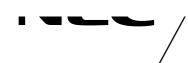
Old Company Name in Catalogs and Other Documents

On April 1st, 2010, NEC Electronics Corporation merged with Renesas Technology Corporation, and Renesas Electronics Corporation took over all the business of both companies. Therefore, although the old company name remains in this document, it is a valid Renesas Electronics document. We appreciate your understanding.

Renesas Electronics website: http://www.renesas.com

April 1st, 2010 Renesas Electronics Corporation

Issued by: Renesas Electronics Corporation (http://www.renesas.com)


Send any inquiries to http://www.renesas.com/inquiry.

Notice

- 1. All information included in this document is current as of the date this document is issued. Such information, however, is subject to change without any prior notice. Before purchasing or using any Renesas Electronics products listed herein, please confirm the latest product information with a Renesas Electronics sales office. Also, please pay regular and careful attention to additional and different information to be disclosed by Renesas Electronics such as that disclosed through our website.
- Renesas Electronics does not assume any liability for infringement of patents, copyrights, or other intellectual property rights
 of third parties by or arising from the use of Renesas Electronics products or technical information described in this document.
 No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights
 of Renesas Electronics or others.
- 3. You should not alter, modify, copy, or otherwise misappropriate any Renesas Electronics product, whether in whole or in part.
- 4. Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of semiconductor products and application examples. You are fully responsible for the incorporation of these circuits, software, and information in the design of your equipment. Renesas Electronics assumes no responsibility for any losses incurred by you or third parties arising from the use of these circuits, software, or information.
- 5. When exporting the products or technology described in this document, you should comply with the applicable export control laws and regulations and follow the procedures required by such laws and regulations. You should not use Renesas Electronics products or the technology described in this document for any purpose relating to military applications or use by the military, including but not limited to the development of weapons of mass destruction. Renesas Electronics products and technology may not be used for or incorporated into any products or systems whose manufacture, use, or sale is prohibited under any applicable domestic or foreign laws or regulations.
- 6. Renesas Electronics has used reasonable care in preparing the information included in this document, but Renesas Electronics does not warrant that such information is error free. Renesas Electronics assumes no liability whatsoever for any damages incurred by you resulting from errors in or omissions from the information included herein.
- 7. Renesas Electronics products are classified according to the following three quality grades: "Standard", "High Quality", and "Specific". The recommended applications for each Renesas Electronics product depends on the product's quality grade, as indicated below. You must check the quality grade of each Renesas Electronics product before using it in a particular application. You may not use any Renesas Electronics product for any application categorized as "Specific" without the prior written consent of Renesas Electronics. Further, you may not use any Renesas Electronics product for any application for which it is not intended without the prior written consent of Renesas Electronics. Renesas Electronics shall not be in any way liable for any damages or losses incurred by you or third parties arising from the use of any Renesas Electronics product for an application categorized as "Specific" or for which the product is not intended where you have failed to obtain the prior written consent of Renesas Electronics. The quality grade of each Renesas Electronics product is "Standard" unless otherwise expressly specified in a Renesas Electronics data sheets or data books, etc.
 - "Standard": Computers; office equipment; communications equipment; test and measurement equipment; audio and visual equipment; home electronic appliances; machine tools; personal electronic equipment; and industrial robots.
 - "High Quality": Transportation equipment (automobiles, trains, ships, etc.); traffic control systems; anti-disaster systems; anti-crime systems; safety equipment; and medical equipment not specifically designed for life support.
 - "Specific": Aircraft; aerospace equipment; submersible repeaters; nuclear reactor control systems; medical equipment or systems for life support (e.g. artificial life support devices or systems), surgical implantations, or healthcare intervention (e.g. excision, etc.), and any other applications or purposes that pose a direct threat to human life.
- 8. You should use the Renesas Electronics products described in this document within the range specified by Renesas Electronics, especially with respect to the maximum rating, operating supply voltage range, movement power voltage range, heat radiation characteristics, installation and other product characteristics. Renesas Electronics shall have no liability for malfunctions or damages arising out of the use of Renesas Electronics products beyond such specified ranges.
- 9. Although Renesas Electronics endeavors to improve the quality and reliability of its products, semiconductor products have specific characteristics such as the occurrence of failure at a certain rate and malfunctions under certain use conditions. Further, Renesas Electronics products are not subject to radiation resistance design. Please be sure to implement safety measures to guard them against the possibility of physical injury, and injury or damage caused by fire in the event of the failure of a Renesas Electronics product, such as safety design for hardware and software including but not limited to redundancy, fire control and malfunction prevention, appropriate treatment for aging degradation or any other appropriate measures. Because the evaluation of microcomputer software alone is very difficult, please evaluate the safety of the final products or system manufactured by you.
- 10. Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental compatibility of each Renesas Electronics product. Please use Renesas Electronics products in compliance with all applicable laws and regulations that regulate the inclusion or use of controlled substances, including without limitation, the EU RoHS Directive. Renesas Electronics assumes no liability for damages or losses occurring as a result of your noncompliance with applicable laws and regulations.
- 11. This document may not be reproduced or duplicated, in any form, in whole or in part, without prior written consent of Renesas Electronics
- 12. Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this document or Renesas Electronics products, or if you have any other inquiries.
- (Note 1) "Renesas Electronics" as used in this document means Renesas Electronics Corporation and also includes its majority-owned subsidiaries.
- (Note 2) "Renesas Electronics product(s)" means any product developed or manufactured by or for Renesas Electronics.

2SC5432

NPN EPITAXIAL SILICON TRANSISTOR FOR HIGH-FREQUENCY LOW-NOISE AMPLIFICATION FLAT-LEAD 3-PIN THIN-TYPE ULTRA SUPER MINIMOLD

FEATURES

- · Contains same chip as 2SC5006
- · Flat-lead 3-pin thin-type ultra super minimold package

ORDERING INFORMATION

Part Number	Quantity	Supplying Form
2SC5432	50 pcs (Non reel)	• 8 mm wide embossed taping
2SC5432-T1	3 kpcs/reel	• Pin 3 (collector) face the perforation side of the tape

Remark To order evaluation samples, contact your nearby sales office. The unit sample quantity is 50 pcs.

ABSOLUTE MAXIMUM RATINGS (TA = +25°C)

Parameter	Symbol	Ratings	Unit
Collector to Base Voltage	Vсво	20	V
Collector to Emitter Voltage	Vceo	12	V
Emitter to Base Voltage	VEBO	3	V
Collector Current	lc	100	mA
Total Power Dissipation	Ptot Note	125	mW
Junction Temperature	Tj	150	°C
Storage Temperature	T _{stg}	-65 to +150	°C

Note Free air

Because this product uses high-frequency technology, avoid excessive static electricity, etc.

The information in this document is subject to change without notice. Before using this document, please confirm that this is the latest version. Not all devices/types available in every country. Please check with local NEC Compound Semiconductor Devices representative for availability and additional information.

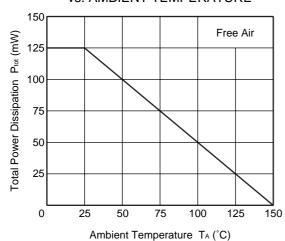
Printed in Japan

ELECTRICAL CHARACTERISTICS (TA = +25°C)

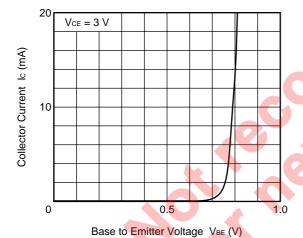
Parameter	Symbol	Test Conditions	MIN.	TYP.	MAX.	Unit
Collector Cut-off Current	Ісво	VcB = 10 V, IE = 0 mA	-	_	1 000	nA
Emitter Cut-off Current	ІЕВО	V _{EB} = 1 V, I _C = 0 mA	1	-	1 000	nA
DC Current Gain	hfe Note 1	Vce = 3 V, Ic = 7 mA	80	-	145	1
Gain Bandwidth Product	f⊤	Vce = 3 V, Ic = 7 mA, f = 1 GHz	3.0	4.5	-	GHz
Insertion Power Gain	S _{21e} ²	Vce = 3 V, Ic = 7 mA, f = 1 GHz	7.0	10.0	-	dB
Noise Figure	NF	Vce = 3 V, Ic = 7 mA, f = 1 GHz	-	1.4	2.5	dB
Reverse Transfer Capacitance	Cre Note 2	VcB = 3 V, IE = 0 mA, f = 1 MHz	_	0.7	1.5	pF

Notes 1. Pulse measurement: PW \leq 350 μ s, Duty Cycle \leq 2%

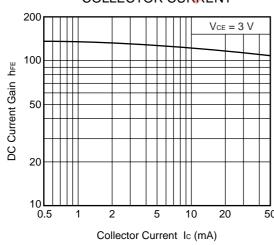
2. Collector to base capacitance when the emitter grounded

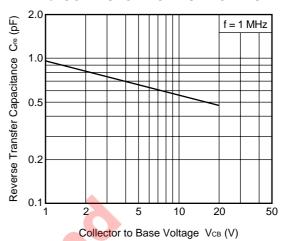

hfe CLASSIFICATION

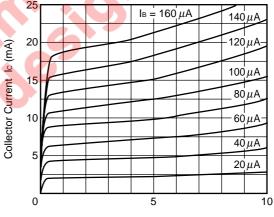
CLASSIFI	CATION		.,0
Rank	EB	FB	
Marking	TC	TD	
h _{FE} Value	80 to 110	100 to 145	
	40		



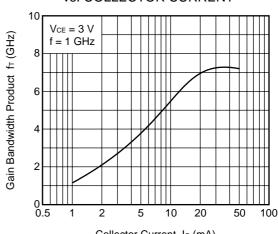
TYPICAL CHARACTERISTICS (Unless otherwise specified, $T_A = +25$ °C)


TOTAL POWER DISSIPATION vs. AMBIENT TEMPERATURE


COLLECTOR CURRENT vs. BASE TO EMITTER VOLTAGE

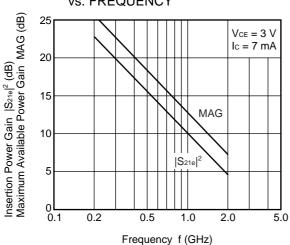

DC CURRENT GAIN vs. COLLECTOR CURRENT

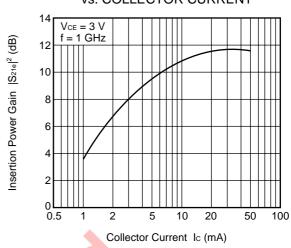
REVERSE TRANSFER CAPACITANCE vs. COLLECTOR TO BASE VOLTAGE



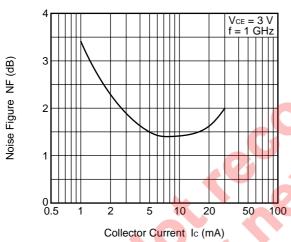
COLLECTOR CURRENT vs. **COLLECTOR TO EMITTER VOLTAGE**

Collector to Emitter Voltage VcE (V)


GAIN BANDWIDTH PRODUCT vs. COLLECTOR CURRENT


Collector Current Ic (mA)

INSERTION POWER GAIN, MAG vs. FREQUENCY



INSERTION POWER GAIN vs. COLLECTOR CURRENT

IIIII GIC

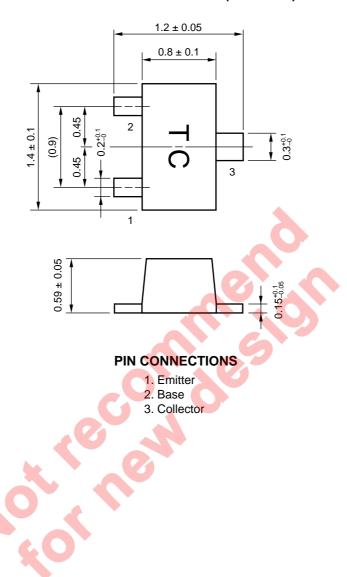
NOISE FIGURE vs. COLLECTOR CURRENT

Remark The graphs indicate nominal characteristics.

S-PARAMETERS

V 4 V I-	1 A 7-	50.0						
Vce = 1 V, Ic			_		_			_
Frequency		S ₁₁		21	S ₁			S22
(GHz)	MAG.	ANG.	MAG.	ANG.	MAG.	ANG.	MAG.	ANG.
		(deg.)		(deg.)		(deg.)		(deg.)
0.2	0.893	-49.6	3.192	143.8	0.119	59.2	0.903	-21.2
0.4	0.773	-90.6	2.404	117.2	0.180	37.9	0.720	-35.3
0.6	0.745	-117.4	1.906	97.3	0.203	25.0	0.610	-46.5
0.8	0.711	-135.9	1.603	84.7	0.205	15.4	0.564	-54.0
1.0	0.698	-150.3	1.331	74.2	0.206	9.1	0.537	-58.9
1.2	0.708	-161.3	1.148	64.2	0.199	6.5	0.511	-63.9
1.4	0.716	-168.6	1.025	55.8	0.183	6.9	0.492	-71.0
1.6	0.696	-176.0	0.916	50.0	0.165	7.9	0.483	-79.0
1.8	0.690	175.0	0.809	44.2	0.145	10.1	0.486	-86.7
2.0	0.714	167.7	0.719	39.0	0.131	13.9	0.482	-95.1
2.2	0.738	162.9	0.657	33.0	0.125	22.2	0.482	-106.0
2.4	0.750	158.7	0.619	29.3	0.126	32.3	0.508	-116.7
2.6	0.758	154.7	0.572	28.1	0.137	42.3	0.541	-124.7
2.8	0.770	150.9	0.513	26.2	0.152	50.5	0.559	-131.8
3.0	0.785	148.0	0.483	23.0	0.167	55.1	0.566	-139.6
						711		
VCE = 1 V, IC	= 3 mA, Zo =	= 50 Ω						
Frequency	S	S11	S	21	S ₁	2		S ₂₂
(GHz)	MAG.	ANG.	MAG.	ANG.	MAG.	ANG.	MAG.	ANG.
		(deg.)		(deg.)		(deg.)		(deg.)
0.2	0.754	-77.4	7.160	130.9	0.097	48.5	0.729	-40.9
0.4	0.668	-121.7	4.630	106.0	0.126	32.9	0.469	-61.1
0.6	0.644	-143.9	3.356	90.7	0.134	27.4	0.359	-73.2
0.8	0.630	-158.8	2.664	82.0	0.136	25.4	0.306	-80.5
1.0	0.634	-169.7	2.194	74.8	0.140	25.3	0.271	-86.0
1.2	0.653	-177.1	1.850	67.1	0.145	27.6	0.250	-92.7
1.4	0.656	178.0	1.633	60.6	0.148	31.6	0.242	-100.8
1.6	0.640	172.0	1.448	56.1	0.151	36.1	0.241	-108.6
1.8	0.643	164.6	1.275	5 1.3	0.153	39.6	0.245	-116.1
2.0	0.667	159.3	1.139	46.5	0.158	41.4	0.248	-125.3
2.2	0.686	155.7	1.048	40.8	0.169	43.4	0.265	-135.7
2.4	0.698	152.5	0.988	36.7	0.181	45.9	0.295	-143.4
2.6	0.706	149.3	0.923	34.8	0.199	48.4	0.322	-148.5
2.8	0.721	146.4	0.833	32.1	0.211	50.5	0.346	-153.8
3.0	0.737	144.5	0.779	27.2	0.220	51.6	0.365	-159.7
			00		0.220	00	0.000	
VCE = 1 V, IC	= 5 mA , Z o =	= 50 Ω						
Frequency	S	S ₁₁	S	21	S ₁	2	9	S ₂₂
(GHz)	MAG.	ANG.	MAG.	ANG.	MAG.	ANG.	MAG.	ANG.
		(deg.)		(deg.)		(deg.)		(deg.)
0.2	0.678	-95.9	9.388	123.0	0.082	44.1	0.611	-54.6
0.4	0.630	-137.1	5.585	100.5	0.100	34.1	0.363	-78.9
0.6	0.615	-155.7	3.937	87.4	0.109	33.2	0.274	-93.7
0.8	0.609	-168.4	3.084	80.3	0.115	34.5	0.228	-103.2
1.0	0.620	-177.6	2.528	74.3	0.124	36.8	0.203	-112.2
1.2	0.641	176.7	2.121	67.5	0.135	39.3	0.192	-121.5
1.4	0.640	172.7	1.868	61.6	0.147	43.0	0.194	-129.8
1.6	0.626	167.2	1.656	57.6	0.157	46.4	0.199	-136.6
1.8	0.632	160.6	1.451	53.2	0.164	48.6	0.203	-144.2
2.0	0.657	155.8	1.300	48.9	0.173	49.0	0.214	-152.4
2.2	0.673	152.8	1.192	43.4	0.173	48.9	0.238	-160.2
2.4	0.685	149.8	1.128	39.5	0.203	49.5	0.265	-164.8
2.6	0.693	146.9	1.055	37.7	0.222	50.5	0.289	-168.2
2.8	0.708	144.3	0.960	35.0	0.222	50.5 51.6	0.209	-100.2 -172.0
3.0	0.722	142.8	0.895	30.3	0.232	51.6	0.331	-172.0 -176.2
5.0	0.122	172.0	0.000	50.5	0.270	31.0	0.001	170.2

Vce = 3 V, Ic	= 1 mA, Zo =	= 50 Ω						
Frequency	5	S ₁₁	S	21	S	12		S ₂₂
(GHz)	MAG.	ANG.	MAG.	ANG.	MAG.	ANG.	MAG.	ANG.
		(deg.)		(deg.)		(deg.)		(deg.)
0.2	0.914	-43.7	3.280	148.3	0.086	62.7	0.936	-15.4
0.4	0.795	-82.1	2.575	123.7	0.139	43.0	0.792	-26.4
0.6	0.769	-109.7	2.086	104.4	0.161	30.5	0.689	-35.5
0.8	0.731	-128.9	1.783	91.7	0.164	21.2	0.648	-42.3
1.0	0.711	-144.3	1.498	81.7	0.166	14.9	0.630	-46.3
1.2	0.715	-156.5	1.286	72.2	0.162	12.3	0.603	-49.8
1.4	0.721	-164.7	1.146	63.6	0.148	13.5	0.578	-54.9
1.6	0.700	-172.6	1.029	57.8	0.134	15.4	0.559	-61.5
1.8	0.690	177.9	0.913	52.0	0.117	19.5	0.557	-68.5
2.0	0.711	170.1	0.817	46.8	0.107	25.1	0.552	-75.6
2.2	0.735	164.8	0.741	40.6	0.106	35.2	0.538	-84.3
2.4	0.746	160.3	0.702	36.4	0.110	46.3	0.547	-94.8
2.6	0.751	156.2	0.654	34.8	0.127	55.4	0.575	-103.4
2.8	0.763	152.2	0.587	32.3	0.146	63.2	0.589	-110.3
3.0	0.777	149.2	0.552	28.5	0.164	67.4	0.588	-118.0
			0.002	20.5	0.104	07.4	0.500	110.0
VcE = 3 V, Ic Frequency		= 50 Ω S ₁₁	S		s			S ₂₂
		ANG.	MAG.	ANG.		ANG.	MAG.	ANG.
(GHz)	MAG.		MAG.		MAG.		MAG.	
		(deg.)		(deg.)		(deg.)		(deg.)
0.2	0.782	-65.7	7.726	136.8	0.073	54.2	0.804	-29.6
0.4	0.669	-109.9	5.283	111.9	0.101	38.4	0.563	-43.8
0.6	0.639	-134.2	3.921	95.9	0.111	32.3	0.445	-52.1
8.0	0.616	-150.6	3.139	87.0	0.113	30.0	0.392	-56.7
1.0	0.614	-163.0	2.608	79.9	0.118	30.2	0.358	-59.1
1.2	0.629	-171.7	2.194	72.4	0.122	32.5	0.331	-61.7
1.4	0.633	-177.4	1.930	65.7	0.126	37.3	0.309	-66.8
1.6	0.617	176.2	1.716	61.1	0.128	42.2	0.296	-73.3
1.8	0.618	168.4	1.514	56.2	0.132	46.7	0.289	-79.9
2.0	0.642	162.5	1.349	51.7	0.137	49.0	0.285	-87.4
2.2	0.663	158.6	1.234	45.8	0.148	51.7	0.280	-97.0
2.4	0.676	155.2	1.167	41.4	0.162	54.2	0.292	-107.5
2.6	0.684	151.9	1.091	39.2	0.180	56.7	0.314	-115.4
2.8	0.698	148.7	0.985	36.2	0.195	59.3	0.330	-122.1
3.0	0.716	146.7	0.920	31.1	0.205	60.7	0.341	-129.2
VCE = 3 V, IC	= 5 mA, Zo =	= 50 Ω						
Frequency	5	S ₁₁	S	21	S	12		S ₂₂
(GHz)	MAG.	ANG.	MAG.	ANG.	MAG.	ANG.	MAG.	ANG.
		(deg.)		(deg.)		(deg.)		(deg.)
0.2	0.693	-81.4	10.462	129.2	0.063	50.6	0.699	-39.3
0.4	0.610	-125.1	6.572	105.9	0.083	39.0	0.442	-54.7
0.6	0.588	-146.4	4.723	92.0	0.093	37.7	0.334	-62.8
0.8	0.575	-160.7	3.713	84.4	0.098	38.5	0.284	-67.1
1.0	0.582	-171.3	3.072	78.2	0.106	41.1	0.250	-69.7
1.2	0.600	-178.3	2.566	71.8	0.116	43.9	0.226	-73.2
1.4	0.603	177.2	2.253	65.9	0.117	47.9	0.209	-79.7
1.6	0.590	171.4	1.997	61.8	0.127	51.6	0.209	-75.7 -86.9
1.8	0.594	164.4	1.754	57.5	0.133	54.6	0.195	-94.5
2.0	0.594	159.2	1.754	53.1	0.144	55.4	0.193	-94.3 -103.2
2.0	0.638	155.9	1.430	47.6	0.167	55.7	0.192	-103.2 -114.4
2.4	0.651	152.8	1.352	43.4	0.182	56.3	0.194	-114.4 -124.6
2.4	0.660	149.8	1.268	41.3	0.102	57.3	0.211	-124.0 -131.6
2.8	0.677	149.0	1.149	38.5	0.201	57.3 58.8	0.231	-131.6 -137.8
3.0	0.694	147.0	1.149	33.6	0.214	56.6 59.1	0.249	-137.6 -144.5
3.0	0.034	140.0	1.07 1	33.0	0.222	J3.1	0.204	-144.5



Vce = 3 V, Ic =	= 7 mA, Zo =	= 50 Ω						
Frequency	S	S ₁₁	s	21	S	12	;	S ₂₂
(GHz)	MAG.	ANG.	MAG.	ANG.	MAG.	ANG.	MAG.	ANG.
,		(deg.)		(deg.)		(deg.)		(deg.)
0.2	0.630	-95.3	12.557	123.1	0.055	47.9	0.609	-47.7
0.4	0.576	-136.3	7.443	101.8	0.071	41.3	0.359	-64.2
0.6	0.561	-155.0	5.246	89.3	0.082	42.8	0.264	-72.8
0.8	0.554	-167.6	4.082	82.7	0.091	46.0	0.218	-77.8
1.0	0.565	-176.8	3.362	77.2	0.103	49.4	0.187	-81.9
1.2	0.586	177.4	2.865	71.2	0.115	51.8	0.166	-87.6
1.4	0.588	173.6	2.459	66.0	0.130	54.6	0.154	-95.8
1.6	0.577	168.2	2.176	62.2	0.142	56.9	0.150	-104.6
1.8	0.583	161.8	1.908	58.2	0.152	58.9	0.149	-113.3
2.0	0.607	157.1	1.700	54.2	0.163	58.5	0.150	-123.7
2.2	0.625	154.1	1.551	48.8	0.178	57.8	0.161	-134.8
2.4	0.639	151.3	1.468	44.7	0.194	57.4	0.181	-143.4
2.6	0.649	148.5	1.382	42.7	0.214	57.8	0.199	-148.6
2.8	0.665	145.8	1.256	40.1	0.227	58.5	0.219	-153.9
3.0	0.681	144.3	1.171	35.5	0.235	58.6	0.236	-159.5
Vce = 3 V, Ic =	- 10 m / 7a	50.0						
	= 10 mA, 2 0	= 20.75						
•	•	S_{11}	s	21	S	12		S ₂₂
Frequency (GHz)	•		S MAG.	21 ANG.	MAG.	ANG.	MAG.	S ₂₂ ANG.
Frequency	S	S ₁₁						
Frequency (GHz)	MAG.	S ₁₁ ANG.	MAG.	ANG. (deg.)		ANG. (deg.)	MAG.	ANG.
Frequency	S	ANG. (deg.)		ANG. (deg.) 118.3	MAG.	ANG.		ANG. (deg.)
Frequency (GHz)	MAG. 0.575	ANG. (deg.) -108.7	MAG. 14.215	ANG. (deg.)	MAG. 0.048	ANG. (deg.) 48.3	MAG. 0.524	ANG. (deg.) -55.9
Frequency (GHz) 0.2 0.4	MAG. 0.575 0.548	ANG. (deg.) -108.7 -145.7	MAG. 14.215 8.064	ANG. (deg.) 118.3 98.2	0.048 0.062	ANG. (deg.) 48.3 45.8	MAG. 0.524 0.295	ANG. (deg.) -55.9 -73.7
Frequency (GHz) 0.2 0.4 0.6	0.575 0.548 0.540	ANG. (deg.) -108.7 -145.7 -161.8	MAG. 14.215 8.064 5.617	ANG. (deg.) 118.3 98.2 87.4	0.048 0.062 0.075	ANG. (deg.) 48.3 45.8 49.0	MAG. 0.524 0.295 0.213	ANG. (deg.) -55.9 -73.7 -84.1
Frequency (GHz) 0.2 0.4 0.6 0.8	0.575 0.548 0.540 0.539	ANG. (deg.) -108.7 -145.7 -161.8 -173.0	MAG. 14.215 8.064 5.617 4.354	ANG. (deg.) 118.3 98.2 87.4 81.5	0.048 0.062 0.075 0.087	ANG. (deg.) 48.3 45.8 49.0 53.0	MAG. 0.524 0.295 0.213 0.173	ANG. (deg.) -55.9 -73.7 -84.1 -90.5
Frequency (GHz) 0.2 0.4 0.6 0.8 1.0	0.575 0.548 0.540 0.539 0.554	ANG. (deg.) -108.7 -145.7 -161.8 -173.0 179.0	MAG. 14.215 8.064 5.617 4.354 3.577	ANG. (deg.) 118.3 98.2 87.4 81.5 76.4	MAG. 0.048 0.062 0.075 0.087 0.101	ANG. (deg.) 48.3 45.8 49.0 53.0 55.6	MAG. 0.524 0.295 0.213 0.173 0.148	ANG. (deg.) -55.9 -73.7 -84.1 -90.5 -97.4
Frequency (GHz) 0.2 0.4 0.6 0.8 1.0	0.575 0.548 0.540 0.539 0.554 0.574	ANG. (deg.) -108.7 -145.7 -161.8 -173.0 179.0 174.1	MAG. 14.215 8.064 5.617 4.354 3.577 3.038	ANG. (deg.) 118.3 98.2 87.4 81.5 76.4 70.8	MAG. 0.048 0.062 0.075 0.087 0.101 0.117	ANG. (deg.) 48.3 45.8 49.0 53.0 55.6 57.3	MAG. 0.524 0.295 0.213 0.173 0.148 0.132	ANG. (deg.) -55.9 -73.7 -84.1 -90.5 -97.4 -105.9
Frequency (GHz) 0.2 0.4 0.6 0.8 1.0 1.2 1.4	0.575 0.548 0.540 0.539 0.554 0.574	ANG. (deg.) -108.7 -145.7 -161.8 -173.0 179.0 174.1 170.8	MAG. 14.215 8.064 5.617 4.354 3.577 3.038 2.610	ANG. (deg.) 118.3 98.2 87.4 81.5 76.4 70.8 65.9	MAG. 0.048 0.062 0.075 0.087 0.101 0.117 0.133	ANG. (deg.) 48.3 45.8 49.0 53.0 55.6 57.3 58.8	MAG. 0.524 0.295 0.213 0.173 0.148 0.132 0.128	ANG. (deg.) -55.9 -73.7 -84.1 -90.5 -97.4 -105.9 -115.7
Frequency (GHz) 0.2 0.4 0.6 0.8 1.0 1.2 1.4	0.575 0.548 0.540 0.539 0.554 0.574 0.574	ANG. (deg.) -108.7 -145.7 -161.8 -173.0 179.0 174.1 170.8 165.8	MAG. 14.215 8.064 5.617 4.354 3.577 3.038 2.610 2.306	ANG. (deg.) 118.3 98.2 87.4 81.5 76.4 70.8 65.9 62.4	MAG. 0.048 0.062 0.075 0.087 0.101 0.117 0.133 0.148	ANG. (deg.) 48.3 45.8 49.0 53.0 55.6 57.3 58.8 60.3	MAG. 0.524 0.295 0.213 0.173 0.148 0.132 0.128 0.128	ANG. (deg.) -55.9 -73.7 -84.1 -90.5 -97.4 -105.9 -115.7 -124.7
Frequency (GHz) 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6	0.575 0.548 0.540 0.539 0.554 0.574 0.574 0.565 0.573	ANG. (deg.) -108.7 -145.7 -161.8 -173.0 179.0 174.1 170.8 165.8 159.7 155.4 152.6	MAG. 14.215 8.064 5.617 4.354 3.577 3.038 2.610 2.306 2.021 1.802 1.643	ANG. (deg.) 118.3 98.2 87.4 81.5 76.4 70.8 65.9 62.4 58.6 54.8 49.7	MAG. 0.048 0.062 0.075 0.087 0.101 0.117 0.133 0.148 0.160	ANG. (deg.) 48.3 45.8 49.0 53.0 55.6 57.3 58.8 60.3 61.6 60.7 59.3	MAG. 0.524 0.295 0.213 0.173 0.148 0.132 0.128 0.128 0.131	ANG. (deg.) -55.9 -73.7 -84.1 -90.5 -97.4 -105.9 -115.7 -124.7 -134.0 -144.8 -154.6
Frequency (GHz) 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0 2.2 2.4	0.575 0.548 0.540 0.539 0.554 0.574 0.574 0.565 0.573 0.598	ANG. (deg.) -108.7 -145.7 -161.8 -173.0 179.0 174.1 170.8 165.8 159.7 155.4 152.6 150.0	MAG. 14.215 8.064 5.617 4.354 3.577 3.038 2.610 2.306 2.021 1.802 1.643 1.553	ANG. (deg.) 118.3 98.2 87.4 81.5 76.4 70.8 65.9 62.4 58.6 54.8 49.7 45.8	MAG. 0.048 0.062 0.075 0.087 0.101 0.117 0.133 0.148 0.160 0.172	ANG. (deg.) 48.3 45.8 49.0 53.0 55.6 57.3 58.8 60.3 61.6 60.7	MAG. 0.524 0.295 0.213 0.173 0.148 0.132 0.128 0.128 0.131 0.137	ANG. (deg.) -55.9 -73.7 -84.1 -90.5 -97.4 -105.9 -115.7 -124.7 -134.0 -144.8 -154.6 -160.5
Frequency (GHz) 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0 2.2 2.4 2.6	0.575 0.548 0.540 0.539 0.554 0.574 0.574 0.565 0.573 0.598 0.615 0.628	ANG. (deg.) -108.7 -145.7 -161.8 -173.0 179.0 174.1 170.8 165.8 159.7 155.4 152.6 150.0 147.3	MAG. 14.215 8.064 5.617 4.354 3.577 3.038 2.610 2.306 2.021 1.802 1.643 1.553 1.460	ANG. (deg.) 118.3 98.2 87.4 81.5 76.4 70.8 65.9 62.4 58.6 54.8 49.7 45.8 43.9	MAG. 0.048 0.062 0.075 0.087 0.101 0.117 0.133 0.148 0.160 0.172 0.186 0.204 0.223	ANG. (deg.) 48.3 45.8 49.0 53.0 55.6 57.3 58.8 60.3 61.6 60.7 59.3 58.4 58.3	MAG. 0.524 0.295 0.213 0.173 0.148 0.132 0.128 0.128 0.131 0.137 0.154 0.176 0.195	ANG. (deg.) -55.9 -73.7 -84.1 -90.5 -97.4 -105.9 -115.7 -124.7 -134.0 -144.8 -154.6 -160.5 -164.7
Frequency (GHz) 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0 2.2 2.4	0.575 0.548 0.540 0.539 0.554 0.574 0.574 0.565 0.573 0.598 0.615 0.628	ANG. (deg.) -108.7 -145.7 -161.8 -173.0 179.0 174.1 170.8 165.8 159.7 155.4 152.6 150.0	MAG. 14.215 8.064 5.617 4.354 3.577 3.038 2.610 2.306 2.021 1.802 1.643 1.553	ANG. (deg.) 118.3 98.2 87.4 81.5 76.4 70.8 65.9 62.4 58.6 54.8 49.7 45.8	MAG. 0.048 0.062 0.075 0.087 0.101 0.117 0.133 0.148 0.160 0.172 0.186 0.204	ANG. (deg.) 48.3 45.8 49.0 53.0 55.6 57.3 58.8 60.3 61.6 60.7 59.3 58.4	MAG. 0.524 0.295 0.213 0.173 0.148 0.132 0.128 0.128 0.131 0.137 0.154 0.176	ANG. (deg.) -55.9 -73.7 -84.1 -90.5 -97.4 -105.9 -115.7 -124.7 -134.0 -144.8 -154.6 -160.5

★ PACKAGE DIMENSIONS

FLAT-LEAD 3-PIN THIN-TYPE ULTRA SUPER MINIMOLD (UNIT: mm)

- The information in this document is current as of February, 2002. The information is subject to change without notice. For actual design-in, refer to the latest publications of NEC's data sheets or data books, etc., for the most up-to-date specifications of NEC semiconductor products. Not all products and/or types are available in every country. Please check with an NEC sales representative for availability and additional information.
- No part of this document may be copied or reproduced in any form or by any means without prior written consent of NEC. NEC assumes no responsibility for any errors that may appear in this document.
- NEC does not assume any liability for infringement of patents, copyrights or other intellectual property rights of
 third parties by or arising from the use of NEC semiconductor products listed in this document or any other
 liability arising from the use of such products. No license, express, implied or otherwise, is granted under any
 patents, copyrights or other intellectual property rights of NEC or others.
- Descriptions of circuits, software and other related information in this document are provided for illustrative purposes in semiconductor product operation and application examples. The incorporation of these circuits, software and information in the design of customer's equipment shall be done under the full responsibility of customer. NEC assumes no responsibility for any losses incurred by customers or third parties arising from the use of these circuits, software and information.
- While NEC endeavours to enhance the quality, reliability and safety of NEC semiconductor products, customers
 agree and acknowledge that the possibility of defects thereof cannot be eliminated entirely. To minimize
 risks of damage to property or injury (including death) to persons arising from defects in NEC
 semiconductor products, customers must incorporate sufficient safety measures in their design, such as
 redundancy, fire-containment, and anti-failure features.
- NEC semiconductor products are classified into the following three quality grades:
 - "Standard", "Special" and "Specific". The "Specific" quality grade applies only to semiconductor products developed based on a customer-designated "quality assurance program" for a specific application. The recommended applications of a semiconductor product depend on its quality grade, as indicated below. Customers must check the quality grade of each semiconductor product before using it in a particular application.
 - "Standard": Computers, office equipment, communications equipment, test and measurement equipment, audio and visual equipment, home electronic appliances, machine tools, personal electronic equipment and industrial robots
 - "Special": Transportation equipment (automobiles, trains, ships, etc.), traffic control systems, anti-disaster systems, anti-crime systems, safety equipment and medical equipment (not specifically designed for life support)
 - "Specific": Aircraft, aerospace equipment, submersible repeaters, nuclear reactor control systems, life support systems and medical equipment for life support, etc.

The quality grade of NEC semiconductor products is "Standard" unless otherwise expressly specified in NEC's data sheets or data books, etc. If customers wish to use NEC semiconductor products in applications not intended by NEC, they must contact an NEC sales representative in advance to determine NEC's willingness to support a given application.

(Note)

- (1) "NEC" as used in this statement means NEC Corporation, NEC Compound Semiconductor Devices, Ltd. and also includes its majority-owned subsidiaries.
- (2) "NEC semiconductor products" means any semiconductor product developed or manufactured by or for NEC (as defined above).

M8F 00 4-0110

▶ Business issue

NEC Compound Semiconductor Devices, Ltd.

5th Sales Group, Sales Division TEL: +81-3-3798-6372 FAX: +81-3-3798-6783 E-mail: salesinfo@csd-nec.com

NEC Compound Semiconductor Devices Hong Kong Limited

Hong Kong Head Office TEL: +852-3107-7303 FAX: +852-3107-7309
Taipei Branch Office TEL: +886-2-8712-0478 FAX: +886-2-2545-3859
Korea Branch Office TEL: +82-2-528-0301 FAX: +82-2-528-0302

NEC Electron Devices European Operations http://www.nec.de/

TEL: +49-211-6503-101 FAX: +49-211-6503-487

California Eastern Laboratories, Inc. http://www.cel.com/

TEL: +1-408-988-3500 FAX: +1-408-988-0279

▶ Technical issue

NEC Compound Semiconductor Devices, Ltd. http://www.csd-nec.com/

Sales Engineering Group, Sales Division

E-mail: techinfo@csd-nec.com FAX: +81-44-435-1918