Notice for TAIYO YUDEN products Please read this notice before using the TAIYO YUDEN products. ## REMINDERS Product information in this catalog is as of October 2010. All of the contents specified herein are subject to change without notice due to technical improvements, etc. Therefore, please check for the latest information carefully before practical application or usage of the Products. Please note that Taiyo Yuden Co., Ltd. shall not be responsible for any defects in products or equipment incorporating such products, which are caused under the conditions other than those specified in this catalog or individual specification. - Please contact Taiyo Yuden Co., Ltd. for further details of product specifications as the individual specification is available. - Please conduct validation and verification of products in actual condition of mounting and operating environment before commercial shipment of the equipment. - All electronic components or functional modules listed in this catalog are developed, designed and intended for use in general electronics equipment.(for AV, office automation, household, office supply, information service, telecommunications, (such as mobile phone or PC) etc.). Before incorporating the components or devices into any equipment in the field such as transportation,(automotive control, train control, ship control), transportation signal, disaster prevention, medical, public information network (telephone exchange, base station) etc. which may have direct influence to harm or injure a human body, please contact Taiyo Yuden Co., Ltd. for more detail in advance. Do not incorporate the products into any equipment in fields such as aerospace, aviation, nuclear control, submarine system, military, etc. where higher safety and reliability are especially required. In addition, even electronic components or functional modules that are used for the general electronic equipment, if the equipment or the electric circuit require high safety or reliability function or performances, a sufficient reliability evaluation check for safety shall be performed before commercial shipment and moreover, due consideration to install a protective circuit is strongly recommended at customer's design stage. - The contents of this catalog are applicable to the products which are purchased from our sales offices or distributors (so called "TAIYO YUDEN's official sales channel"). It is only applicable to the products purchased from any of TAIYO YUDEN's official sales channel. - Please note that Taiyo Yuden Co., Ltd. shall have no responsibility for any controversies or disputes that may occur in connection with a third party's intellectual property rights and other related rights arising from your usage of products in this catalog. Taiyo Yuden Co., Ltd. grants no license for such rights. - Caution for export Certain items in this catalog may require specific procedures for export according to "Foreign Exchange and Foreign Trade Control Law" of Japan, "U.S. Export Administration Regulations", and other applicable regulations. Should you have any question or inquiry on this matter, please contact our sales staff. # MULTILAYER CHIP INDUCTOR FOR HIGH FREQUENCY (HK SERIES) WAVE* REFLOW *Except for HK0603, HK1005 ### **FEATURES** - Multilayer inductor made of advanced ceramics with low-resistivity silver used as internal conductors provides excellent Q and SRF characteristics. - Designed to address surface mount inductor needs for applications above 100MHz. - Multilayer block structure ensures outstanding reliability, high productivity and product quality. ### APPLICATIONS - Portable telephones, PHS and W-LAN - Miscellaneous high-frequency circuits - EMI countermeasure in high-frequency circuits ### ORDERING CODE #### ■ EXTERNAL DIMENSIONS/STANDARD QUANTITY ### HK Type | Type | | W | т . | | Standard Qu | antity [pcs] | |------------------|-----------------------------|---------------------------|--|----------------------------|-------------|---------------| | туре | L | VV | ' | е | Paper Tape | Embossed Tape | | HK0603
(0201) | 0.6±0.03
(0.024±0.001) | 0.3±0.03
(0.012±0.001) | 0.3±0.03
(0.012±0.001) | 0.15±0.05
(0.006±0.002) | 15000 | _ | | HK1005
(0402) | 1.00±0.05
(0.039±0.002) | 0.5±0.05
(0.020±0.002) | 0.5±0.05
(0.020±0.002) | 0.25±0.10
(0.010±0.004) | 10000 | - | | HK1608
(0603) | 1.6±0.15
(0.063±0.006) | 0.8±0.15
(0.031±0.006) | 0.8±0.15
(0.031±0.006) | 0.3±0.2
(0.012±0.008) | 4000 | _ | | HK2125 | 2.0+0.3 | 1.25±0.2 | 0.85±0.2
(0.033±0.008) | 0.5±0.3 | _ | 4000 | | (0805) | $(0.079^{+0.012}_{-0.004})$ | (0.049±0.008) | 1.0 ^{+0.2} _{-0.3} (0.039 ^{+0.008} _{-0.012}) | (0.020±0.012) | _ | 3000 | Unit: mm(inch) ### AVAILABLE INDUCTANCE RANGE | Inductance [nH] | 1.0 | 1.2 | 1.5 | 10 | 2.2 | 2.7 | 3.3 | 3.9 | 4.7 | 5.6 | 6.8 | 8.2 | 10.0 | 12.0 | 15.0 | 18.0 | 22.0 | 27.0 | 33.0 | 39.0 | 47.0 | 56.0 | 68.0 | 82.0 | 100.0 | 120.0 | 150.0 | 100 0 | 220.0 | 270.0 | 220 0 2 | 90.0 470. | |-------------------------------|----------|------|------|------|------|-------|----------|------|------|------|-------|-------|------|-------|------|------|------------|--------------|------|----------|------|----------|----------|------|-------|-------|-------|-------|---------------|-------|------------|---------------| | HK0603 | | | | 1.8 | | | | - | | - | | | | | | | _ | | | | | | | | | | 130.0 | 100.0 | 220.0 | 210.0 | 330.0 3 | 90.0 470. | | (Imax. [mA]) | 1N0∐ | 1N2_ | 1N5_ | 1N8_ | 2N2 | 2N/∟ | 3N3_ | 3N9_ | 4N/∟ | 5N6_ | 6N8() | 8N2() | 10NO | 12N() | 15NO | 18NU | 22NO | 2/N() | 33NO | 39NO | 4/N∪ | 56N() | 68NU | 82NU | H10∪ | | | | | | | | | Operating temp.:
-55~+125℃ | 470 | 450 | 430 | 390 | 360 | 340 | 320 | 300 | 280 | 260 | 250 | 230 | 220 | 190 | 180 | 170 | 150 | 120 | 110 | 100 | 100 | 80 | 80 | 70 | 60 | | | | | | | | | HK1005
(Imax. [mA]) | 1N0 | 1N2 | 1N5 | 1N8 | 2N2 | 2N7[] | 3N3□ | 3N9□ | 4N7□ | 5N6□ | 6N8O | 8N2O | 10NO | 12N() | 15NO | 18NO | 22NO | 27N() | 33NO | 39N⊜ | 47NO | 56NO | 68NO | 82NO | R100 | R12() | R150 | R18() | R22 () | R27() | | | | Operating temp.:
-55~+125℃ | ← | | | | | | | | — 30 | 00 — | | | | | | | | -> | ← | 20 | 00 — | - | 180 | ← | 150 | - | 140 | 130 | 120 | 110 | | | | Operating temp.:
-55~+85℃ | 900 | 900 | 850 | 700 | 700 | 650 | 550 | 500 | 500 | 430 | 430 | 380 | 340 | 330 | 320 | 310 | 300 | 300 | 250 | 250 | 230 | 220 | ← | | | _ 2 | 00 — | | | - | | | | HK1608
(Imax. [mA]) | 1N0 | 1N2□ | 1N5□ | 1N8□ | 2N2 | 2N7□ | 3N3□ | 3N9□ | 4N7□ | 5N6□ | 6N8O | 8N2O | 10NO | 12N() | 15NO | 18NO | 22NO | 27N() | 33NO | 39NO | 47NO | 56NO | 68NO | 82NO | R100 | R120 | R150 | R18() | R22() | R27() | R330 F | 39() R47(| | Operating temp.:
-40~+85℃ | ← | | | | | | | | | | | | | | — 3 | 00 – | | | | | | | | | | | | | -> | ← | — 150
: | \rightarrow | | HK2125
(Imax. [mA]) | | | 1N5S | 1N8S | 2N2S | 2N7S | 3N3S | 3N9S | 4N7S | 5N6S | 6N8J | 8N2J | 10NJ | 12NJ | 15NJ | 18NJ | 22NJ | 27NJ | 33NJ | 39NJ | 47NJ | 56NJ | 68NJ | 82NJ | R10J | R12J | R15J | R18J | R22J | R27J | R33J I | R39J R47. | | Operating temp.: | | | - | | | | <u> </u> | | | | | | | | | | <u>—</u> в | 00 - | | <u> </u> | | | | | | | | | | | | \rightarrow | | -40~+85℃ | | | | | | | ! | ^{※ □, ○}mark indicates the Inductance tolerance code. The product with tolerance less than ±0.3nH(□), ±5% (○) is also available. Please contact your local sales office. ^{*} This catalog contains the typical specification only due to the limitation of space. When you consider the purchase of our products, please check our specification. For details of each product (characteristics graph, reliability information, precautions for use, and so on), see our Web site (http://www.ty-top.com/) or CD catalogs. **75** #### HK0603 | Ordering code | EHS
(Environmental Hazardous | Inductance | Q | LQ Measuring frequency | Q(T | pical) | Frequ | ency [f | MHz] | Self-re
frequenc | sonant
y (MHz) | | stance
(Ω) | Rated current | Thickness (mm) | |---------------|---------------------------------|--------------|------|------------------------|-----|--------|-------|---------|------|---------------------|-------------------|------|---------------|---------------|----------------| | | Substances) | (nH) | min. | [MHz] | 100 | 300 | 500 | 800 | 1000 | min. | Тур. | max. | Тур. | (mA) max. | (inch) | | HK 0603 1N0□ | RoHS | 1.0±0.3nH * | 4 | 100 | 6 | 12 | 17 | 22 | 27 | 10000 | >13000 | 0.11 | 0.088 | 470 | | | HK 0603 1N2□ | RoHS | 1.2±0.3nH ** | 4 | 100 | 6 | 12 | 16 | 21 | 25 | 10000 | >13000 | 0.12 | 0.089 | 450 | | | HK 0603 1N5□ | RoHS | 1.5±0.3nH * | 4 | 100 | 6 | 12 | 15 | 20 | 23 | 10000 | >13000 | 0.13 | 0.11 | 430 | | | HK 0603 1N8□ | RoHS | 1.8±0.3nH ** | 4 | 100 | 6 | 12 | 15 | 20 | 23 | 10000 | >13000 | 0.16 | 0.12 | 390 | | | HK 0603 2N0□ | RoHS | 2.0±0.3nH * | 4 | 100 | 6 | 12 | 15 | 20 | 22 | 10000 | >13000 | 0.17 | 0.13 | 380 | | | HK 0603 2N2□ | RoHS | 2.2±0.3nH ** | 4 | 100 | 6 | 12 | 15 | 20 | 22 | 8800 | 12500 | 0.19 | 0.14 | 360 | | | HK 0603 2N4□ | RoHS | 2.4±0.3nH ** | 4 | 100 | 6 | 12 | 15 | 20 | 22 | 8300 | 11700 | 0.20 | 0.15 | 350 | | | HK 0603 2N7□ | RoHS | 2.7±0.3nH ※ | 5 | 100 | 7 | 12 | 15 | 20 | 22 | 7700 | 11000 | 0.21 | 0.16 | 340 | | | HK 0603 3N0□ | RoHS | 3.0±0.3nH * | 5 | 100 | 7 | 12 | 15 | 20 | 22 | 7200 | 11000 | 0.22 | 0.18 | 330 | | | HK 0603 3N3□ | RoHS | 3.3±0.3nH ** | 5 | 100 | 7 | 12 | 15 | 20 | 22 | 6700 | 9600 | 0.23 | 0.19 | 320 | | | HK 0603 3N6□ | RoHS | 3.6±0.3nH ** | 5 | 100 | 7 | 12 | 15 | 20 | 22 | 6400 | 9100 | 0.25 | 0.20 | 310 | | | HK 0603 3N9□ | RoHS | 3.9±0.3nH ** | 5 | 100 | 7 | 12 | 15 | 20 | 22 | 6000 | 8600 | 0.27 | 0.20 | 300 | | | HK 0603 4N3□ | RoHS | 4.3±0.3nH ** | 5 | 100 | 7 | 12 | 15 | 19 | 21 | 5700 | 8100 | 0.30 | 0.22 |
280 | | | HK 0603 4N7□ | RoHS | 4.7±0.3nH * | 5 | 100 | 7 | 12 | 15 | 19 | 21 | 5300 | 7600 | 0.30 | 0.24 | 280 | | | HK 0603 5N1□ | RoHS | 5.1±0.3nH ** | 5 | 100 | 7 | 12 | 15 | 19 | 21 | 5000 | 7100 | 0.33 | 0.26 | 270 | | | HK 0603 5N6□ | RoHS | 5.6±0.3nH * | 5 | 100 | 7 | 12 | 15 | 19 | 21 | 4600 | 6600 | 0.36 | 0.27 | 260 | | | HK 0603 6N2□ | RoHS | 6.2±0.3nH ** | 5 | 100 | 7 | 11 | 14 | 18 | 20 | 4200 | 6100 | 0.38 | 0.29 | 250 | 0.30±0.03 | | HK 0603 6N8O | RoHS | 6.8±5% * | 5 | 100 | 7 | 11 | 14 | 18 | 20 | 3900 | 5600 | 0.39 | 0.30 | 250 | (0.012±0.001) | | HK 0603 7N5○ | RoHS | 7.5±5% ※ | 5 | 100 | 7 | 11 | 14 | 18 | 19 | 3600 | 5300 | 0.41 | 0.34 | 240 | | | HK 0603 8N2O | RoHS | 8.2±5% * | 5 | 100 | 7 | 11 | 14 | 18 | 19 | 3400 | 4900 | 0.45 | 0.34 | 230 | | | HK 0603 9N1○ | RoHS | 9.1±5% * | 5 | 100 | 7 | 11 | 14 | 17 | 18 | 3200 | 4600 | 0.48 | 0.40 | 220 | | | HK 0603 10NO | RoHS | 10±5% ※ | 5 | 100 | 7 | 11 | 14 | 17 | 18 | 2900 | 4200 | 0.51 | 0.41 | 220 | | | HK 0603 12NO | RoHS | 12±5% ※ | 5 | 100 | 7 | 11 | 14 | 17 | 18 | 2700 | 3800 | 0.68 | 0.45 | 190 | | | HK 0603 15N○ | RoHS | 15±5% ※ | 5 | 100 | 7 | 11 | 13 | 16 | 17 | 2300 | 3300 | 0.71 | 0.5 | 180 | | | HK 0603 18NO | RoHS | 18±5% ※ | 5 | 100 | 7 | 11 | 13 | 16 | 17 | 2100 | 3000 | 0.81 | 0.57 | 170 | | | HK 0603 22NO | RoHS | 22±5% ※ | 5 | 100 | 7 | 11 | 13 | 15 | 16 | 1800 | 2600 | 1 | 0.71 | 150 | | | HK 0603 27N○ | RoHS | 27±5% ※ | 4 | 100 | 6 | 10 | 12 | 14 | 15 | 1800 | 2600 | 1.35 | 1.11 | 120 | | | HK 0603 33NO | RoHS | 33±5% ※ | 4 | 100 | 6 | 10 | 12 | 14 | 14 | 1700 | 2400 | 1.47 | 1.33 | 110 | | | HK 0603 39NO | RoHS | 39±5% ※ | 4 | 100 | 6 | 10 | 12 | 13 | 12 | 1500 | 2100 | 1.72 | 1.51 | 100 | | | HK 0603 47NO | RoHS | 47±5% ※ | 4 | 100 | 6 | 10 | 11 | 12 | 11 | 1300 | 1800 | 1.90 | 1.74 | 100 | | | HK 0603 56NO | RoHS | 56±5% ※ | 4 | 100 | 6 | 10 | 11 | 11 | 10 | 1100 | 1600 | 2.27 | 1.85 | 80 | | | HK 0603 68NO | RoHS | 68±5% ※ | 4 | 100 | 6 | 10 | 11 | 11 | 10 | 1100 | 1500 | 2.66 | 2.30 | 80 | | | HK 0603 82NO | RoHS | 82±5% ※ | 4 | 100 | 6 | 10 | 11 | 10 | 8 | 1000 | 1400 | 3.37 | 2.60 | 70 | | | HK 0603 R10○ | RoHS | 100±5% * | 4 | 100 | 6 | 9 | 10 | 9 | 6 | 900 | 1200 | 3.74 | 3.00 | 60 | | ※ □, ○mark indicates the Inductance tolerance code. The product with tolerance less than ±0.3nH(□), ±5% (○) is also available. Please contact your local sales office. ### HK1005 | Ordering code | EHS (Environmental Hazardous | Inductance
(nH) | Q
min. | LQ Measuring frequency | Q(T | ypical) | Frequ | ency [M | MHz] | Self-re
frequenc | sonant
y (MHz) | | stance
(Ω) | cur | ted
rent
max. | Thickness
(mm) | |---------------|------------------------------|--------------------|-----------|------------------------|-----|---------|--------|---------|---------|---------------------|-------------------|------|---------------|----------------|---------------------|-------------------| | | Substances) | (IIII) | min. | [MHz] | 100 | 300 | 500 | 800 | 1000 | min. | Тур. | max. | Тур. | -55∼
+125°C | -55∼
+85°C | (inch) | | HK 1005 1N0□ | RoHS | 1.0±0.3nH * | 8 | 100 | 11 | 25 | 34 | 43 | 52 | 10000 | >13000 | 0.08 | 0.04 | 300 | 900 | | | HK 1005 1N2□ | RoHS | 1.2±0.3nH ※ | 8 | 100 | 11 | 25 | 35 | 44 | 52 | 10000 | >13000 | 0.09 | 0.04 | 300 | 900 | | | HK 1005 1N5□ | RoHS | 1.5±0.3nH * | 8 | 100 | 11 | 24 | 33 | 44 | 48 | 6000 | >13000 | 0.1 | 0.05 | 300 | 850 | | | HK 1005 1N8□ | RoHS | 1.8±0.3nH ※ | 8 | 100 | 11 | 23 | 30 | 36 | 42 | 6000 | 11000 | 0.12 | 0.06 | 300 | 700 | | | HK 1005 2N0□ | RoHS | 2.0±0.3nH ※ | 8 | 100 | 11 | 21 | 27 | 34 | 39 | 6000 | 10500 | 0.12 | 0.06 | 300 | 700 | | | HK 1005 2N2□ | RoHS | 2.2±0.3nH ** | 8 | 100 | 10 | 18 | 25 | 31 | 36 | 6000 | 10000 | 0.13 | 0.07 | 300 | 700 | | | HK 1005 2N4□ | RoHS | 2.4±0.3nH ** | 8 | 100 | 10 | 18 | 24 | 31 | 35 | 6000 | 9500 | 0.13 | 0.07 | 300 | 650 | | | HK 1005 2N7□ | RoHS | 2.7±0.3nH ※ | 8 | 100 | 10 | 18 | 24 | 31 | 34 | 6000 | 9000 | 0.13 | 0.08 | 300 | 650 | | | HK 1005 3N0□ | RoHS | 3.0±0.3nH ** | 8 | 100 | 10 | 18 | 24 | 31 | 35 | 6000 | 8500 | 0.16 | 0.09 | 300 | 600 | | | HK 1005 3N3□ | RoHS | 3.3±0.3nH ** | 8 | 100 | 10 | 18 | 24 | 31 | 35 | 6000 | 8000 | 0.16 | 0.1 | 300 | 550 | | | HK 1005 3N6□ | RoHS | 3.6±0.3nH ** | 8 | 100 | 10 | 18 | 24 | 31 | 35 | 5000 | 7500 | 0.2 | 0.11 | 300 | 500 | | | HK 1005 3N9□ | RoHS | 3.9±0.3nH ** | 8 | 100 | 10 | 18 | 24 | 31 | 35 | 4000 | 7000 | 0.21 | 0.12 | 300 | 500 | | | HK 1005 4N3□ | RoHS | 4.3±0.3nH ** | 8 | 100 | 10 | 18 | 24 | 31 | 35 | 4000 | 6500 | 0.2 | 0.12 | 300 | 500 | | | HK 1005 4N7□ | RoHS | 4.7±0.3nH * | 8 | 100 | 10 | 18 | 24 | 31 | 34 | 4000 | 6000 | 0.21 | 0.12 | 300 | 500 | | | HK 1005 5N1□ | RoHS | 5.1±0.3nH ** | 8 | 100 | 10 | 18 | 24 | 31 | 34 | 4000 | 5800 | 0.21 | 0.13 | 300 | 450 | | | HK 1005 5N6□ | RoHS | 5.6±0.3nH ** | 8 | 100 | 10 | 18 | 24 | 30 | 35 | 4000 | 5700 | 0.23 | 0.15 | 300 | 430 | | | HK 1005 6N2□ | RoHS | 6.2±0.3nH ** | 8 | 100 | 10 | 18 | 24 | 30 | 34 | 3900 | 5600 | 0.25 | 0.16 | 300 | 430 | | | HK 1005 6N8O | RoHS | 6.8±5% % | 8 | 100 | 10 | 18 | 23 | 29 | 32 | 3900 | 5500 | 0.25 | 0.17 | 300 | 430 | | | HK 1005 7N5○ | RoHS | 7.5±5% ** | 8 | 100 | 10 | 18 | 23 | 29 | 32 | 3700 | 5200 | 0.25 | 0.18 | 300 | 400 | 0.50±0.05 | | HK 1005 8N2O | RoHS | 8.2±5% ※ | 8 | 100 | 10 | 18 | 23 | 29 | 31 | 3600 | 4900 | 0.28 | 0.21 | 300 | 380 | (0.020±0.002) | | HK 1005 9N1 | RoHS | 9.1±5% ** | 8 | 100 | 10 | 18 | 23 | 29 | 31 | 3400 | 4500 | 0.3 | 0.22 | 300 | 360 | | | HK 1005 10NO | RoHS | 10±5% ※ | 8 | 100 | 10 | 18 | 23 | 29 | 31 | 3200 | 4300 | 0.31 | 0.23 | 300 | 340 | | | HK 1005 12NO | RoHS | 12±5% ※ | 8 | 100 | 11 | 18 | 23 | 29 | 31 | 2700 | 3900 | 0.4 | 0.28 | 300 | 330 | | | HK 1005 15NO | RoHS | 15±5% ※ | 8 | 100 | 11 | 18 | 23 | 28 | 30 | 2300 | 3500 | 0.46 | 0.31 | 300 | 320 | | | HK 1005 18NO | RoHS | 18±5% ※ | 8 | 100 | 11 | 18 | 23 | 28 | 30 | 2100 | 3100 | 0.55 | 0.35 | 300 | 310 | | | HK 1005 22NO | RoHS | 22±5% ※ | 8 | 100 | 11 | 17 | 22 | 26 | 27 | 1900 | 2800 | 0.6 | 0.42 | 300 | 300 | | | HK 1005 27N○ | RoHS | 27±5% ※ | 8 | 100 | 11 | 17 | 21 | 25 | 26 | 1600 | 2300 | 0.7 | 0.47 | 300 | 300 | | | HK 1005 33NO | RoHS | 33±5% ※ | 8 | 100 | 11 | 16 | 20 | 23 | 22 | 1300 | 1900 | 0.8 | 0.5 | 200 | 250 | | | HK 1005 39N○ | RoHS | 39±5% ※ | 8 | 100 | 11 | 16 | 20 | 23 | 21 | 1200 | 1700 | 0.9 | 0.52 | 200 | 250 | | | HK 1005 47N○ | RoHS | 47±5% ※ | 8 | 100 | 11 | 16 | 19 | 21 | 18 | 1000 | 1500 | 1 | 0.58 | 200 | 230 | | | HK 1005 56N○ | RoHS | 56±5% ※ | 8 | 100 | 11 | 16 | 18 | 18 | 16 | 750 | 1300 | 1 | 0.61 | 200 | 220 | | | HK 1005 68NO | RoHS | 68±5% ※ | 8 | 100 | 11 | 15 | 17 | 18 | 11 | 750 | 1200 | 1.2 | 0.7 | 180 | 200 | | | HK 1005 82NO | RoHS | 82±5% % | 8 | 100 | 10 | 14 | 16 | 15 | 6 | 600 | 1100 | 1.3 | 0.81 | 150 | 200 | | | HK 1005 R10 〇 | RoHS | 100±5% % | 8 | 100 | 10 | 14 | 14 | 12 | - | 600 | 1000 | 1.5 | 0.94 | 150 | 200 | | | HK 1005 R12O | RoHS | 120±5% ※ | 8 | 100 | 10 | 12 | 10 | - | - | 600 | 800 | 1.6 | 1.1 | 150 | 200 | | | HK 1005 R15〇 | RoHS | 150±5% ※ | 8 | 100 | 12 | 17 | 17 | - | _ | 550 | 920 | 3.2 | 2.57 | 140 | 200 | | | HK 1005 R18〇 | RoHS | 180±5% * | 8 | 100 | 12 | 16 | _ | _ | _ | 500 | 810 | 3.7 | 2.97 | 130 | 200 | | | HK 1005 R22O | RoHS | 220±5% * | 8 | 100 | 12 | 16 | _ | _ | _ | 450 | 700 | 4.2 | 3.29 | 120 | 200 | | | HK 1005 R27O | RoHS | 270±5% * | 8 | 100 | 12 | 14 | _ | _ | _ | 400 | 600 | 4.8 | 3.92 | 110 | 200 | | | | s the Inductance tolerance | | | | | |]), ±5 | % (O)i | is also | | | | | | | 1 | ^{*} This catalog contains the typical specification only due to the limitation of space. When you consider the purchase of our products, please check our specification. For details of each product (characteristics graph, reliability information, precautions for use, and so on), see our Web site (http://www.ty-top.com/) or CD catalogs. ### HK1608 | Ordering code | EHS
(Environmental Hazardous | Inductance
[nH] | Q
min. | LQ Measuring frequency | Q(Ty | pical) | Frequ | ency [| MHz] | Self-re
Frequenc | | | sistance
Ω) | Rated current | Thickness (mm) | |---------------|---------------------------------|--------------------|-----------|------------------------|------|--------|-------|--------|------|---------------------|--------|------|----------------|---------------|---------------------------| | | Substances) | (nn) | min. | [MHz] | 100 | 300 | 500 | 800 | 1000 | min. | Тур. | max. | Тур. | (mA) max. | (inch) | | HK 1608 1N0□ | RoHS | 1.0±0.3nH ※ | 8 | 100 | 14 | 30 | 40 | 70 | 90 | 10000 | >13000 | 0.05 | 0.015 | 300 | | | HK 1608 1N2□ | RoHS | 1.2±0.3nH % | 8 | 100 | 14 | 30 | 40 | 70 | 90 | 10000 | >13000 | 0.05 | 0.015 | 300 | | | HK 1608 1N5 | RoHS | 1.5±0.3nH ※ | 8 | 100 | 14 | 26 | 34 | 47 | 50 | 6000 | >13000 | 0.10 | 0.03 | 300 | | | HK 1608 1N8□ | RoHS | 1.8±0.3nH ** | 8 | 100 | 10 | 18 | 24 | 30 | 34 | 6000 | >13000 | 0.10 | 0.06 | 300 | | | HK 1608 2N2□ | RoHS | 2.2±0.3nH ※ | 8 | 100 | 12 | 22 | 29 | 37 | 40 | 6000 | 12000 | 0.10 | 0.06 | 300 | | | HK 1608 2N7□ | RoHS | 2.7±0.3nH ※ | 10 | 100 | 13 | 24 | 32 | 41 | 45 | 6000 | 11000 | 0.10 | 0.06 | 300 | | | HK 1608 3N3□ | RoHS | 3.3±0.3nH ※ | 10 | 100 | 14 | 25 | 33 | 42 | 47 | 6000 | 9000 | 0.12 | 0.06 | 300 | | | HK 1608 3N9□ | RoHS | 3.9±0.3nH ** | 10 | 100 | 13 | 25 | 33 | 42 | 46 | 6000 | 8000 | 0.14 | 0.07 | 300 | | | HK 1608 4N7□ | RoHS | 4.7±0.3nH ** | 10 | 100 | 13 | 25 | 33 | 42 | 47 | 4000 | 6500 | 0.16 | 0.08 | 300 | | | HK 1608 5N6□ | RoHS | 5.6±0.3nH ** | 10 | 100 | 14 | 25 | 33 | 42 | 46 | 4000 | 5800 | 0.18 | 0.09 | 300 | | | HK 1608 6N8O | RoHS | 6.8±5% * | 10 | 100 | 14 | 25 | 33 | 43 | 47 | 4000 | 5600 | 0.22 | 0.11 | 300 | | | HK 1608 8N2O | RoHS | 8.2±5% ※ | 10 | 100 | 14 | 26 | 34 | 44 | 48 | 3500 | 5200 | 0.24 | 0.13 | 300 | | | HK 1608 10NO | RoHS | 10±5% ※ | 12 | 100 | 14 | 26 | 34 | 43 | 47 | 3400 | 4600 | 0.26 | 0.16 | 300 | | | HK 1608 12NO | RoHS | 12±5% ※ | 12 | 100 | 14 | 27 | 35 |
45 | 49 | 2600 | 4000 | 0.28 | 0.17 | 300 | | | HK 1608 15NO | RoHS | 15±5% ※ | 12 | 100 | 15 | 28 | 37 | 46 | 51 | 2300 | 3400 | 0.32 | 0.20 | 300 | | | HK 1608 18NO | RoHS | 18±5% ※ | 12 | 100 | 15 | 27 | 36 | 44 | 48 | 2000 | 3000 | 0.35 | 0.21 | 300 | 1 | | HK 1608 22NO | RoHS | 22±5% ※ | 12 | 100 | 16 | 28 | 36 | 44 | 47 | 1600 | 2900 | 0.40 | 0.25 | 300 | 0.8±0.15
(0.031±0.006) | | HK 1608 27NO | RoHS | 27±5% ※ | 12 | 100 | 16 | 29 | 37 | 45 | 46 | 1400 | 2200 | 0.45 | 0.28 | 300 | (0.031±0.000) | | HK 1608 33NO | RoHS | 33±5% ※ | 12 | 100 | 17 | 31 | 40 | 46 | 47 | 1200 | 1800 | 0.55 | 0.35 | 300 | | | HK 1608 39NO | RoHS | 39±5% ※ | 12 | 100 | 18 | 31 | 39 | 44 | 44 | 1100 | 1600 | 0.60 | 0.38 | 300 | | | HK 1608 47NO | RoHS | 47±5% ※ | 12 | 100 | 17 | 28 | 34 | 35 | 34 | 900 | 1600 | 0.70 | 0.45 | 300 | | | HK 1608 56NO | RoHS | 56±5% ※ | 12 | 100 | 17 | 28 | 34 | 34 | 31 | 900 | 1400 | 0.75 | 0.50 | 300 | | | HK 1608 68NO | RoHS | 68±5% ※ | 12 | 100 | 18 | 29 | 34 | 30 | 22 | 700 | 1200 | 0.85 | 0.55 | 300 | | | HK 1608 82NO | RoHS | 82±5% ※ | 12 | 100 | 18 | 28 | 33 | 27 | - | 600 | 1100 | 0.95 | 0.60 | 300 | | | HK 1608 R10O | RoHS | 100±5% * | 12 | 100 | 18 | 27 | 28 | 16 | _ | 600 | 1000 | 1.00 | 0.65 | 300 | | | HK 1608 R12O | RoHS | 120±5% * | 8 | 50 | 16 | 24 | 23 | _ | - | 500 | 800 | 1.20 | 0.68 | 300 | | | HK 1608 R15〇 | RoHS | 150±5% * | 8 | 50 | 13 | 19 | 16 | _ | - | 500 | 800 | 1.20 | 0.73 | 300 | | | HK 1608 R18 🔾 | RoHS | 180±5% ※ | 8 | 50 | 13 | 18 | 12 | _ | - | 400 | 700 | 1.30 | 0.85 | 300 | | | HK 1608 R22 〇 | RoHS | 220±5% * | 8 | 50 | 12 | 16 | - | _ | - | 400 | 600 | 1.50 | 0.95 | 300 | | | HK 1608 R27〇 | RoHS | 270±5% ** | 8 | 50 | 14 | 15 | _ | _ | - | 400 | 550 | 1.9 | 1.34 | 150 | | | HK 1608 R33 | RoHS | 330±5% * | 8 | 50 | 14 | - | - | - | - | 350 | 480 | 2.1 | 1.53 | 150 | | | HK 1608 R39 🔾 | RoHS | 390±5% ※ | 8 | 50 | 13 | _ | _ | _ | - | 350 | 410 | 2.3 | 1.72 | 150 | | | | RoHS | 1 | _ | 50 | | | | | | | | 2.6 | 2.04 | 150 | 1 | ^{※ □, ○}mark indicates the Inductance tolerance code. The product with tolerance less than ±0.3nH(□), ±5% (○) is also available. Please contact your local sales office. ### HK2125 | Ordering code | EHS
(Environmental Hazardous | Inductance
(nH) | Q
min. | LQ Measuring frequency | Q(Ty | pical) | Frequ | ency [| MHz] | Self-re
Frequenc | sonant
y (MHz) | | sistance
Ω) | Rated current | Thickness [mm] | |---------------|---------------------------------|--------------------|-----------|------------------------|------|--------|-------|--------|------|---------------------|-------------------|------|----------------|---------------|--| | | Substances) | (111) | | [MHz] | 100 | 300 | 500 | 800 | 1000 | min. | Тур. | max. | Тур. | (mA) max. | (inch) | | HK 2125 1N5S | RoHS | 1.5±0.3nH | 10 | 100 | 21 | 39 | 57 | 61 | 68 | 4000 | >6000 | 0.10 | 0.02 | 300 | | | HK 2125 1N8S | RoHS | 1.8±0.3nH | 10 | 100 | 18 | 35 | 49 | 55 | 59 | 4000 | >6000 | 0.10 | 0.02 | 300 | | | HK 2125 2N2S | RoHS | 2.2±0.3nH | 10 | 100 | 18 | 33 | 46 | 53 | 58 | 4000 | >6000 | 0.10 | 0.03 | 300 | | | HK 2125 2N7S | RoHS | 2.7±0.3nH | 12 | 100 | 19 | 36 | 50 | 56 | 60 | 4000 | >6000 | 0.10 | 0.03 | 300 | | | HK 2125 3N3S | RoHS | 3.3±0.3nH | 12 | 100 | 16 | 29 | 40 | 47 | 51 | 4000 | >6000 | 0.13 | 0.04 | 300 | | | HK 2125 3N9S | RoHS | $3.9 \pm 0.3 nH$ | 12 | 100 | 18 | 33 | 46 | 54 | 60 | 4000 | >6000 | 0.15 | 0.05 | 300 | | | HK 2125 4N7S | RoHS | 4.7±0.3nH | 12 | 100 | 18 | 34 | 46 | 55 | 60 | 3500 | >6000 | 0.20 | 0.05 | 300 | | | HK 2125 5N6S | RoHS | 5.6±0.3nH | 15 | 100 | 20 | 38 | 51 | 60 | 66 | 3200 | 5400 | 0.23 | 0.05 | 300 | | | HK 2125 6N8J | RoHS | 6.8±5% | 15 | 100 | 20 | 39 | 52 | 63 | 69 | 2800 | 4200 | 0.25 | 0.06 | 300 | 0.85±0.2 | | HK 2125 8N2J | RoHS | 8.2±5% | 15 | 100 | 21 | 40 | 54 | 63 | 70 | 2400 | 3700 | 0.28 | 0.07 | 300 | (0.033±0.008) | | HK 2125 10NJ | RoHS | 10±5% | 15 | 100 | 20 | 38 | 51 | 60 | 67 | 2100 | 3100 | 0.30 | 0.09 | 300 | | | HK 2125 12NJ | RoHS | 12±5% | 15 | 100 | 21 | 39 | 52 | 60 | 67 | 1900 | 3000 | 0.35 | 0.10 | 300 | | | HK 2125 15NJ | RoHS | 15±5% | 15 | 100 | 22 | 42 | 55 | 63 | 72 | 1600 | 2600 | 0.40 | 0.11 | 300 | | | HK 2125 18NJ | RoHS | 18±5% | 15 | 100 | 24 | 44 | 57 | 63 | 72 | 1500 | 2300 | 0.45 | 0.13 | 300 | | | HK 2125 22NJ | RoHS | 22±5% | 18 | 100 | 23 | 43 | 55 | 60 | 69 | 1400 | 2100 | 0.50 | 0.16 | 300 | | | HK 2125 27NJ | RoHS | 27±5% | 18 | 100 | 23 | 42 | 53 | 58 | 68 | 1300 | 1800 | 0.55 | 0.17 | 300 | | | HK 2125 33NJ | RoHS | 33±5% | 18 | 100 | 24 | 43 | 54 | 55 | 60 | 1200 | 1700 | 0.60 | 0.19 | 300 | | | HK 2125 39NJ | RoHS | 39±5% | 18 | 100 | 23 | 41 | 50 | 47 | 47 | 1000 | 1400 | 0.65 | 0.25 | 300 | | | HK 2125 47NJ | RoHS | 47±5% | 18 | 100 | 23 | 41 | 49 | 43 | 41 | 900 | 1200 | 0.70 | 0.26 | 300 | | | HK 2125 56NJ | RoHS | 56±5% | 18 | 100 | 23 | 42 | 48 | 39 | 38 | 800 | 1100 | 0.75 | 0.28 | 300 | | | HK 2125 68NJ | RoHS | 68±5% | 18 | 100 | 25 | 42 | 45 | 30 | - 1 | 700 | 900 | 0.80 | 0.33 | 300 | | | HK 2125 82NJ | RoHS | 82±5% | 18 | 100 | 24 | 41 | 41 | _ | - | 600 | 800 | 0.90 | 0.37 | 300 | | | HK 2125 R10J | RoHS | 100±5% | 18 | 100 | 23 | 37 | 37 | _ | - 1 | 600 | 800 | 0.90 | 0.40 | 300 | | | HK 2125 R12J | RoHS | 120±5% | 13 | 50 | 22 | 33 | 29 | _ | - | 500 | 700 | 0.95 | 0.43 | 300 | 1.00+0.2 | | HK 2125 R15J | RoHS | 150±5% | 13 | 50 | 22 | 34 | 26 | _ | - | 500 | 700 | 1.00 | 0.46 | 300 | (0.039 ^{+0.008} _{-0.012}) | | HK 2125 R18J | RoHS | 180±5% | 13 | 50 | 23 | 34 | 20 | _ | - | 400 | 600 | 1.10 | 0.50 | 300 | (0.039_0.012) | | HK 2125 R22J | RoHS | 220±5% | 12 | 50 | 20 | 23 | _ | _ | - | 350 | 550 | 1.20 | 0.75 | 300 | | | HK 2125 R27J | RoHS | 270±5% | 12 | 50 | 20 | 19 | _ | _ | - 1 | 300 | 480 | 1.30 | 0.85 | 300 | | | HK 2125 R33J | RoHS | 330±5% | 12 | 50 | 22 | 15 | _ | _ | - | 250 | 400 | 1.40 | 0.90 | 300 | | | HK 2125 R39J | RoHS | 390±5% | 10 | 50 | 17 | 12 | - | - | - | 250 | 400 | 1.30 | 0.85 | 300 | | | HK 2125 R47J | RoHS | 470±5% | 10 | 50 | 17 | - | _ | - | - | 200 | 350 | 1.50 | 0.95 | 300 | | ^{*} This catalog contains the typical specification only due to the limitation of space. When you consider the purchase of our products, please check our specification. For details of each product (characteristics graph, reliability information, precautions for use, and so on), see our Web site (http://www.ty-top.com/) or CD catalogs. ^{*} This catalog contains the typical specification only due to the limitation of space. When you consider the purchase of our products, please check our specification. For details of each product (characteristics graph, reliability information, precautions for use, and so on), see our Web site (http://www.ty-top.com/) or CD catalogs. ### 1)Minimum Quantity ### Tape & Reel Packaging | Tapo a ricorr dor | Thickness | Standard Qu | uantity [pcs] | |-------------------|---|-------------|---------------| | Туре | [mm] (inch) | Paper Tape | Embossed Tape | | CK1608 (0603) | 0.8
(0.031) | 4000 | _ | | | 0.85 | 4000 | _ | | CK2125 (0805) | (0.033)
1.25 | | | | | (0.049) | _ | 2000 | | | 0.85
(0.033) | 4000 | _ | | CKS2125 (0805) | 1.25 | _ | 2000 | | OKBOOTO (ODOE) | (0.049)
0.9 | _ | 2000 | | CKP2012 (0805) | (0.035)
0.9 | _ | 3000 | | CKP2016 (0806) | (0.035) | _ | 3000 | | | 0.7
(0.028) | _ | 3000 | | CKP2520(1008) | 0.9 | _ | 3000 | | CKF 2320 (1006) | (0.035) | | 3000 | | | (0.043) | _ | 2000 | | NM2012 (0805) | 0.9
(0.035) | _ | 3000 | | NM2520 (1008) | 1.1 | _ | 2000 | | | (0.043)
0.5 | | | | LK1005(0402) | (0.020) | 10000 | _ | | LK1608 (0603) | 0.8
(0.031) | 4000 | _ | | | 0.85 | 4000 | _ | | LK2125 (0805) | (0.033)
1.25 | _ | 2000 | | | (0.049) | _ | 2000 | | HK0603(0201) | (0.012) | 15000 | _ | | HK1005(0402) | 0.5
(0.020) | 10000 | _ | | HK1608 (0603) | 0.8 | 4000 | _ | | | (0.031)
0.85 | .000 | | | HK2125 (0805) | (0.033) | _ | 4000 | | | 1.0
(0.039) | _ | 3000 | | HKQ0603S (0201) | 0.3 | 15000 | _ | | AO105 (0400) | (0.012)
0.5 | 10000 | | | AQ105(0402) | (0.020) | 10000 | _ | | BK0402(01005) | (0.008) | 20000 | _ | | BK0603(0201) | 0.3
(0.012) | 15000 | _ | | BK1005(0402) | 0.5 | 10000 | _ | | | (0.020)
0.8 | | | | BK1608 (0603) | (0.031) | 4000 | _ | | DV0405/8555) | 0.85
(0.033) | 4000 | _ | | BK2125 (0805) | 1.25 | - | 2000 | | PK2010 (0204) | (0.049)
0.45 | 4000 | _ | | BK2010 (0804) | (0.018) | 4000 | _ | | BK3216 (1206) | 0.8
(0.031) | _ | 4000 | | BKP0603(0201) | 0.3
(0.012) | 15000 | _ | | BKP1005(0402) | 0.5 | 10000 | _ | | | (0.020) | | | | BKP1608(0603) | (0.031) | 4000 | _ | | BKP2125 (0805) | 0.85
(0.033) | 4000 | _ | | | , ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, | 1 | | ### ②Taping material | CK
CKS
LK
LK
LK
HK | 1608
2125
2125
1005
1608
2125
0603
1005
1608 | |-----------------------------------|--| | HKQ | 0603 | | A Q | 105 | | ВК | 0402 | | вк | 0603 | | вк | 1005 | | вк | 1608 | | вк | 2125 | | вк | 2010 | | BKP | 0603 | | BKP | 1005 | | BKP | 1608 | | ВКР | 2125 | | СК | 2125 | |-----|------| | CKS | 2125 | | CKP | 2012 | | CKP | 2016 | | CKP | 2520 | | NM | 2012 | | NM | 2520 | | LK | 2125 | | HK | 2125 | | вк | 2125 | | вк | 3216 | | | | ### **3**Taping Dimensions ### Paper tape (0.315 inches wide) | Type | Thickness (mm) | Chip | cavity | Insertion
Pitch | Tape
Thickness | |----------------|----------------|---------------|---------------|--------------------|-------------------| | | (inch) | Α | В | F | Т | | CK1608 (0603) | 0.8 | 1.0±0.2 | 1.8±0.2 | 4.0±0.1 | 1.1m a x | | | (0.031) | (0.039±0.008) | (0.071±0.008) | (0.157±0.004) | (0.043max) | | CK2125 (0805) | 0.85 | 1.5±0.2 | 2.3±0.2 | 4.0±0.1 | 1.1m a x | | | (0.033) | (0.059±0.008) | (0.091±0.008) | (0.157±0.004) | (0.043max) | | CKS2125 (0805) | 0.85 | 1.5±0.2 |
2.3±0.2 | 4.0±0.1 | 1.1m a x | | | (0.033) | (0.059±0.008) | (0.091±0.008) | (0.157±0.004) | (0.043max) | | LK1005 (0402) | 0.5 | 0.65±0.1 | 1.15±0.1 | 2.0±0.05 | 0.8m a x | | | (0.020) | (0.026±0.004) | (0.045±0.004) | (0.079±0.002) | (0.031max) | | LK1608 (0603) | 0.8 | 1.0±0.2 | 1.8±0.2 | 4.0±0.1 | 1.1m a x | | | (0.031) | (0.039±0.008) | (0.071±0.008) | (0.157±0.004) | (0.043max) | | LK2125 (0805) | 0.85 | 1.5±0.2 | 2.3±0.2 | 4.0±0.1 | 1.1m a x | | | (0.033) | (0.059±0.008) | (0.091±0.008) | (0.157±0.004) | (0.043max) | | HK0603 (0201) | 0.3 | 0.40±0.06 | 0.70±0.06 | 2.0±0.05 | 0.45max | | | (0.012) | (0.016±0.002) | (0.028±0.002) | (0.079±0.002) | (0.018max) | | HK1005 (0402) | 0.5 | 0.65±0.1 | 1.15±0.1 | 2.0±0.05 | 0.8max | | | (0.020) | (0.026±0.004) | (0.045±0.004) | (0.079±0.002) | (0.031max) | | HK1608 (0603) | 0.8 | 1.0±0.2 | 1.8±0.2 | 4.0±0.1 | 1.1m a x | | | (0.031) | (0.039±0.008) | (0.071±0.008) | (0.157±0.004) | (0.043max) | | HKQ0603S(0201) | 0.3 | 0.40±0.06 | 0.70±0.06 | 2.0±0.05 | 0.45max | | | (0.012) | (0.016±0.002) | (0.028±0.002) | (0.079±0.002) | (0.018max) | | AQ105 (0402) | 0.5 | 0.75±0.1 | 1.15±0.1 | 2.0±0.05 | 0.8max | | | (0.020) | (0.030±0.004) | (0.045±0.004) | (0.079±0.002) | (0.031max) | | BK0402(01005) | 0.2 | 0.25±0.04 | 0.45±0.04 | 2.0±0.05 | 0.36m a x | | | (0.008) | (0.010±0.002) | (0.018±0.002) | (0.079±0.002) | (0.014max) | | BK0603(0201) | 0.3 | 0.40±0.06 | 0.70±0.06 | 2.0±0.05 | 0.45 m a x | | | (0.012) | (0.016±0.002) | (0.028±0.002) | (0.079±0.002) | (0.018 max) | To next page ^{*} This catalog contains the typical specification only due to the limitation of space. When you consider the purchase of our products, please check our specification. For details of each product (characteristics graph, reliability information, precautions for use, and so on), see our Web site (http://www.ty-top.com/) or CD catalogs. | Туре | Thickness (mm) | Chip | cavity | Insertion
Pitch | Tape
Thickness | |----------------|----------------|---------------|---------------|--------------------|-------------------| | | (inch) | Α | В | F | Т | | BK1005(0402) | 0.5 | 0.65±0.1 | 1.15±0.1 | 2.0±0.05 | 0.8max | | | (0.020) | (0.026±0.004) | (0.045±0.004) | (0.079±0.002) | (0.031max) | | BK1608(0603) | 0.8 | 1.0±0.2 | 1.8±0.2 | 4.0±0.1 | 1.1m a x | | | (0.031) | (0.039±0.008) | (0.071±0.008) | (0.157±0.004) | (0.043max) | | BK2125 (0805) | 0.85 | 1.5±0.2 | 2.3±0.2 | 4.0±0.1 | 1.1m a x | | | (0.033) | (0.059±0.008) | (0.091±0.008) | (0.157±0.004) | (0.043max) | | BK2010 (0804) | 0.45 | 1.2±0.1 | 2.17±0.1 | 4.0±0.1 | 0.8max | | | (0.018) | (0.047±0.004) | (0.085±0.004) | (0.157±0.004) | (0.031max) | | BKP0603(0201) | 0.3 | 0.40±0.06 | 0.70±0.06 | 2.0±0.05 | 0.45ma x | | | (0.012) | (0.016±0.002) | (0.028±0.002) | (0.079±0.002) | (0.018max) | | BKP1005(0402) | 0.5 | 0.65±0.1 | 1.15±0.1 | 2.0±0.05 | 0.8max | | | (0.020) | (0.026±0.004) | (0.045±0.004) | (0.079±0.002) | (0.031max) | | BKP1608(0603) | 0.8 | 1.0±0.2 | 1.8±0.2 | 4.0±0.1 | 1.1m a x | | | (0.031) | (0.039±0.008) | (0.071±0.008) | (0.157±0.004) | (0.043max) | | BKP2125 (0805) | 0.85 | 1.5±0.2 | 2.3±0.2 | 4.0±0.1 | 1.1m a x | | | (0.033) | (0.059±0.008) | (0.091±0.008) | (0.157±0.004) | (0.043max) | Unit : mm (inch) ### Embossed Tape (0.315 inches wide) Thickness Insertion Pitch Chip cavity Thickness Туре (mm) (inch) Α В F Κ Т 2.3±0.2 (0.091±0.008) 4.0±0.1 (0.157±0.004) 1.25 1.5±0.2 2.0 0.3 CK2125 (0805) (0.049) (0.059±0.008) (0.079)(0.012)1.25 1.5 ± 0.2 2.3 ± 0.2 4.0 ± 0.1 2.0 0.3 CKS2125(0805) (0.049) (0.059±0.008) (0.091±0.008) (0.157±0.004) (0.012) (0.079)155+02 23+02 4 0+0 1 0.9 13 0.3 CKP2012(0805) (0.035) (0.061±0.008) (0.091±0.008) (0.157±0.004) (0.051) (0.012) 1.8±0.1 2.2±0.1 4.0±0.1 0.25 0.9 1.3 CKP2016 (0806) (0.035)(0.071±0.004) (0.087±0.004) (0.157±0.004) (0.051)(0.01)0.7 1.4 (0.028)(0.055)0.9 2.3±0.1 2.8±0.1 4.0±0.1 CKP2520(1008) (0.035) (0.091±0.004) (0.110±0.004) (0.157±0.004) (0.055)(0.012)1.7 (0.043)(0.067)0.9 155+02 23+02 40+01 13 0.3 NM2012 (0805) (0.035)(0.061±0.008) (0.091±0.008) (0.157±0.004) (0.051) (0.012) 2.3 ± 0.1 2.8 ± 0.1 4.0 ± 0.1 1.7 0.3 NM2520 (1008) (0.043) (0.110±0.004) (0.012) (0.091±0.004) (0.157±0.004) (0.067)1.25 1.5±0.2 2.3±0.2 4.0 ± 0.1 2.0 0.3 I K2125 (0805) (0.049)(0.059±0.008) (0.091±0.008) (0.157±0.004) (0.079)(0.012)0.85 1.5 (0.033)1.5±0.2 4.0±0.1 (0.059)HK2125 (0805) (0.059 ± 0.008) (0.091±0.008) (0.157±0.004) 2.0 (0.012)(0.039)(0.079)1.25 1.5±0.2 2.3±0.2 4.0±0.1 2.0 0.3 BK2125 (0805) (0.059±0.008) (0.091±0.008) (0.157±0.004 (0.012) (0.049)(0.079)0.8 19+01 35+01 40+01 0.3 BK3216(1206) # (0.031) **4**LEADER AND BLANK PORTION (0.138±0.004) (0.157±0.004) (0.055) (0.012) (0.075±0.004) #### **5**Reel Size ### **6**Top tape strength The top tape requires a peel-off force of $0.1 \sim 0.7 N$ in the direction of the arrow as illustrated below. ^{*} This catalog contains the typical specification only due to the limitation of space. When you consider the purchase of our products, please check our specification. For details of each product (characteristics graph, reliability information, precautions for use, and so on), see our Web site (http://www.ty-top.com/) or CD catalogs. ### RELIABILITY DATA ### Multilayer chip inductors and beads | Multilayer chip inductors and beads | | |---|---| | 1. Operating Temperature Range | | | BK0402 | | | BK0603 | | | BK1005 | | | BK1608 | | | BK2125 | | | BK2010 | | | BK3216 | | | BKP0603 | | | BKP1005 | | | BKP1608 | | | BKP2125 | | | CK1608 | | | CK2125 | | | CKS2125 | | | CKP2012 | | | CKP2016 | | | CKP2520 | | | NM2012 | | | NM2520 | | | LK1005 | | | LK1608 | | | LK2125 | | | HK0603 | | | HK1005 | -55~+125°C | | HK1608 | | | HK2125 | -40∼+85°C | | HKQ0603S | | | AQ105 | | | AQ105 | | | | | | | | | 2. Storage Temperature Range | | | BK0402 | | | BK0402
BK0603 | | | BK0402
BK0603
BK1005 | | | BK0402
BK0603
BK1005
BK1608 | _55~+125℃ | | BK0402
BK0603
BK1005
BK1608
BK2125 | | | BK0402 BK0603 BK1005 BK1608 BK2125 ARRAY BK2010 | | | BK0402 BK0603 BK1005 BK1608 BK2125 ARRAY BK2010 BK3216 | | | BK0402 BK0603 BK1005 BK1608 BK2125 ARRAY BK2010 BK3216 BKP0603 | | | BK0402 BK0603 BK1005 BK1608 BK2125 ARRAY BK2106 BK90603 BKP1005 | | | BK0402 BK0603 BK1005 BK1608 BK2125 ARRAY BK2010 BK9216 BKP0603 BKP1005 BKP1608 | | | BK0402 BK0603 BK1005 BK1608 BK2125 ARRAY BK216 BK90603 BKP1005 BKP1608 BKP1255 | | | BK0402 BK0603 BK1005 BK1608 BK2125 ARRAY BK2100 BK90603 BKP1005 BKP1608 BKP1255 CK1608 | | | BK0402 BK0603 BK1005 BK1608 BK2125 ARRAY BK2010 BK3216 BKP0603 BKP1005 BKP1608 BKP1608 BKP2125 CK1608 CK2125 | | | BK0402 BK0603 BK1005 BK1608 BK2125 ARRAY BK2010 BK3216 BKP1005 BKP1005 BKP1608 BKP2125 CK1608 CK2125 CKS2125 | | | BK0402 BK0603 BK1005 BK1608 BK2125 ARRAY BK2100 BK3216 BKP1005 BKP1608 BKP125 CK1608 CK2125 CKS2125 CKP2012 | | | BK0402 BK0603 BK1005 BK1608 BK2125 ARRAY BK216 BK9603 BKP1005 BKP1608 BKP125 CK1608 CK2125 CK2125 CK92012 CKP2016 | | | BK0402 BK0603 BK1005 BK1608 BK2125 ARRAY BK216 BKP0603 BKP1005 BKP1608 BKP1225 CK1608 CK2125 CK92016 CKP2520 | | | BK0402 BK0603 BK1005 BK1608 BK2125 ARRAY BK216 BK9603 BKP1005 BKP1608 BKP125 CK1608 CK2125 CK2125 CK92012 CKP2016 | | | BK0402 BK0603 BK1005 BK1608 BK2125 ARRAY BK216 BKP0603 BKP1005 BKP1608 BKP1255 CK1608 CK2125 CKS2125 CKS2125 CKP2016 CKP2520 NM2012 NM2520 | | | BK0402 BK0603 BK1005 BK1608 BK2125 ARRAY BK2216 BK90603 BKP1005 BKP1005 BKP1608 CK2125 CK1608 CK2125 CK92012 CKP2016 CKP2520 NM2012 NM2520 LK1005 | | | BK0402 BK0603 BK1005 BK1608 BK2125 ARRAY BK2216 BK90603 BKP1005 BKP1608 BKP125 CK1608 CK2125 CK92012 CKP2016 CKP2520 NM2012 NM2520 LK1608 LK1608 | | | BK0402 BK0603 BK1005 BK1608 BK2125 ARRAY BK2106 BK91005 BKP1005 BKP1608 BKP125 CK1608 CK2125 CK2125 CK92012 CKP2016 CKP2520 NM2012 NM2520 LK1608 LK1608 LK2125 LK1608 LK2125 | | | BK0402 BK0603 BK1005 BK1608 BK2125 ARRAY BK216 BK9603 BKP1005 BKP1608 BKP125 CK1608 CK2125 CK2125 CK92012 CKP2016 CKP2520 NM2012 NM2520 LK1608 LK1608 LK2125 LK1608 LK2125 LK1608 LK2125 LK1608 LK2125 LK1608 LK2125 LK1608 | -55~+85°C -40~+85°C | | BK0402 BK0603 BK1005 BK1608 BK2125 ARRAY BK2106 BK91005 BKP1005 BKP1608 BKP125 CK1608 CK2125 CK2125 CK92012 CKP2016 CKP2520 NM2012 NM2520 LK1608 LK1608 LK2125 LK1608 LK2125 | | | BK0402 BK0603 BK1005 BK1608 BK2125 ARRAY BK216 BK9603 BKP1005 BKP1608 BKP125 CK1608 CK2125 CK2125 CK92012 CKP2016 CKP2520 NM2012 NM2520 LK1608 LK1608 LK2125 LK1608 LK2125 LK1608 LK2125 LK1608 LK2125 LK1608 LK2125 LK1608 | -55~+85°C -40~+85°C -55~+125°C | | BK0402 BK0603 BK1005 BK1608 BK2125 ARRAY BK216 BKP0603 BKP1005 BKP1608 BKP125 CK1608 CK2125 CK1608 CK2125 CK92012 CKP2016 CKP2520 NM2012 NM2520 LK1005 LK1608 LK2125 HK0603 HK1005 | -55~+85°C -40~+85°C | | BK0402 BK0603 BK1005 BK1608 BK2125 ARRAY BK2105 BKP0603 BKP1005 BKP1608 BKP125 CK1608 CK2125 CK1608 CK2125 CK92012 CKP2016 CKP2520 NM2012 NM2520 LK1005 LK1608 LK2125 HK0603 HK1005 HK1608 | -55~+85°C -40~+85°C -55~+125°C -40~+85°C | | BK0402 BK0603 BK1005 BK1608 BK2125 ARRAY BK2216 BK9603 BKP1005 BKP1005 BKP1608 CK2125 CK1608 CK2125 CK92012 CKP2016 CKP2016 CKP2016 CKP2520 NM2012 NM2520 LK1005 LK1608 LK2125 HK0603 HK1005 HK1608 HK2125 | -55~+85°C -40~+85°C -55~+125°C | ^{*} This catalog contains the typical specification only due to the limitation of space. When you consider the purchase of our products, please check our specification. For details of each product (characteristics graph, reliability information, precautions for use, and so on), see our Web site (http://www.ty-top.com/) or CD catalogs. | - <u> </u> | | | |------------------|----------------|--| | 3. Rated Current | | | | BK0402 | 240~540mA DC | | | BK0603 | 100~500mA DC | | | BK1005 | 120~1000mA DC | | | BK1608 | 150~1500mA
D C | | | BK2125 | 200~1200mA DC | | | ARRAY BK2010 | 100mA DC | | | BK3216 | 100~200mA DC | | | BKP0603 | 1.0A DC | | | BKP1005 | 800~2000mA DC | | | BKP1608 | 1.0~3.0A DC | | | BKP2125 | 1.5~4.0A DC | | | CK1608 | 50~60mA DC | | | CK2125 | 60~500mA DC | | | CKS2125 | 110~280mA DC | | | CKP2012 | 0.7~1.2A DC | | | CKP2016 | 0.9~1.6A DC | | | CKP2520 | 1.1~1.8A DC | | | NM2012 | 0.8~1.5A DC | | | NM2520 | 0.9~1.1A DC | | | LK1005 | 20~25mA DC | | | LK1608 | 1~150mA DC | | | LK2125 | 5~300mA DC | | | HK0603 | 60~470mA DC | | | HK1005 | 110~300mA DC | | | HK1608 | 150~300mA DC | | | HK2125 | 300mA DC | | | HKQ0603S | 130~600mA DC | | | AQ105 | 280~710mA DC | | | | | | - •In the CK, CKS and BK Series, the rated current is the value of current at which the temperature of the element is increased within 20°C. •In the BK Series P type and CK Series P type, NM Series the rated current is the value of current at which the temperature of the element is increased within 40°C. - In the LK,HK,HKQ, and AQ Series, the rated current is either the DC value at which the internal L value is decreased within 5% with the application of DC bias, or the value of current at which the temperature of the element is increased within 20°C. | 4. Impeda | nce | | |-----------|-------------------|----------------------------| | BK0402 | | 10~120Ω ±25% | | BK0603 | | 10~600Ω ±25% | | BK1005 | | 10~1800Ω ±25% | | BK1608 | | 22~2500Ω ±25% | | BK2125 | | 15~2500Ω ±25% | | ARRAY | BK2010 | 5~1000Ω ±25% | | ARRAT | BK3216 | 68~1000Ω ±25% | | BKP0603 | | $22{\sim}33\Omega$ ±25% | | BKP1005 | | 10~220Ω ±25% | | BKP1608 | | $33\sim470\Omega \pm 25\%$ | | BKP2125 | | 33~330Ω ±25% | | CK1608 | | | | CK2125 | | | | CKS2125 | | | | CKP2012 | | | | CKP2016 | | | | CKP2520 | | | | NM2012 | | | | NM2520 | | | | LK1005 | | <u>—</u> | | LK1608 | | | | LK2125 | | | | HK0603 | | | | HK1005 | | | | HK1608 | | | | HK2125 | <u> </u> | | | HKQ0603 | S | | | AQ105 | | | | Test Met | hods and Remarks] | | BK0402 Series BK0402 Series Measuring frequency: 100±1MHz Measuring equipment: HP4991A(or its equivalent) Measuring jig: 16196D(or its equivalent) BK0603 Series, BKP0603 Series Measuring frequency: 100±1MHz Measuring equipment: HP4291A(or its equivalent) Measuring jig: 16193A(or its equivalent) BK1005 Series, BKP1005 Series Measuring frequency: 100±1MHz BK1005 Series, BKP1005 Series Measuring frequency: 100±1MHz Measuring equipment: HP4291A(or its equivalent) Measuring jig: 16192A(or its equivalent), 16193A(or its equivalent) BK1608:2125 Series, BKP1608:2125 Series Measuring frequency: 100±1MHz Measuring equipment: HP4291A(or its equivalent), HP4195A(or its equivalent) Measuring jig: 16092A(or its equivalent) or 16192A(or its equivalent)/HW BK2010:3216 Series Measuring frequency: 100±1MHz Measuring frequency: 100±1MHz Measuring equipment: HP4291A(or its equivalent), HP4195A(or its equivalent) Measuring jig: 16192A(or its equivalent) ^{*} This catalog contains the typical specification only due to the limitation of space. When you consider the purchase of our products, please check our specification. For details of each product (characteristics graph, reliability information, precautions for use, and so on), see our Web site (http://www.ty-top.com/) or CD catalogs. | 5. Inductance | | |----------------------------|---| | BK0402 | | | BK0603 | | | BK1005 | | | BK1608 | | | BK2125 | | | BK2010 | <u>—</u> | | ARRAY BK3216 | | | BKP0603 | | | BKP1005 | | | BKP1608 | | | BKP2125 | | | CK1608 | 4.7~10.0μH: ±20% | | CK2125 | 0.1~10.0μH: ±20% | | CKS2125 | $1.0 \sim 10.0 \mu\text{H}$: $\pm 20\%$ | | CKP2012 | 0.47~4.7μH: ±20% | | CKP2016 | $0.47 \sim 4.7 \mu H: \pm 20\%$ | | CKP2520 | 0.47~4.7μH: ±20% | | NM2012 | $0.82 \sim 1.0 \mu \text{H} : \pm 20\%$ | | NM2520 | 1.0~2.2µH∶±20% | | LK1005 | 0.12~2.2μH:±10% Q 0.12~2.2μH:±30% | | LK1608 | $0.047 \sim 33.0 \mu\text{H}$: $\pm 20\%$ $0.10 \sim 12.0 \mu\text{H}$: $\pm 10\%$ Q $0.12 \sim 2.2 \mu\text{H}$: $\pm 30\%$ | | LK2125 | $0.047 \sim 33.0 \mu\text{H}$: $\pm 20\%$ $0.10 \sim 12.0 \mu\text{H}$: $\pm 10\%$ Q $0.12 \sim 2.2 \mu\text{H}$: $\pm 30\%$ | | HK0603 | 1.0~6.2nH:±0.3nH 6.8~100nH:±5% | | HK1005 | 1.0~6.2nH:±0.3nH 6.8~270nH:±5% | | HK1608 | 1.0~5.6nH: ±0.3nH 6.8~470nH: ±5% | | HK2125 | 1.5~5.6nH:±0.3nH 6.8~470nH:±5% | | HKQ0603S | 0.6~6.2nH:±0.3nH 6.8~22nH:±5% | | AQ105 | 1.0~6.2nH:±0.3nH 6.8~15nH:±5% | | [Toot Methodo and Remarks] | | [Test Methods and Remarks] CK Series: Measuring frequency : 2 to 4MHz (CK1608) Measuring frequency: 2 to 49MHz (CK2125) Measuring frequency: 2 to 10MHz (CK2125) LK Series: Measuring frequency: 10 to 25MHz (LK1005) Measuring frequency: 1 to 50MHz (LK1608) Measuring frequency: 0.4 to 50MHz (LK2125) CKP Series, NM Series: $\begin{array}{c} \cdot \text{HP4291A+16193A(or its equivalent)/LK1005} \\ \cdot \text{HP4285A+42841A+42842C+42851-61100} \text{ (CKP2012 \cdot CKP2016 \cdot CKP2520 \cdot NM2012 \cdot NM2520)} \\ \text{Measuring current} : \cdot 1\text{mA rms}(0.047 \text{ to } 4.7 \mu \text{H}) \\ \cdot 0.1\text{mA rms}(5.6 \text{ to } 33 \, \mu \text{H}) \\ \text{HK.} \quad \text{HKQ. AQ Series} : \\ \text{Measuring frequency} : 100\text{MHz} \text{ (HK0603 \cdot HK1005 \cdot AQ105)} \\ \text{Measuring frequency} : 50/100\text{MHz} \text{ (HK1608 \cdot HK2125)} \\ \text{Measuring frequency} : 500\text{MHz} \text{ (HK20603S)} \\ \text{Measuring equipment, jig: } \cdot \text{HP4291A+16197A} \text{ (or its equivalent)/HK0603 \cdot AQ105} \\ \cdot \text{HP4291A+16193A} \text{ (or its equivalent)/HK1005} \\ \cdot \text{HP4291A+16193A} \text{ (or its equivalent)/HK1005} \\ \end{array}$ ·HP4291A+16193A(or its equivalent)/HK1005 • E4991A+16197A(or its equivalent)/HK00603S • HP4291A+16092+in-house made jig (or its equivalent)/HK1608 • HK2125 ^{*} This catalog contains the typical specification only due to the limitation of space. When you consider the purchase of our products, please check our specification. For details of each product (characteristics graph, reliability information, precautions for use, and so on), see our Web site (http://www.ty-top.com/) or CD catalogs. | 6. Q | | |---------------------|-------------| | | | | BK0402 | 4 | | BK0603 | 4 | | BK1005 | | | BK1608 | | | BK2125 | | | ARRAY BK2010 BK3216 | | | BKP0603 | - | | BKP1005 | - | | | _ | | BKP1608 | _ | | BKP2125 | | | CK1608 | 20 min. | | CK2125 | 15~20 min. | | CKS2125 | | | CKP2012 | | | CKP2016 | | | CKP2520 | | | NM2012 | | | NM2520 | | | LK1005 | 10∼20 min. | | LK1608 | 10∼35 min. | | LK2125 | 15∼50 min. | | HK0603 | 4∼5 min. | | HK1005 | 8 min. | | HK1608 | 8~12 min. | | HK2125 | 10∼18 min. | | HKQ0603S | 10∼13 min. | | AQ105 | 8 min. | | T | 1 | # [Test Methods and Remarks] CK Series: Measuring frequency : 2 to 4MHz(CK1608) Measuring frequency : 2 to 25MHz(CK2125) LK Series : Measuring frequency: 10 to 25MHz(LK1005) Measuring frequency: 1 to 50MHz(LK1608) Measuring frequency: 0.4 to 50MHz(LK2125) Measuring equipment, jig: -HP4194A+16085B+16092A(or its equivalent) Measuring equipment, jig: +IP4194A+16085B+16092A(or its equivalent) +IP4195A+41951+16092A(or its equivalent) +IP4294A+16192A(or its equivalent) +IP4294A+16192A(or its equivalent) +IP4291A+16193A(or its equivalent)/LK1005 Measuring current: +1mA rms(0.047 to 4.7μH) +0.1mA rms(5.6 to 33 μH) HK, HKQ, AQ Series: Measuring frequency: 100MHz(HK0603 *HK1005 *AQ105) Measuring frequency: 50/100MHz(HK1608 *HK2125) Measuring grequency: 500MHz(HKQ603S) Measuring equipment jig: +IP4291A+16197A(or its equivalent)/HK0603 *A Measuring equipment, jig: ·HP4291A+16197A(or its equivalent)/HK0603 ·AQ105 ·HP4291A+16193A(or its equivalent)/HK1005 •E4991A+16197A(or its equivalent)/HKQ0603S ·HP4291A+16092A+ in-house made jig (or its equivalent)/HK1608 · HK2125 | 7. DC Resistance | | |--------------------------|-------------------------------| | BK0402 | $0.10\sim0.53\Omega$ max. | | BK0603 | 0.065~1.50Ω max. | | BK1005 | 0.03~0.80Ω max. | | BK1608 | $0.05\sim$ 1.10 Ω max. | | BK2125 | 0.05~ 0.75 Ω max. | | ARRAY BK2010 | 0.10~0.90Ω max. | | BK3216 | 0.15~0.80Ω max. | | BKP0603 | $0.065\sim0.070\Omega$ max. | | BKP1005 | 0.030~0.20Ω max. | | BKP1608 | 0.025~0.18Ω max. | | BKP2125 | 0.020~0.075Ω max. | | CK1608 | 0.45~0.85Ω (±30%) | | CK2125 | 0.16~0.65Ω max. | | CKS2125 | $0.09\sim0.40\Omega$ typ. | | CK52125 | $0.12\sim0.52\Omega$ max. | | CKP2012 | 0.10~0.28Ω max. | | CKP2016 | 0.08~0.20Ω max. | | CKP2520 | 0.05~0.16Ω max. | | NM2012 | 0.10~0.19Ω max. | | NM2520 | 0.13~0.22Ω max. | | LK1005 | 0.41~1.16Ω max. | | LK1608 | 0.2~2.2Ω max. | | LK2125 | 0.1~1.1Ω max. | | HK0603 | 0.11~3.74Ω max. | | HK1005 | 0.08~4.8Ω max. | | HK1608 | 0.05~2.6Ω max. | | HK2125 | 0.10~1.5Ω max. | | HKQ0603S | 0.06~1.29Ω max. | | AQ105 | 0.07~0.45Ω max. | | Test Methods and Remarks | · | Measuring equipment: VOAC-7412(made by Iwasaki Tsushinki) VOAC-7512(made by Iwasaki Tsushinki) ^{*} This catalog contains the typical specification only due to the limitation of space. When you consider the purchase of our products, please check our specification. For details of each product (characteristics graph, reliability information, precautions for use, and so on), see our Web site (http://www.ty-top.com/) or CD catalogs. ### RELIABILITY DATA ### Multilayer chip inductors and beads | 8. Self Reso | onance Frequency (SRF) | | |--------------|------------------------|--------------------| | BK0402 | | | | BK0603 | | | | BK1005 | | | | BK1608 | | | | BK2125 | | | | ADD 4)/ | BK2010 | | | ARRAY | BK3216 | | | BKP0603 | | | | BKP1005 | | | | BKP1608 | | | | BKP2125 | | | | CK1608 | | 17~25MHz min. | | CK2125 | | 24~235MHz min. | | CKS2125 | | | | CKP2012 | | | | CKP2016 | | | | CKP2520 | | | | NM2012 | | | | NM2520 | | | | LK1005 | | 40∼180MHz min. | | LK1608 | | 9~260MHz min. | | LK2125 | | 13~320MHz min. | | HK0603 | | 900~10000MHz min. |
| HK1005 | | 400~10000MHz min. | | HK1608 | | 300~10000MHz min. | | HK2125 | | 200~4000MHz min. | | HKQ0603S | | 1900~10000MHz min. | | AQ105 | | 2300~10000MHz min. | | Test Meth | ods and Remarks] | | LK Series: LK Series: Measuring equipment: HP4195A(or its equivalent) Measuring jig: 41951+16092A(or its equivalent) HK, HKQ, AQ Series: Measuring equipment: HP8719C(or its equivalent) · HP8753D(or its equivalent)/HK2125 | 9. Tempe | rature Characteristic | | |----------|-----------------------|--------------------------------| | BK0402 | | | | BK0603 | | | | BK1005 | | | | BK1608 | | | | BK2125 | | | | ARRAY | BK2010 | | | | BK3216 | | | BKP0603 | | | | BKP1005 | 5 | | | BKP1608 | 3 | | | BKP2125 | i | | | CK1608 | | | | CK2125 | | | | CKS2125 | i | | | CKP2012 | 2 | | | CKP2016 | 3 | | | CKP2520 |) | | | NM2012 | | | | NM2520 | | | | LK1005 | | | | LK1608 | | | | LK2125 | | | | HK0603 | | | | HK1005 | | | | HK1608 | | Industance change: Within ±10% | | HK2125 | | Inductance change: Within ±10% | | HKQ060 | 3S | | | AQ105 | | | | Toot Mo | thods and Domarke | | AQ105 [Test Methods and Remarks] HK, HKQ, AQ Series: Temperature range: -30 to +85°C Reference temperature: +20°C ^{*} This catalog contains the typical specification only due to the limitation of space. When you consider the purchase of our products, please check our specification. For details of each product (characteristics graph, reliability information, precautions for use, and so on), see our Web site (http://www.ty-top.com/) or CD catalogs. | 10. Resis | tance to Flexure of Substrate | | |-----------|-------------------------------|-----------------------| | BK0402 | | | | BK0603 | | | | BK1005 | | | | BK1608 | | | | BK2125 | | | | ARRAY | BK2010 | | | Annai | BK3216 | | | BKP0603 | 1 | | | BKP1005 | | | | BKP1608 | | | | BKP2125 | i | | | CK1608 | | No mechanical damage. | | CK2125 | | | | CKS2125 | | | | CKP2012 | | No mechanica damage. | | CKP2016 | | | | CKP2520 | | | | NM2012 | | | | NM2520 | | | | LK1005 | | | | LK1608 | | | | LK2125 | | | | HK0603 | | | | HK1005 | | | | HK1608 | | | | HK2125 | | | | HKQ0603S | | | | AQ105 | | | | I | | | [Test Methods and Remarks] Warp: 2mm (BK Series without 0402size, BKP, CK, CKS, CKP, NM, LK, HK, HKQ, AQ Series) : 1mm (BK0402 Series) Testing board: glass epoxy-resin substrate Thickness: 0.8mm mlci0109_reli-PRP8 | 11. Solde | rability | | | | |-----------|--------------------|--|--|--| | BK0402 | | | | | | BK0603 | | | | | | BK1005 | | | | | | BK1608 | | | | | | BK2125 | | | | | | ARRAY | BK2010 | At least 75% of terminal electrode is covered by new solder. | | | | | BK3216 | | | | | BKP0603 | | | | | | BKP1005 | | | | | | BKP1608 | | | | | | BKP2125 | | | | | | CK1608 | | | | | | CK2125 | | | | | | CKS2125 | | | | | | CKP2012 | ! | | | | | CKP2016 | | | | | | CKP2520 | 1 | | | | | NM2012 | | | | | | NM2520 | | | | | | LK1005 | · | At least 75% of terminal electrode is covered by new solder. | | | | LK1608 | | | | | | LK2125 | | | | | | HK0603 | | | | | | HK1005 | | | | | | HK1608 | | | | | | HK2125 | | | | | | HKQ0603 | BS | | | | | AQ105 | | | | | | | thods and Remarks] | | | | | | mperature: 230±5°C | | | | | Duration | : 4±1 sec. | | | | ^{*} This catalog contains the typical specification only due to the limitation of space. When you consider the purchase of our products, please check our specification. For details of each product (characteristics graph, reliability information, precautions for use, and so on), see our Web site (http://www.ty-top.com/) or CD catalogs. | 12. Resistance to Soldering | | |-----------------------------|--| | BK0402 | | | BK0603 | | | BK1005 | | | BK1608 | | | BK2125 | | | ARRAY BK2010 | Appearance : No significant abnormality. Impedance change : Within ±30% | | BK3216 | Impedance change : Willin 200% | | BKP0603 | | | BKP1005 | | | BKP1608 | | | BKP2125 | | | CK1608 | | | CK2125 | No mechanical damage. Remaining terminal electrode : 70% min. | | CKS2125 | Terraning terrinal electrode - 70 % min. | | CKP2012 | Inductance change | | CKP2016 | R10~4R7 : Within ±10%
6R8~100 : Within ±15%
CKS2125 : Within ±20% | | CKP2520 | | | NM2012 | CK9212. CKP2016. CKP2520. NM2012. NM2520: Within ±30% | | NM2520 | 514 2512X 514 2513X 514 2513X 11112512X 111112513 11111111 25578 | | LK1005 | No mechanical damage. Remaining terminal electrode: 70% min. Inductance change: Within ±15% | | LK1608 | No mechanical damage. | | LK2125 | Remaining terminal electrode: 70% min. Inductance change 47N~4R7: Within ±10% 5R6~330: Within ±15% | | HK0603 | | | HK1005 | | | HK1608 | No mechanical damage. | | HK2125 | Remaining terminal electrode: 70% min. Inductance change: Within ±5% | | HKQ0603S | | | AQ105 | | | [Test Methods and Remarks] | | [Test Methods and Remarks] Solder temperature : 260±5°C Duration : 10±0.5 sec. Preheating temperature : 150 to 180°C Preheating time: 3 min. Flux: Immersion into methanol solution with colophony for 3 to 5 sec. Recovery: 2 to 3 hrs of recovery under the standard condition after the test. (See Note 1) | 13. Thern | nal Shock | | | |-----------|-------------------|---|--| | BK0402 | | | | | BK0603 | | | | | BK1005 | | | | | BK1608 | | | | | BK2125 | | | | | ARRAY | BK2010 | Appearance : No significant abnormality. Impedance change : Within ±30% | | | Annai | BK3216 | impedance change : Within ±50.79 | | | BKP0603 | | | | | BKP1005 | | | | | BKP1608 | | | | | BKP2125 | | | | | CK1608 | | No mechanical damage. | | | CK2125 | | Inductance change: Within ±20% Q change: Within ±30% | | | CKS2125 | | Inductance change: Within ±20% (CKS2125) | | | CKP2012 | | | | | CKP2016 | | | | | CKP2520 | | No mechanical damage. Inductance change: Within ±30% | | | NM2012 | | | | | NM2520 | | | | | LK1005 | | | | | LK1608 | | ─ No mechanical damage.
— Inductance change : Within ±10% Q change : Within ±30% | | | LK2125 | | inductance change. Within ±10% Q change. Within ±30% | | | HK0603 | | | | | HK1005 | | | | | HK1608 | | No mechanical damage. | | | HK2125 | | Inductance change: Within ±10% Q change: Within ±20% | | | HKQ0603 | 3S | | | | AQ105 | | | | | Tost Mo | thode and Remarke | | | ## [Test Methods and Remarks] Conditions for 1 cycle Step 1 : Minimum operating temperature $^{+0}_{-3}$ °C 30 ± 3 min. Step 2: Room temperature 2 to 3 min. Step 3: Maximum operating temperature $^{+3}_{-0}$ °C 30±3 min. Step 4 : Room temperature 2 to 3 min. Number of cycles: 5 Recovery: 2 to 3 hrs of recovery under the standard condition after the test. (See Note 1) (Note 1) When there are questions concerning mesurement result; measurement shall be made after 48 ± 2 hrs of recovery under the standard condition. ^{*} This catalog contains the typical specification only due to the limitation of space. When you consider the purchase of our products, please check our specification. For details of each product (characteristics graph, reliability information, precautions for use, and so on), see our Web site (http://www.ty-top.com/) or CD catalogs. | 14. Damp | Heat (Steady state) | | |----------|---------------------|--| | BK0402 | | | | BK0603 | | | | BK1005 | | | | BK1608 | | | | BK2125 | | | | 4004)/ | BK2010 | Appearance : No significant abnormality.
Impedance change : Within ±30% | | ARRAY | BK3216 | inspeciance change - within ±30 % | | BKP0603 | 3 | | | BKP1005 | j | | | BKP1608 | 3 | | | BKP2125 | i | | | CK1608 | | No mechanical damage. | | CK2125 | | Inductance change: Within ±20% Q change: Within ±30% | | CKS2125 | i | Inductance change: Within ±20% | | CKP2012 | 2 | | | CKP2016 | 5 | | | CKP2520 | | No mechanical damage. Inductance change: Within ±30% | | NM2012 | | | | NM2520 | | | | LK1005 | | No mechanical damage. | | LK1608 | | Inductance change: Within ±10% Q change: Within ±30% | | LK2125 | | No mechanical damage. Inductance change: Within ±20% Q change: Within ±30% | | HK0603 | | | | HK1005 | | | | HK1608 | | No mechanical damage. | | HK2125 | | Inductance change: Within ±10% Q change: Within ±20% | | HKQ0603S | | | | AQ105 | | | [Test Methods and Remarks] BK Series: Temperature : 40±2°C Humidity: 90 to 95%RH Duration: 500⁺²⁴₋₀ hrs Recovery: 2 to 3 hrs of recovery under the standard condition after the removal from test chamber. (See Note 1) LK, CK, CKS, CKP, NM, HK, HKQ, AQ Series: Temperature: 40±2°C (LK, CK, CKS, CKP, NM Series) : 60±2°C (HK, HKQ, AQ Series) Humidity: 90 to 95%RH Duration: 500±12 hrs Recovery: 2 to 3 hrs of recovery under the standard condition after the removal from test chamber. (See Note 1) ^{*} This catalog contains the typical specification only due to the limitation of space. When you consider the purchase of our products, please check our specification. For details of each product (characteristics graph, reliability information, precautions for use, and so on), see our Web site (http://www.ty-top.com/) or CD catalogs. | 15. Loading under Damp Heat | | | | | |------------------------------|---|--|--|--| | BK0402 | | | | | | BK0603 | | | | | | BK1005 | | | | | | BK1608 | | | | | | BK2125 | | | | | | ARRAY BK2010 | Appearance: No significant abnormality. Impedance change: Within ±30% | | | | | BK3216 | impedance charge - within ±30 % | | | | | BKP0603 | | | | | | BKP1005 | | | | | | BKP1608 | | | | | | BKP2125 | | | | | | CK1608 No mechanical damage. | | | | | | CK2125 | Inductance change: Within ±20% Q change: Within ±30% | | | | | CKS2125 | No mechanical damage. Inductance change: Within ±20% | | | | | CKP2012 | | | | | | CKP2016 | | | | | | CKP2520 | No mechanical damage. Inductance
change: Within ±30% | | | | | NM2012 | | | | | | NM2520 | | | | | | LK1005 | No mechanical damage. Inductance change: Within ±10% Q change: Within ±30% | | | | | LK1608 | No mechanical damage. Inductance change : 0.047 to 12.0 μ H : Within $\pm 10\%$ 15.0 to 33.0 μ H : Within $\pm 15\%$ Q change : Within $\pm 30\%$ | | | | | LK2125 | No mechanical damage. Inductance change: Within ±20% Q change: Within ±30% | | | | | HK0603 | | | | | | HK1005 | | | | | | HK1608 | No mechanical damage. | | | | | HK2125 | Inductance change: Within ±10% Q change: Within ±20% | | | | | HKQ0603S | | | | | | AQ105 | | | | | | | | | | | [Test Methods and Remarks] BK Series : Temperature : 40±2℃ Humidity: 90 to 95%RH Applied current: Rated current Duration: 500⁺²⁴₋₀ hrs Recovery: 2 to 3 hrs of recovery under the standard condition after the removal from test chamber. (See Note 1) LK, CK, CKS, CKP, NM, HK, HKQ, AQ Series: Temperature: 40±2°C (LK, CK, CKS, CKP, NM Series) : 60±2°C (HK, HKQ, AQ Series) Humidity: 90 to 95°RH Applied current: Rated current Duration: 500±12 hrs Recovery: 2 to 3 hrs of recovery under the standard condition after the removal from test chamber. (See Note 1) Note on standard condition: "standard condition" referred to herein is defined as follows: 5 to 35°C of temperature, 45 to 85% relative humidity, and 86 to 106kPa of air pressure. When there are questions concerning measurement results: In order to provide correlation data, the test shall be conducted under condition of 20±2°C of temperature, 60 to 70% relative humidity, and 86 to 106kPa of air pressure. Unless otherwise specified, all the tests are conducted under the "standard condition. (Note 1) Measurement shall be made after 48±2 hrs of recovery under the standard condition. ^{*} This catalog contains the typical specification only due to the limitation of space. When you consider the purchase of our products, please check our specification. For details of each product (characteristics graph, reliability information, precautions for use, and so on), see our Web site (http://www.ty-top.com/) or CD catalogs. | 16. Loading at High Temperature BK0402 | | | | |--|---|--|--| | | | | | | BK0603 | | | | | BK1005 | | | | | BK1608 | | | | | BK2125 | Appearance : No significant abnormality | | | | ARRAY BK2010 | Impedance change: Within ±30% | | | | BK3216 | | | | | BKP0603 | | | | | BKP1005 | | | | | BKP1608 | | | | | BKP2125 | | | | | CK1608 | No mechanical damage. | | | | CK2125 | Inductance change: Within ±20% Q change: Within ±30% | | | | CKS2125 | No mechanical damage. Inductance change: Within ±20% | | | | CKP2012 | | | | | CKP2016 | | | | | CKP2520 | No mechanical damage. Inductance change: Within ±30% | | | | NM2012 | | | | | NM2520 | | | | | LK1005 | No mechanical damage. Inductance change: Within ±10% Q change: Within ±30% | | | | LK1608 | No mechanical damage. Inductance change: 0.047 to $12.0\mu\text{H}$: Within $\pm 10\%$ 15.0 to $33.0\mu\text{H}$: Within $\pm 15\%$ Q change: Within $\pm 30\%$ | | | | LK2125 | No mechanical damage. Inductance change: Within ±20% Q change: Within ±30% | | | | HK0603 | | | | | HK1005 | | | | | HK1608 | No mechanical damage. | | | | HK2125 | Inductance change: Within ±10% Q change: Within ±20% | | | | HKQ0603S | | | | | AQ105 | | | | | Tost Mothods and Pomarks | I . | | | [Test Methods and Remarks] BK Series: Temperature : 125±3℃ Applied current : Rated current Duration : 500⁺²⁴₋₀ hrs Recovery: 2 to 3 hrs of recovery under the standard condition after the removal from test chamber. (See Note 1) LK、CK、CKS、CKP、NM、HK、HKQ、AQ、BKP Series: Temperature: 85±2°C (LK、CK、CKS、CKP、NM、BKP Series) : 85±2°C (HK1608, 2125) : 85±2°C (HK1005, AQ105 operating temperature range -55 to +85°C) : $125\pm2^{\circ}$ C (HK0603, HK1005, HKQ0603S, AQ105 operating temperature range -55 to $+125^{\circ}$ C) Applied current : Rated current Duration : 500±12 hrs Recovery : 2 to 3 hrs of recovery under the standard condition after the test. (See Note 1) Note on standard condition: "standard condition" referred to herein is defined as follows: 5 to 35°C of temperature, 45 to 85% relative humidity, and 86 to 106kPa of air pressure. When there are questions concerning measurement results: In order to provide correlation data, the test shall be conducted under condition of 20±2°C of temperature, 60 to 70% relative humidity, and 86 to 106kPa of air pressure. Unless otherwise specified, all the tests are conducted under the "standard condition." (Note 1) Measurement shall be made after 48±2 hrs of recovery under the standard condition. ^{*} This catalog contains the typical specification only due to the limitation of space. When you consider the purchase of our products, please check our specification. For details of each product (characteristics graph, reliability information, precautions for use, and so on), see our Web site (http://www.ty-top.com/) or CD catalogs. #### 1. Circuit Design Verification of operating environment, electrical rating and performance - 1. A malfunction in medical equipment, spacecraft, nuclear reactors, etc. may cause serious harm to human life or have severe social ramifications. - As such, any inductors to be used in such equipment may require higher safety and/or reliability considerations and should be clearly differentiated from components used in general purpose applications. #### Precautions - Operating Current (Verification of Rated current) - 1. The operating current for inductors must always be lower than their rated values - 2. Do not apply current in excess of the rated value because the inductance may be reduced due to the magnetic saturation effect. #### 2. PCB Design Precautions Technical considerations - Pattern configurations (Design of Land-patterns) When inductors are mounted on a PCB, the size of land patterns and the amount of solder used (size of fillet) can directly affect inductor performance. Therefore, the following items must be carefully considered in the design of solder land patterns: - (1) The amount of solder applied can affect the ability of chips to withstand mechanical stresses which may lead to breaking or cracking. Therefore, when designing land-patterns it is necessary to consider the appropriate size and configuration of the solder pads which in turn determines the amount of solder necessary to form the fillets. - (2) When more than one part is jointly soldered onto the same land or pad, the pad must be designed so that each component's soldering point is separated by solder-resist. - (3) The larger size of land patterns and amount of solder, the smaller Q value after mounting on PCB. It makes higher the Q value to design land patterns smaller than terminal electrode of chips. - ◆Pattern configurations (Inductor layout on panelized [breakaway] PC boards) - 1. After inductors have been mounted on the boards, chips can be subjected to mechanical stresses in subsequent manufacturing processes (PCB cutting, board inspection, mounting of additional parts, assembly into the chassis, wave soldering the reflow soldered boards etc.) For this reason, planning pattern configurations and the position of SMD inductors should be carefully performed to minimize stress. ### ◆Pattern configurations (Design of Land-patterns) - 1. The following diagrams and tables show some examples of recommended patterns to prevent excessive solder amounts (larger fillets which extend above the component end terminations). Examples of improper pattern designs are also shown. - (1) Recommended land dimensions for a typical chip inductor land patterns for PCBs Recommended land dimensions for wave-soldering | | Type | 1608 | 2125 | 3216 | | |------|------|---------|---------|---------|--| | Size | L | 1.6 | 2.0 | 3.2 | | | Ze | W | 0.8 | 1.25 | 1.6 | | | | Α | 0.8~1.0 | 1.0~1.4 | 1.8~2.5 | | | Г | В | 0.5~0.8 | 0.8~1.5 | 0.8~1.7 | | | | С | 0.6~0.8 | 0.9~1.2 | 1.2~1.6 | | | | | | (U | nit:mm) | | Recommended land dimensions for reflow-soldering | | Туре | 0402 | 0603 | 1005 | 105 | 1608 | 2012 | 2125 | 2016 | 3216 | 2520 | |------|------|-----------|-----------|-----------|-----------|---------|---------|---------|---------|---------|---------| | Size | L | 0.4 | 0.6 | 1.0 | 1.0 | 1.6 | 2.0 | 2.0 | 2.0 | 3.2 | 2.5 | | Ze | W | 0.2 | 0.3 | 0.5 | 0.6 | 0.8 | 1.25 | 1.25 | 1.6 | 1.6 | 2.0 | | | Α | 0.15~0.25 | 0.20~0.30 | 0.45~0.55 | 0.50~0.55 | 0.8~1.0 | 0.8~1.2 | 0.8~1.2 | 0.8~1.2 | 1.8~2.5 | 1.0~1.4 | | | В | 0.10~0.20 | 0.20~0.30 | 0.40~0.50 | 0.30~0.40 | 0.6~0.8 | 0.8~1.2 | 0.8~1.2 | 0.8~1.2 | 0.6~1.5 | 0.6~1.0 | | | С | 0.15~0.30 | 0.25~0.40 | 0.45~0.55 | 0.60~0.70 | 0.6~0.8 | 0.9~1.6 | 0.9~1.6 | 1.2~2.0 | 1.2~2.0 | 1.8~2.2 | (Unit: mm) Excess solder can affect the ability of chips to withstand mechanical stresses. Therefore, please take proper precautions when designing land-patterns. Recommended land dimension for Reflow-soldering | | Type | | 3216 | 2010 | |---|-----------|---|---------|-----------| | Γ | Size | L | 3.2 | 2.0 | | | ze | W | 1.6 | 1.0 | | Γ | а | | 0.7~0.9 | 0.5~0.6 | | | b | | 0.8~1.0 | 0.5~0.6 | | ſ | С | | 0.4~0.5 | 0.2~0.3 | | | d | | 0.8 | 0.5 | | | (Unit:mm) | | | (Unit:mm) | ### (2) Examples of good and bad solder application | Item | Not recommended | Recommended | | |---|--|----------------|--| | Mixed mounting of SMD and leaded components | Lead wire of component, | Solder-resist | | | Component placement close to the chassis | Chassis Solder(for grounding) | Solder-resist | | | Hand-soldering of leaded components near mounted components | Lead wire of component-
Soldering iron- | Solder-resist- | | | Horizontal component placement | AA | Solder-resist | | To next page ^{*} This catalog
contains the typical specification only due to the limitation of space. When you consider the purchase of our products, please check our specification. For details of each product (characteristics graph, reliability information, precautions for use, and so on), see our Web site (http://www.ty-top.com/) or CD catalogs #### 2. PCB Design - Pattern configurations (Inductor layout on panelized [breakaway] PC boards) - 1-1. The following are examples of good and bad inductor layout; SMD inductors should be located to minimize any possible mechanical stresses from board #### Technical considerations 1-2. To layout the inductors for the breakaway PC board, it should be noted that the amount of mechanical stresses given will vary depending on inductor layout. An example below should be counted for better design 1-3. When breaking PC boards along their perforations, the amount of mechanical stress on the inductors can vary according to the method used. The following methods are listed in order from least stressful to most stressful: push-back, slit, V-grooving, and perforation. Thus, any ideal SMD inductor layout must also consider the PCB splitting procedure. #### 3. Considerations for automatic placement - Adjustment of mounting machine - 1. Excessive impact load should not be imposed on the inductors when mounting onto the PC boards. - 2. The maintenance and inspection of the mounter should be conducted periodically #### Precautions - Selection of Adhesives - 1. Mounting inductors with adhesives in preliminary assembly, before the soldering stage, may lead to degraded inductor characteristics unless the following factors are appropriately checked; the size of land patterns, type of adhesive, amount applied, hardening temperature and hardening period. Therefore, it is imperative to consult the manufacturer of the adhesives on proper usage and amounts of adhesive to use - Adjustment of mounting machine - 1. If the lower limit of the pick-up nozzle is low, too much force may be imposed on the inductors, causing damage. To avoid this, the following points should be - considered before lowering the pick-up nozzle: (1) The lower limit of the pick-up nozzle should be adjusted to the surface level of the PC board after correcting for deflection of the board. - (2) The pick-up pressure should be adjusted between 1 and 3N static loads. (3) To reduce the amount of deflection of the board caused by impact of the pick-up nozzle, supporting pins or back-up pins should be used under the PC board. The following diagrams show some typical examples of good pick-up nozzle placement: 2. As the alignment pin wears out, adjustment of the nozzle height can cause chipping or cracking of the inductors because of mechanical impact on the inductors. To avoid this, the monitoring of the width between the alignment pin in the stopped position, and maintenance, inspection and replacement of the pin should be conducted periodically. ### Technical ations #### Selection of Adhesives - 1. Some adhesives may cause reduced insulation resistance. The difference between the shrinkage percentage of the adhesive and that of the inductors may result in stresses on the inductors and lead to cracking. Moreover, too little or too much adhesive applied to the board may adversely affect component placement, so the following precautions should be noted in the application of adhesives. (1) Required adhesive characteristics - a. The adhesive should be strong enough to hold parts on the board during the mounting & solder process. b. The adhesive should have sufficient strength at high temperatures. - c. The adhesive should have good coating and thickness consistency. - d. The adhesive should be used during its prescribed shelf life. - e. The adhesive should harden rapidly. - f. The adhesive must not be contaminated. - g. The adhesive should have excellent insulation characteristics. h. The adhesive should not be toxic and have no emission of toxic gasses. - (2) When using adhesives to mount inductors on a PCB, inappropriate amounts of adhesive on the board may adversely affect component placement. Too little adhesive may cause the inductors to fall off the board during the solder process. Too much adhesive may cause defective soldering due excessive flow of adhesive on to the land or solder pad. ### [Recommended conditions] | Figure | 0805 case sizes as examples | |-------------------------|-----------------------------| | а | 0.3mm min | | b | 100∼120µm | | c Area with no adhesive | | ^{*} This catalog contains the typical specification only due to the limitation of space. When you consider the purchase of our products, please check our specification. For details of each product (characteristics graph, reliability information, precautions for use, and so on), see our Web site (http://www.ty-top.com/) or CD catalogs. #### 4. Soldering #### ◆Selection of Flux - 1. Since flux may have a significant effect on the performance of inductors, it is necessary to verify the following conditions prior to use: - (1) Flux used should be with less than or equal to 0.1 wt% (Chlorine conversion method) of halogenated content. Flux having a strong acidity content should not be applied. - (2) When soldering inductors on the board, the amount of flux applied should be controlled at the optimum level. Precautions (3) When using water-soluble flux, special care should be taken to properly clean the boards #### ◆Soldering 1. Temperature, time, amount of solder, etc. are specified in accordance with the following recommended conditions, and please contact us about peak temperature when you use lead-free paste ### ◆Selection of Flux - 1-1. When too much halogenated substance (Chlorine, etc.) content is used to activate the flux, or highly acidic flux is used, an excessive amount of residue after soldering may lead to corrosion of the terminal electrodes or degradation of insulation resistance on the surface of the Inductor. - 1-2. Flux is used to increase solderability in flow soldering, but if too much is applied, a large amount of flux gas may be emitted and may detrimentally affect solderability. To minimize the amount of flux applied, it is recommended to use a flux-bubbling system. - 1-3. Since the residue of water-soluble flux is easily dissolved by water content in the air, the residue on the surface of Inductor in high humidity conditions may cause a degradation of insulation resistance and therefore affect the reliability of the components. The cleaning methods and the capability of the machines used should also be considered carefully when selecting water-soluble flux. #### ◆Soldering #### 1-1. Preheating when soldering Heating: Chip inductor components should be preheated to within 100 to 130°C of the soldering. Cooling: The temperature difference between the components and cleaning process should not be greater than 100°C. Chip inductors are susceptible to thermal shock when exposed to rapid or concentrated heating or rapid cooling. Therefore, the soldering process must be conducted with a great care so as to prevent malfunction of the components due to excessive thermal shock. Recommended conditions for soldering # [Reflow soldering] Temperature profile 1. The ideal condition is to have solder mass (fillet) controlled to 1/2 to 1/3 of the thickness of the inductor, as shown below: #### Technical considerations 2. Because excessive dwell times can detrimentally affect solderability, soldering duration should be kept as close to recommended times as possible. ## [Wave soldering] Temperature profile #### Caution - 1. Make sure the inductors are preheated sufficiently. - 2. The temperature difference between the inductor and melted solder should not be greater than 100 to 130°C. - 3. Cooling after soldering should be as gradual as possible. - 4. Wave soldering must not be applied to the inductors designated as for reflow soldering only. ## [Hand soldering] Temperature profile #It is recommended to use 20W soldering iron and the tip is 1φ or less. #The soldering iron should not directly touch the components. components. **Assured to be soldering iron for 1 time. Note: The above profiles are the maximum a soldering condition, therefore these pr not always recommended. - 1. Use a 20W soldering iron with a maximum tip diameter of 1.0 mm. - 2. The soldering iron should not directly touch the inductor. ^{*} This catalog contains the typical specification only due to the limitation of space. When you consider the purchase of our products, please check our specification. For details of each product (characteristics graph, reliability information, precautions for use, and so on), see our Web site (http://www.ty-top.com/) or CD catalogs #### 5. Cleaning 1. When cleaning the PC board after the Inductors are all mounted, select the appropriate cleaning solution according to the type of flux used and purpose of Precautions the cleaning (e.g. to remove soldering flux or other materials from the production process.) 2. Cleaning conditions should be determined after verifying, through a test run, that the cleaning process does not affect the inductor's characteristics Cleaning conditions 1. The use of inappropriate solutions can cause foreign substances such as flux residue to adhere to the inductor, resulting in a degradation of the inductor's electrical properties (especially insulation resistance) 2. Inappropriate cleaning conditions (insufficient or excessive cleaning) may detrimentally affect the performance of the inductors. Technical (1) Excessive cleaning considera. In the case of ultrasonic cleaning, too much power output can cause excessive vibration of the PC board which may lead to the cracking of the inductor ations or the soldered portion, or decrease the terminal electrodes' strength. Thus the following conditions should be carefully checked; Ultrasonic output Below 20W/ℓ Ultrasonic frequency Below 40kHz Ultrasonic washing period 5 min. or less #### 6. Post cleaning processes -
Application of resin coatings, moldings, etc. to the PCB and components. 1. With some type of resins a decomposition gas or chemical reaction vapor may remain inside the resin during the hardening period or while left under normal storage conditions resulting in the deterioration of the inductor's performance. - 2. When a resin's hardening temperature is higher than the inductor's operating temperature, the stresses generated by the excess heat may lead to inductor damage or destruction. - 3. Stress caused by a resin's temperature generated expansion and contraction may damage inductors. The use of such resins, molding materials etc. is not recommended. #### 7. Handling Precautions - ◆Breakaway PC boards(splitting along perforations) 1. When splitting the PC board after mounting inductors and other components, care is required so as not to give any stresses of deflection or twisting to the - 2. Board separation should not be done manually, but by using the appropriate devices. - ◆General handling precautions - Always wear static control bands to protect against ESD. Keep the inductors away from all magnets and magnetic objects. - Precautions - 3. Use non-magnetic tweezers when handling inductors. Any devices used with the inductors (soldering irons, measuring instruments) should be properly grounded - 5. Keep bare hands and metal products (i.e., metal desk) away from chip electrodes or conductive areas that lead to chip electrodes. - 6. Keep inductors away from items that generate magnetic fields such as speakers or coils. - ◆Mechanical considerations - 1. Be careful not to subject the inductors to excessive mechanical shocks. - (1) If inductors are dropped on the floor or a hard surface they should not be used. - (2) When handling the mounted boards, be careful that the mounted components do not come in contact with or bump against other boards or components. #### 8. Storage conditions ### **♦**Storage Storage 1. To maintain the solderability of terminal electrodes and to keep the packaging material in good condition, care must be taken to control temperature and humidity in the storage area. Humidity should especially be kept as low as possible. ## Precautions Below 40°C Ambient temperature Humidity Below 70% RH The ambient temperature must be kept below 30°C. Even under ideal storage conditions inductor electrode solderability decreases as time passes, so inductors should be used within 6 months from the time of delivery. *The packaging material should be kept where no chlorine or sulfur exists in the air. #### Technical considerations 1. If the parts are stocked in a high temperature and humidity environment, problems such as reduced solderability caused by oxidation of terminal electrodes and deterioration of taping/packaging materials may take place. For this reason, components should be used within 6 months from the time of delivery. If exceeding the above period, please check solderability before using the inductors. ^{*} This catalog contains the typical specification only due to the limitation of space. When you consider the purchase of our products, please check our specification. For details of each product (characteristics graph, reliability information, precautions for use, and so on), see our Web site (http://www.ty-top.com/) or CD catalogs.