selection table)
OE_INV	IN	25	See OE_INV table
IREF	IN	26	Reference current for differential output

NOTE:

SMPROTOCOL

INDEX BLOCK WRITE PROTOCOL

Bit	# of bits	From	Description
1	1	Master	Start
2-9	8	Master	DCh
10	1	Slave	Ack (Acknowledge)
11-18	8	Master	Register offset byte (starting byte)
19	1	Slave	Ack (Acknowledge)
20-27	8	Master	Byte count, N (0 is not valid)
28	1	Slave	Ack (Acknowledge)
29-36	8	Master	first data byte (Offset data byte)
37	1	Slave	Ack (Acknowledge)
38-45	8	Master	2nd data byte
46	1	Slave	Ack (Acknowledge)
			:
		Master	Nth data byte
		Slave	Acknowledge
		Master	Stop

INDEX BLOCK READ PROTOCOL

Master can stop reading any time by issuing the stop bit without waiting until Nth byte (byte count bit 30-37).

Bit	# of bits	From	Description
1	1	Master	Start
2-9	8	Master	DCh
10	1	Slave	Ack (Acknowledge)
11-18	8	Master	Register offset byte (starting byte)
19	1	Slave	Ack (Acknowledge)
20	1	Master	Repeated Start
21-28	8	Master	DDh
29	1	Slave	Ack (Acknowledge)
30-37	8	Slave	Byte count, N (block read back of N bytes)
38	1	Master	Ack (Acknowledge)
39-46	8	Slave	first data byte (Offset data byte)
47	1	Master	Ack (Acknowledge)
48-55	8	Slave	2nd data byte
			Ack (Acknowledge)
			:
		Master	Ack (Acknowledge)
		Slave	Nth data byte
			Not acknowledge
		Master	Stop

INDEX BYTE WRITE

Setting bit [11:18] = starting address, bit [20:27] = 01h.

INDEX BYTE READ

Setting bit [11:18] = starting address. After reading back the first data byte, master issues Stop bit.

^{1.} OE_1 controls DIF_1/DIF_1#, and OE_6 controls DIF_6/DIF_6#.

CONTROL REGISTERS

BYTE 0

Bit	Output(s) Affected	Description/Function	0	1	Туре	Power On
7	PowerDown dirve mode		Driven	Tri-state	RW	0
6	SRC_STOP# drive mode		Driven	Tri-state	RW	0
5	Reserved				RW	0
4	Reserved				RW	0
3	Reserved				RW	0
2	High_BW#	Logically AND with HW pin	High band width	Low band width	RW	1
1	PLL/Bypass#	Logically AND with HW pin	Bypass	PLL mode	RW	1
0	Reserved				RW	1

BYTE 1

Bit	Output(s) Affected	Description/Function	0	1	Туре	Power On
7	Reserved				RW	1
6	DIFF_6	Output Enable	Tristate	Enable	RW	1
5	DIFF_5	Output Enable	Tristate	Enable	RW	1
4	Reserved				RW	1
3	Reserved				RW	1
2	DIFF_2	Output Enable	Tristate	Enable	RW	1
1	DIFF_1	Output Enable	Tristate	Enable	RW	1
0	Reserved				RW	1

BYTE 2

Bit	Output(s) Affected	Description/Function	0	1	Туре	Power On
7	Reserved				RW	0
6	DIFF_6	Free Running with SRC_STOP#	Free	stopped	RW	0
5	DIFF_5	Free Running with SRC_STOP#	Free	stopped	RW	0
4	Reserved				RW	0
3	Reserved				RW	0
2	DIFF_2	Free Running with SRC_STOP#	Free	stopped	RW	0
1	DIFF_1	Free Running with SRC_STOP#	Free	stopped	RW	0
0	Reserved				RW	0

BYTE 3

Bit	Output(s) Affected	Description / Function	0	1	Туре	Power On
7	Reserved				RW	
6	Reserved				RW	
5	Reserved				RW	
4	Reserved				RW	
3	Reserved				RW	
2	Reserved				RW	
1	Reserved				RW	
0	Reserved				RW	

BYTE 4

Bit	Output(s) Affected	Description / Function	0	1	Туре	Power On
7		Revision ID			R	0
6		Revision ID			R	0
5		Revision ID			R	0
4		Revision ID			R	0
3		Vendor ID			R	0
2		Vendor ID			R	1
1		Vendor ID			R	0
0		Vendor ID			R	1

BYTE 62 = 30h BYTE 63 = 14h

ELECTRICAL CHARACTERISTICS - INPUT / SUPPLY / COMMON OUTPUT **PARAMETERS**

Following Conditions Apply Unless Otherwise Specified: Operating Condition: TA = 0°C to +70°C, Supply Voltage: VdD = $3.3V \pm 5\%$

Symbol	Parameter	Test Conditions	Min.	Тур.	Max.	Unit
VIH	Input HIGH Voltage	3.3V ± 5%	2		V _{DD} + 0.3	V
VIL	Input LOW Voltage	3.3V ± 5%	Vss - 0.3	_	0.8	V
Іін	Input HIGH Current	VIN = VDD	- 5	_	5	μA
lil1	Input LOW Current	VIN = 0V, inputs with no pull-up resistors	- 5		_	μA
lIL2	Input LOW Current	VIN = 0V, inputs with pull-up resistors	-200	_	_	μΑ
LPIN	Pin Inductance ⁽²⁾		_	_	7	nΗ
CIN	Input Capacitance ⁽²⁾	Logic inputs	_	_	5	pF
Соит		Output pin capacitance	_	_	6	

ELECTRICAL CHARACTERISTICS - DIF 0.7 CURRENT MODE DIFFERENTIAL PAIR

Following Conditions Apply Unless Otherwise Specified:

Operating Condition: TA = 0°C to +70°C, Supply Voltage: $VDD = 3.3V \pm 5\%$; CL = 2pF

SYMBOL	PARAMETER	CONDITIONS	MIN	TYP	MAX	UNITS
				111		ONTO
VHigh	Voltage High	Statistical measurement on single ended	660		850	mV
VLow	Voltage Low	signal using oscilloscope math function.	-150		150	
Vovs	Max Voltage	Measurement on single ended signal using			1150	mV
Vuds	Min Voltage	absolute value.	-300			IIIV
Vcross(abs)	Crossing Voltage (abs)		250		550	mV
d-Vcross	Crossing Voltage (var)	Variation of crossing over all edges			140	mV
ppm	Long Accuracy	see Tperiod min-max values			0	ppm
t _r	Rise Time	$V_{OL} = 0.175V, V_{OH} = 0.525V$	175		700	ps
t _f	Fall Time	$V_{OH} = 0.525V \ V_{OL} = 0.175V$	175		700	ps
d-t _r	Rise Time Variation				125	ps
d-t _f	Fall Time Variation				125	ps
d _{t3}	Duty Cycle	Measurement from differential wavefrom	45	50	55	%
t _{sk3}	Skew	V _T = 50%			50	ps
+	Jitter, Cycle to cycle	PLL mode		40	50	ps
t _{jcyc-cyc}	Jitter, Cycle to cycle	BYPASS mode as additive jitter		15	50	ps

NOTES:

SRC_IN 0.7V AC TIMING CHARACTERISTICS

SYMBOL	PARAMETER	PARAMETER CONDITIONS		MAX	UNITS
V _{IHDIF}	Differential Input High Voltage	Differential inputs (single-ended measurement)	600	1.15	mV
V _{ILDIF}	Differential Input Low Voltage	Differential inputs (single-ended measurement)	V _{SS} - 0.3	300	mV
dv/dt	Input Slew Rate - DIF_IN(2)	Measured differentially	0.4	8	V/ns
I _{IN}	Input Leakage Current	$V_{IN} = V_{DD}, V_{IN} = GND$	-5	5	uA
d_{tin}	Input Duty Cycle	Measurement from differential wavefrom	45	55	%
SRCJ _{C2CIn}	Input SRC Jitter - Cycle to Cycle	Differential Measurement		125	ps

NOTES:

- 1. Parameter is guaranteed by design, but not 100% production tested.
- 2. Slew rate measured through Vswing centered around differential zero.

^{1.} Parameter is guaranteed by design, but not 100% production tested.

DIF AC TIMING CHARACTERISTICS

PLL Bandwidth and Peaking

Symbol	Parameter	Min	Тур	Max	Units
TPROP,PLL	SRC_IN to DIF Propagation Delay, PLL Mode ⁽¹⁾	-250	ı	250	ps
TPROP, BYPASS	SRC_IN to DIF Propagation Delay, Bypass Mode ⁽¹⁾	2.5	ı	4.5	ns
Tskew	DIF_[7:0] Pin to Pin Skew ⁽¹⁾	_	1	250	ps
PLLbandwidth	HIGH_BW#=0 (high bandwidth) ⁽¹⁾	2	3	4	MHz
PLLbandwidth	HIGH_BW#=1 (low bandwidth) ⁽¹⁾	0.7	1	1.4	MHz
PLL Peaking	PLL Peaking ^(1,2)	_	1	3	dB
Tccjitter	Cycle to Cycle Jitter ⁽¹⁾	_	-	50	pS
Duty cycle	PLL Mode ⁽¹⁾	45	_	55	%
Duty cycle	Bypass (assume input is 50%) ⁽¹⁾	40	_	60	%

NOTES:

- 1. This parameter is guaranteed by design, but not 100% production tested.
- 2. Measured at 3dB downpoint.

OUTPUT CONTROL

Symbol	Parameter	Min	Тур	Max	Units
Tdrive_PwrDwn	CLK driven from PD De_Assertion	ı	İ	300	μs
Tactive_PwrDwn	CLK Toggling from PD De_Assertion	1	1	1	ms
Tactive_OE	CLK toggling from OE_[7:0] Assertion	2	ı	6	Clock Periods
TINACTIVE_OE	CLK Tri-stated from OE_[7:0] De_Assertion	2	_	6	Clock Periods

PWRDWN ($OE_INV = 0$)

The Pwrdwn signal is a de-bounced signal in that its state must remain unchanged during two consecutive rising edges of DIF# to be recognized as a valid assertion or de-assertion.

Pwrdwn	DIF	DIF#
1	Normal	Normal
0	Iref*2 or Float	Float

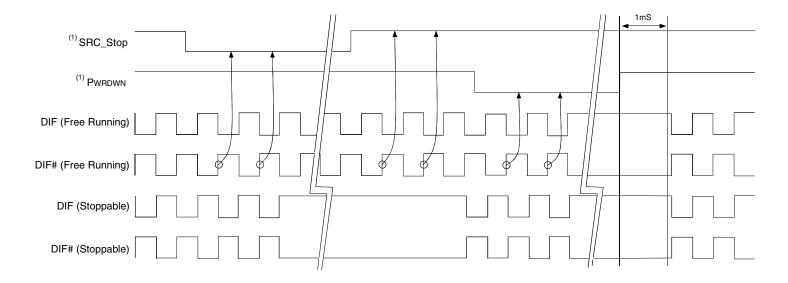
$SRC_STOP (OE_INV = 0)$

 $The SRC_STOP \ signal \ is \ a \ de-bounced \ signal \ in \ that \ its \ state \ must remain \ unchanged \ during \ two \ consecutive \ rising \ edges \ of \ DIF\# to \ be \ recognized \ as \ a \ valid \ assertion \ or \ de-assertion.$

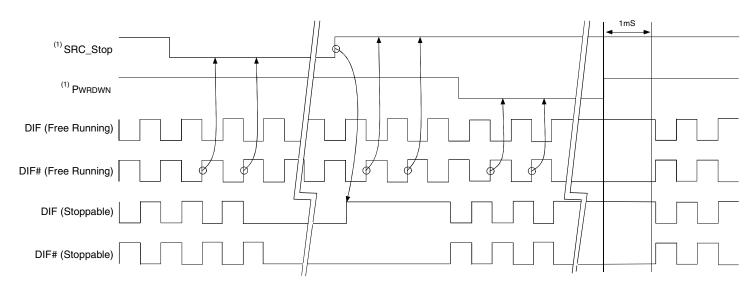
SRC_STOP	DIF	DIF#
1	Normal	Normal
0	Iref*6 or Float	Float

PWRDWN ($OE_INV = 1$)

Pwrdwn	DIF	DIF#
1	Iref*2 or Float	Float
0	Normal	Normal

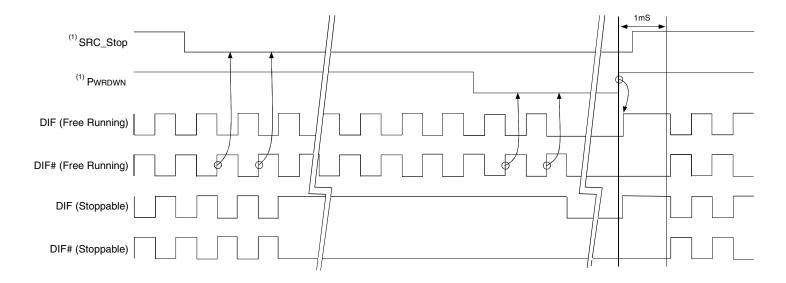

$SRC_STOP (OE_INV = 1)$

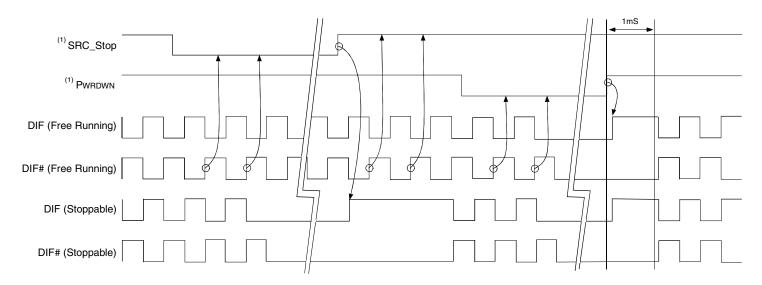
SRC_STOP	DIF	DIF#
1	Iref*6 or Float	Float
0	Normal	Normal


SRC STOP FUNCTIONALITY

The SRC_STOP signal is an input controlling DIF[1, 2, 5, 6] and DIF[1, 2, 5, 6] # outputs. This signal can be asserted asynchronously.

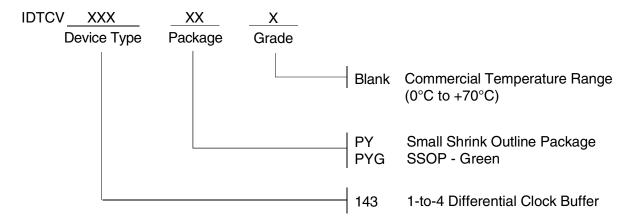
SRC_STOP = DRIVEN, PWRDWN = DRIVEN


SRC_STOP = TRISTATE, PWRDWN = DRIVEN


NOTE:

1. The polarity depends on OE_INV.

SRC_STOP = DRIVEN, PWRDWN = TRISTATE


SRC_STOP = TRISTATE, PWRDWN = TRISTATE

NOTE:

1. The polarity depends on OE_INV.

ORDERING INFORMATION

6024 Silver Creek Valley Road San Jose, CA 95138 for SALES:

800-345-7015 or 408-284-8200 fax: 408-284-2775 www.idt.com

for Tech Support: pcclockhekp@idt.com