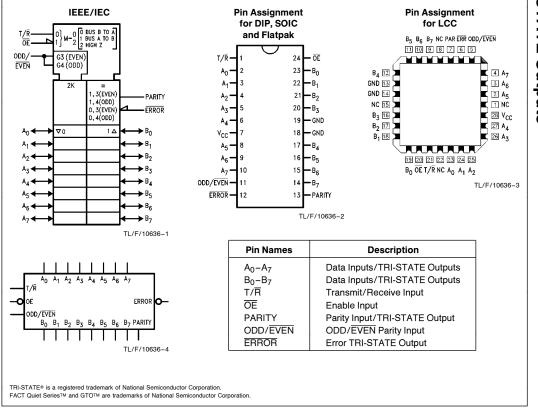


74ACQ657 • 54ACTQ/74ACTQ657 Quiet Series Octal Bidirectional Transceiver with 8-Bit Parity Generator/Checker and TRI-STATE® Outputs

General Description

The 'ACQ/'ACTQ657 contains eight non-inverting buffers with TRI-STATE outputs and an 8-bit parity generator/ checker. Intended for bus oriented applications, the device combines the '245 and the '280 functions in one package. The 'ACQ/'ACTQ utilizes NSC Quiet Series technology to guarantee quiet output switching and improved dynamic threshold performance. FACT Quiet Series™ features GTO™ output control and undershoot corrector in addition to a split ground bus for superior performance.

Features


 Guaranteed simultaneous switching noise level and dynamic threshold performance

March 1993

- Guaranteed pin-to-pin skew AC performance
- Combines the '245 and the '280 functions in one package
- 300 mil 24-pin slim dual-in-line package
- Outputs source/sink 24 mA
- 'ACTQ has TTL-compatible inputs
- Standard Military Drawing (SMD) — 'ACTQ657: 5962-92197

Logic Symbols

Connection Diagrams

© 1995 National Semiconductor Corporation TL/F/10636

RRD-B30M75/Printed in U. S. A.

74ACQ657 • 54ACTQ/74ACTQ657 Quiet Series Octal with 8-Bit Parity Generator/Checker and TRI-STATE '4ACQ657 54ACTQ/74ACTQ657 **Quiet Series** Outputs **Bidirectional Transceiver**

Functional Description

The Transmit/Receive (T/\overline{R}) input determines the direction of the data flow through the bidirectional transceivers. Transmit (active HIGH) enables data from the A port to the B port; Receive (active LOW) enables data from the B port to the A port.

The Output Enable ($\overline{\text{OE}}$) input disables the parity and ERROR outputs and both the A and B ports by placing them in a HIGH-Z condition when the Output Enable input is HIGH.

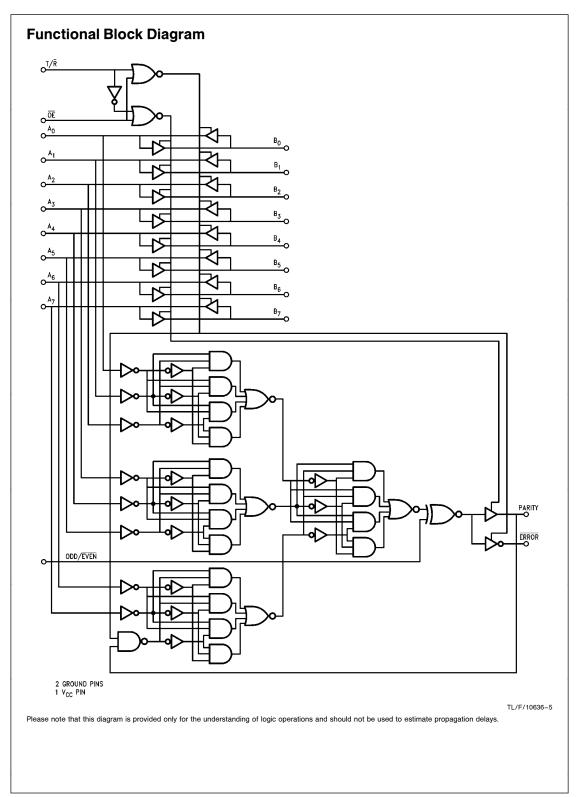
When transmitting (T/ \overline{R} HIGH), the parity generator detects whether an even or odd number of bits on the A port are HIGH and compares these with the condition of the parity select (ODD/ $\overline{\text{EVEN}}$). If the Parity Select is HIGH and an even number of A inputs are HIGH, the Parity output is HIGH.

In receiving mode (T/ \overline{R} LOW), the parity select and number of HIGH inputs on port B are compared to the condition of the Parity input. If an even number of bits on the B port are HIGH, the parity select is HIGH, and the PARITY input is HIGH, then ERROR will be HIGH to indicate no error. If an odd number of bits on the B port are HIGH, the parity select is HIGH, and the PARITY input is HIGH, the ERROR will be LOW indicating an error.

Number of Inputs That		Input	5	Input/ Output	Outputs		
Are High	ŌE	T/R	ODD/EVEN	Parity	ERROR	Outputs Mode	
0, 2, 4, 6, 8	L	н	Н	н	Z	Transmit	
	L	н	L	L	Z	Transmit	
	L	L	Н	н	н	Receive	
	L	L	Н	L	L	Receive	
	L	L	L	н	L	Receive	
	L	L	L	L	Н	Receive	
1, 3, 5, 7	L	н	н	L	Z	Transmit	
	L	н	L	н	Z	Transmit	
	L	L	н	н	L	Receive	
	L	L	н	L	н	Receive	
	L	L	L	н	н	Receive	
	L	L	L	L	L	Receive	
Immaterial	н	x	х	Z	Z	Z	

Function Table

H = HIGH Voltage Level


L = LOW Voltage Level X = Immaterial Z = High Impedance

Function Table

Inp	outs	Outputs
ŌĒ	T/R	Outputs
L	L	Bus B Data to Bus A
L	н	Bus A Data to Bus B
н	Х	High-Z State

H = HIGH Voltage Level

L = LOW Voltage Level X = Immaterial

Absolute Maximum Ratings (Note 1)

If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/Distributors for availability and specifications.

Supply Voltage (V _{CC})	-0.5V to +7.0V
DC Input Diode Current (I _{IK}) $V_I = -0.5V$	-20 MA
$V_{I} = V_{CC} + 0.5V$	+20 mA
DC Input Voltage (VI)	-0.5V to V _{CC} $+$ 0.5V
DC Output Diode Current (I _{OK})	
$V_{O} = -0.5V$	-20 mA
$V_{O} = V_{CC} + 0.5V$	+ 20 mA
DC Output Voltage (V _O)	$-0.5 V$ to $V_{\mbox{CC}}$ $+$ 0.5 V
DC Output Source	
or Sink Current (I _O)	\pm 50 mA
DC V _{CC} or Ground Current	
per Output Pin (I _{CC} or I _{GND})	±50 mA
Storage Temperature (T _{STG})	-65°C to +150°C
DC Latch-up Source or	
Sink Current	\pm 300 mA
Junction Temperature (TJ)	
CDIP	175°C
PDIP	140°C

Recommended Operating Conditions

Supply Voltage (V_{CC})

'ACQ	2.0V to 6.0V
'ACTQ	4.5V to 5.5V
Input Voltage (V _I)	0V to V _{CC}
Output Voltage (V _O)	0V to V _{CC}
Operating Temperature (T _A) (Note 2) 74ACQ/ACTQ 54ACTQ	-40°C to +85°C -55°C to +125°C
$\begin{array}{l} \mbox{Minimum Input Edge Rate } \Delta V/\Delta t \\ \mbox{'ACQ Devices} \\ \mbox{V}_{IN} \mbox{ from 30\% to 70\% of } V_{CC} \\ \mbox{V}_{CC} @ 3.0V, 4.5V, 5.5V \end{array}$	125 mV/ns
Minimum Input Edge Rate ΔV/Δt 'ACTQ Devices V _{IN} from 0.8V to 2.0V	
V _{CC} @ 4.5V, 5.5V	125 mV/ns
Note 2: All commercial packaging is not recommer quiring greater than 200 temperature cycles from	

Note 1: Absolute maximum ratings are those values beyond which damage to the device may occur. The databook specifications should be met, without exception, to ensure that the system design is reliable over its power supply, temperature, and output/input loading variables. National does not recommend operation of FACT circuits outside databook specifications.

DC Characteristics for 'ACQ Family Devices

			74/	ACQ	74ACQ			
Symbol	Parameter	V _{CC} (V)	$T_A = +25^{\circ}C$		T _A = −40°C to +85°C	Units	Conditions	
			Typ Gu		anteed Limits			
V _{IH}	IH Minimum High Level Input Voltage		1.5 2.25 2.75	2.1 3.15 3.85	2.1 3.15 3.85	v	$\label{eq:VOUT} \begin{split} V_{OUT} &= 0.1V\\ \text{or} \ V_{CC} &= 0.1V \end{split}$	
V _{IL}	Maximum Low Level Input Voltage	3.0 4.5 5.5	1.5 2.25 2.75	0.9 1.35 1.65	0.9 1.35 1.65	v	$\label{eq:VOUT} \begin{split} V_{OUT} &= 0.1 V \\ \text{or} \ V_{CC} &= 0.1 V \end{split}$	
V _{OH}	Minimum High Level Output Voltage	3.0 4.5 5.5	2.99 4.49 5.49	2.9 4.4 5.4	2.9 4.4 5.4	v	$I_{OUT} = -50 \ \mu A$	
		3.0 4.5 5.5		2.56 3.86 4.85	2.46 3.76 4.76	V	$*V_{IN} = V_{IL} \text{ or } V_{IH}$ -12 mA $I_{OH} -24 \text{ mA}$ -24 mA	

*Maximum of 8 outputs loaded; thresholds on input associated with output under test.

	Parameter		$T_{A} = +25^{\circ}C$		74ACQ		
Symbol		V _{CC} (V)			T _A = −40°C to +85°C	Units	Conditions
			Тур	Gua	ranteed Limits		
V _{OL}	Maximum Low	3.0	0.002	0.1	0.1		l _{OUT} = 50 μA
	Level Output	4.5	0.001	0.1	0.1	V	
	Voltage	5.5	0.001	0.1	0.1		
		3.0 4.5 5.5		0.36 0.36 0.36	0.44 0.44 0.44	v	$V_{\rm IN} = V_{\rm IL} \text{ or } V_{\rm IH}$ $V_{\rm IOL} = V_{\rm IL} \text{ or } V_{\rm IH}$ $V_{\rm IOL} = 24 \text{ m/}$ 24 m/
I _{IN}	Maximum Input Leakage Current (T/R, OE, ODD/EVEN Inputs)	5.5		±0.1	±1.0	μΑ	V _I = V _{CC} , GND (Note 1)
I _{OLD}	†Minimum Dynamic	5.5			75	mA	V _{OLD} = 1.65V Max
I _{OHD}	Output Current	5.5			-75	mA	$V_{OHD} = 3.85V$ Mir
ICC	Maximum Quiescent Supply Current	5.5		8.0	80.0	μA	V _{IN} = V _{CC} or GND (Note 1)
I _{OZT}	Maximum I/O Leakage Current (A _n , B _n Inputs)	5.5		±0.6	±6.0	μΑ	$\label{eq:VIOE} \begin{split} V_{I}(OE) &= V_{IL}, V_{IH} \\ V_{I} &= V_{CC}, \text{GND} \\ V_{O} &= V_{CC}, \text{GND} \end{split}$
V _{OLP}	Quiet Output Maximum Dynamic V _{OL}	5.0	1.1	1.5		v	<i>Figures 2-12, 13</i> (Notes 2, 3)
V _{OLV}	Quiet Output Minimum Dynamic V _{OL}	5.0	-0.6	-1.2		v	<i>Figures 2-12, 13</i> (Notes 2, 3)
V _{IHD}	Minimum High Level Dynamic Input Voltage	5.0	3.1	3.5		V	(Notes 2, 4)
V _{ILD}	Maximum Low Level Dynamic Input Voltage	5.0	1.9	1.5		v	(Notes 2, 4)

*Maximum of 8 outputs loaded; thresholds on input associated with output under test.

†Maximum test duration 2.0 ms, one output loaded at a time.

Note 1: $I_{\rm IN}$ and $I_{\rm CC}$ @ 3.0V are guaranteed to be less than or equal to the respective limit @ 5.5V $V_{\rm CC}.$

Note 2: Plastic DIP package.

Note 3: Max number of outputs defined as (n). Data Inputs are driven 0V to 5V. One output @ GND.

Note 4: Max number of Data Inputs (n) switching. (n - 1) Inputs switching 0V to 5V ('ACQ). Input-under-test switching: 5V to threshold (V_{ILD}), 0V to threshold (V_{ILD}), 0V to threshold (V_{ILD}), 1 multiple and 1 multipl

	Parameter				54ACTQ	74ACTQ	Units	
Symbol		V _{CC} (V)			T _A = −55°C to +125°C	T _A = −40°C to +85°C		Conditions
		Typ Guaranteed Limits		mits				
V _{IH}	Minimum High Level Input Voltage	4.5 5.5	1.5 1.5	2.0 2.0	2.0 2.0	2.0 2.0	v	$\begin{array}{l} V_{OUT}=0.1V\\ \text{or} \ V_{CC}-0.1V \end{array}$
V _{IL}	Maximum Low Level Input Voltage	4.5 5.5	1.5 1.5	0.8 0.8	0.8 0.8	0.8 0.8	v	$\label{eq:VOUT} \begin{split} V_{OUT} &= 0.1V\\ \text{or} \ V_{CC} &= 0.1V \end{split}$
V _{OH}	Minimum High Level Output Voltage	4.5 5.5	4.49 5.49	4.4 5.4	4.4 5.4	4.4 5.4	v	$I_{OUT} = -50 \ \mu A$
		4.5 5.5		3.86 4.86	3.70 4.70	3.76 4.76	v	$V_{\rm IN} = V_{\rm IL} \text{ or } V_{\rm IH}$ -24 mA -24 mA
V _{OL}	Maximum Low Level Output Voltage	4.5 5.5	0.001 0.001	0.1 0.1	0.1 0.1	0.1 0.1	v	I _{OUT} = 50 μA
		4.5 5.5		0.36 0.36	0.50 0.50	0.44 0.44	v	$V_{IN} = V_{IL} \text{ or } V_{IH}$ $V_{IOL} = V_{IL} \text{ or } V_{IH}$ 24 mA 24 mA
I _{IN}	Maximum Input Leakage Current (T/R, OE, ODD/EVEN Inputs)	5.5		±0.1	±1.0	±1.0	μΑ	$V_{I} = V_{CC}, GND$
I _{OZT}	Maximum I/O Leakage Current (A _n , B _n Inputs)	5.5		±0.6	±11.0	±6.0	μΑ	
ICCT	Maximum I _{CC} /Input	5.5	0.6		1.6	1.5	mA	$V_{I} = V_{CC} - 2.1V$
I _{OLD}	†Minimum Dynamic	5.5			50	75	mA	V _{OLD} = 1.65V Max
IOHD	Output Current	5.5			-50	-75	mA	V _{OHD} = 3.85V Min
ICC	Maximum Quiescent Supply Current	5.5		8.0	160.0	80.0	μA	V _{IN} = V _{CC} or GND (Note 1)
V _{OLP}	Quiet Output Maximum Dynamic V _{OL}	5.0	1.1	1.5			v	<i>Figures 2-12, 13</i> (Notes 2, 3)
V _{OLV}	Quiet Output Minimum Dynamic V _{OL}	5.0	-0.6	-1.2			v	<i>Figures 2-12, 13</i> (Notes 2, 3)
V _{IHD}	Minimum High Level Dynamic Input Voltage	5.0	1.9	2.2			v	(Notes 2, 4)
V _{ILD}	Maximum Low Level Dynamic Input Voltage	5.0	1.2	0.8			v	(Notes 2, 4)

*All outputs loaded; thresholds on input associated with output under test.

 $\dagger \text{Maximum}$ test duration 2.0 ms, one output loaded at a time.

Note 1: I_{CC} for 54ACTQ @ 25°C is identical to 74ACTQ @ 25°C.

Note 2: Plastic DIP package.

Note 3: Max number of outputs defined as (n). n-1 Data Inputs are driven 0V to 3V; one output @ GND.

Note 4: Max number of Data Inputs (n) switching. (n - 1) Inputs switching 0V to 3V ('ACQ). Input-under-test switching; 3V to threshold (V_{ILD}), 0V to threshold (V_{IHD}) f = 1 MHz.

				74ACQ		74	ACQ	
Symbol	Parameter	V _{CC} * (V)	${f T_A}=25^\circ {f C}$ ${f C_L}=50~p{f F}$			${f T_A}=-40^\circ{f C}$ to $+85^\circ{f C}$ ${f C_L}=50$ pF		Units
			Min	Тур	Max	Min	Max	
t _{PLH} ,	Propagation Delay	3.3	2.5	8.0	11.5	2.5	12.0	ns
t _{PHL}	A _n to B _n , B _n to A _n	5.0	1.5	5.0	7.5	1.5	8.0	
t _{PLH} ,	Propagation Delay	3.3	3.0	11.5	16.5	3.0	17.0	ns
t _{PHL}	A _n to Parity	5.0	2.0	7.0	10.5	2.0	11.0	
t _{PLH} ,	Propagation Delay	3.3	3.0	10.0	15.0	3.0	15.5	ns
t _{PHL}	ODD/EVEN to PARITY	5.0	2.5	6.5	10.0	2.5	10.5	
t _{PLH} ,	Propagation Delay	3.3	3.0	10.0	15.0	3.0	15.5	ns
t _{PHL}	ODD/EVEN to ERROR	5.0	2.5	6.5	10.0	2.5	10.5	
t _{PLH} ,	Propagation Delay	3.3	3.5	11.5	16.0	3.5	16.5	ns
t _{PHL}	B _n to ERROR	5.0	2.5	7.0	10.5	2.5	11.0	
t _{PLH} ,	Propagation Delay	3.3	3.0	9.0	13.5	3.0	14.0	ns
t _{PHL}	PARITY to ERROR	5.0	2.0	6.0	9.0	2.0	9.5	
t _{PZH} , t _{PZL}	Output Enable Time \overline{OE} to A_n/B_n	3.3 5.0	2.5 2.0	9.0 6.0	13.5 9.0	2.5 2.0	14.0 9.5	ns
t _{PHZ} ,	Output Disable Time	3.3	1.0	8.5	13.0	1.0	13.5	ns
t _{PLZ}	OE to A _n /B _n	5.0	1.0	5.5	8.5	1.0	9.0	
t _{PZH} ,	Output Enable Time	3.3	2.5	9.0	13.5	2.5	14.0	ns
t _{PZL}	OE to ERROR (Note 1)	5.0	2.0	6.0	9.0	2.0	9.5	
^t PHZ,	Output Disable Time	3.3	1.0	8.5	13.0	1.0	13.5	ns
^t PLZ	OE to ERROR	5.0	1.0	5.5	8.5	1.0	9.0	
^t PZH,	Output Enable Time	3.3	2.5	9.0	13.5	2.5	14.0	ns
^t PZL	OE to PARITY	5.0	2.0	6.0	9.0	2.0	9.5	
^t PHZ,	Output Disable Time	3.3	1.0	8.5	13.0	1.0	13.5	ns
^t PLZ	OE to PARITY	5.0	1.0	5.5	8.5	1.0	9.0	
t _{OSHL} , t _{OSLH}	Output to Output Skew** A _n , B _n to B _n , A _n	3.3 5.0		1.0 0.5	1.5 1.0		1.5 1.0	ns

*Voltage Range 3.3 is 3.3V $\pm 0.3V$

Voltage Range 5.0 is 5.0V $\pm 0.5 V$

**Skew is defined as the absolute value of the difference between the actual propagation delay for any two outputs within the same packaged device. The specification applies to any outputs switching in the same direction, either HIGH to LOW (t_{OSHL}) or LOW to HIGH (t_{OSLH}). Parameter guaranteed by design. Not tested.

Note 1: These delay times reflect the TRI-STATE recovery time only and not the signal time through the buffers or the parity check circuitry. To assure VALID information at the ERROR pin, time must be allowed for the signal to propagate through the drivers (B to A), through the parity check circuitry (same as A to PARITY), and to the ERROR output after the ERROR pin has been enabled (Output Enable times). VALID data at the ERROR pin \geq (A to PARITY) + (Output Enable time).

	Parameter		74ACTQ			54ACTQ $T_A = -55^{\circ}C \text{ to } + 125^{\circ}C$ $C_L = 50 \text{ pF}$		$\begin{tabular}{lllllllllllllllllllllllllllllllllll$		Units
Symbol		V _{CC} * (V)	T _A = 25°C C _L = 50 pF							
			Min	Тур	Max	Min	Мах	Min	Мах	
t _{PLH} , t _{PHL}	Propagation Delay A _n to B _n , B _n to A _n	5.0	1.5	5.0	8.0	1.5	9.0	1.5	8.5	ns
t _{PLH} , t _{PHL}	Propagation Delay A _n to Parity	5.0	2.5	7.5	11.0	1.5	13.5	2.5	11.5	ns
t _{PLH} , t _{PHL}	Propagation Delay ODD/EVEN to PARITY	5.0	2.5	6.5	10.5	1.5	10.5	2.5	11.0	ns
t _{PLH} , t _{PHL}	Propagation Delay ODD/EVEN to ERROR	5.0	2.5	6.5	10.5	1.5	11.0	2.5	11.0	ns
t _{PLH} , t _{PHL}	Propagation Delay B _n to ERROR	5.0	3.0	7.5	11.0	1.5	13.5	3.0	11.5	ns
t _{PLH} , t _{PHL}	Propagation Delay PARITY to ERROR	5.0	2.0	6.0	9.5	1.5	10.5	2.0	10.0	ns
t _{PZH} , t _{PZL}	Output Enable Time \overline{OE} to A_n/B_n	5.0	2.0	6.0	9.5	1.5	12.0	2.0	10.0	ns
t _{PHZ} , t _{PLZ}	Output Disable Time \overline{OE} to A_n/B_n	5.0	1.0	5.0	9.0	1.5	9.0	1.0	9.5	ns
t _{PZH} , t _{PZL}	Output Enable Time \overline{OE} to \overline{ERROR} (Note 1)	5.0	2.0	6.0	9.5	1.5	11.5	2.0	10.0	ns
t _{PHZ} , t _{PLZ}	Output Disable Time \overline{OE} to \overline{ERROR}	5.0	1.0	6.0	9.0	1.5	9.0	1.0	9.5	ns
t _{PZH} , t _{PZL}	Output Enable Time OE to PARITY	5.0	2.0	6.0	9.5	1.5	11.5	2.0	10.0	ns
t _{PHZ} , t _{PLZ}	Output Disable Time \overline{OE} to PARITY	5.0	1.0	5.0	9.0	1.5	8.5	1.0	9.5	ns
t _{OSHL} , t _{OSLH}	Output to Output Skew** A _n , B _n to B _n , A _n	5.0		0.5	1.0				1.0	ns

*Voltage Range 5.0 is 5.0V $\pm 0.5V$

**Skew is defined as the absolute value of the difference between the actual propagation delay for any two outputs within the same packaged device. The specification applies to any outputs switching in the same direction, either HIGH to LOW (tooshild) or LOW to HIGH (tooshild). Parameter guaranteed by design. Not tested.

Note 1: These delay times reflect the TRI-STATE recovery time only and not the signal time through the buffers or the parity check circuitry. To assure VALID information at the ERROR pin, time must be allowed for the signal to propagate through the drivers (B to A), through the parity check circuitry (same as A to PARITY), and to the ERROR output after the ERROR pin has been enabled (Output Enable times). VALID data at the ERROR pin \geq (A to PARITY) + (Output Enable Time).


Capacitance

Symbol	Parameter	Тур	Units	Conditions
C _{IN}	Input Capacitance	4.5	pF	$V_{CC} = 5.0V$
C _{PD}	Power Dissipation Capacitance	160.0	pF	$V_{CC} = 5.0V$

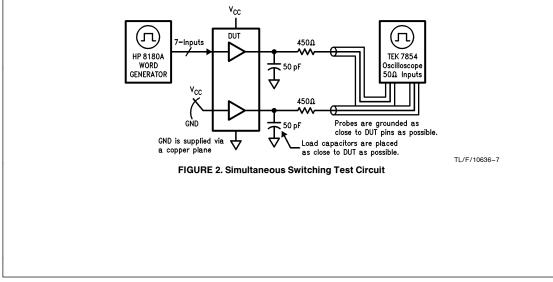
FACT Noise Characteristics

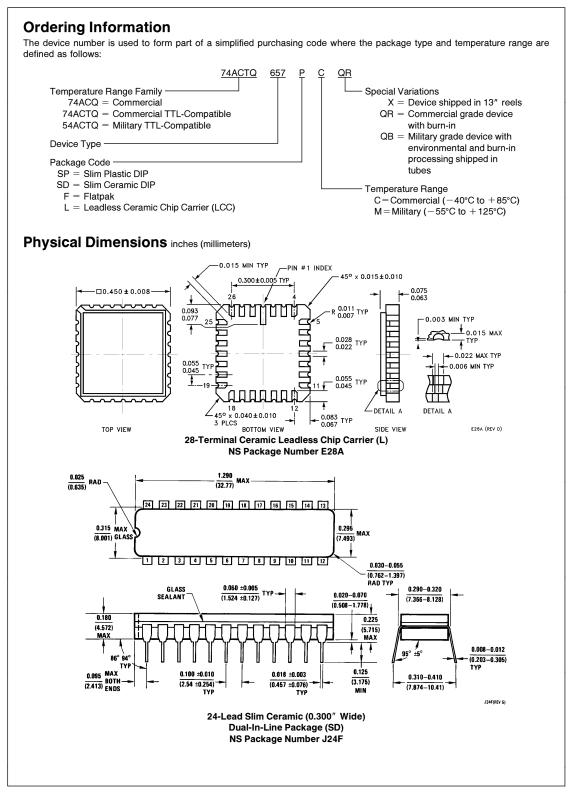
The setup of a noise characteristics measurement is critical to the accuracy and repeatability of the tests. The following is a brief description of the setup used to measure the noise characteristics of FACT.

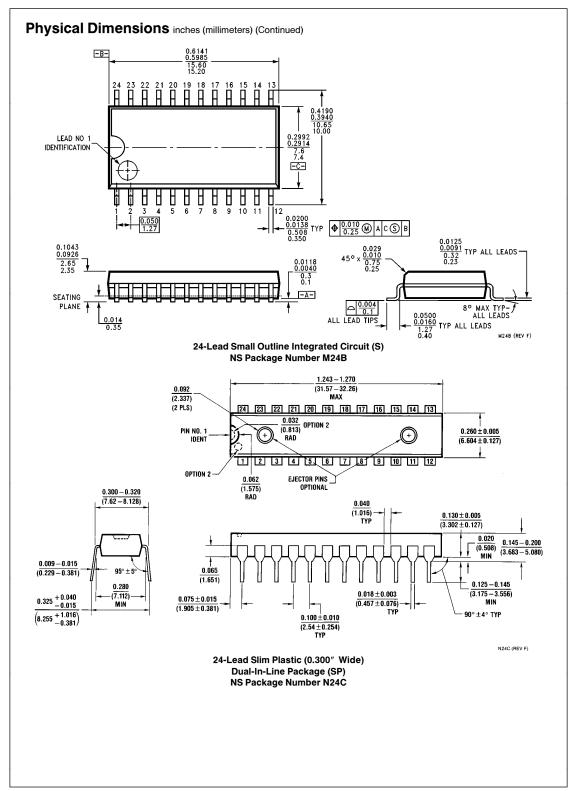
- Equipment:
 - Hewlett Packard Model 8180A Word Generator PC-163A Test Fixture
- Tektronics Model 7854 Oscilloscope
- Procedure:
- 1. Verify Test Fixture Loading: Standard Load 50 pF, 500 $\!\Omega.$
- 2. Deskew the word generator so that no two channels have greater than 150 ps skew between them. This requires that the oscilloscope be deskewed first. Swap out the channels that have more than 150 ps of skew until all channels being used are within 150 ps. It is important to deskew the word generator channels before testing. This will ensure that the outputs switch simultaneously.
- Terminate all inputs and outputs to ensure proper loading of the outputs and that the input levels are at the correct voltage.

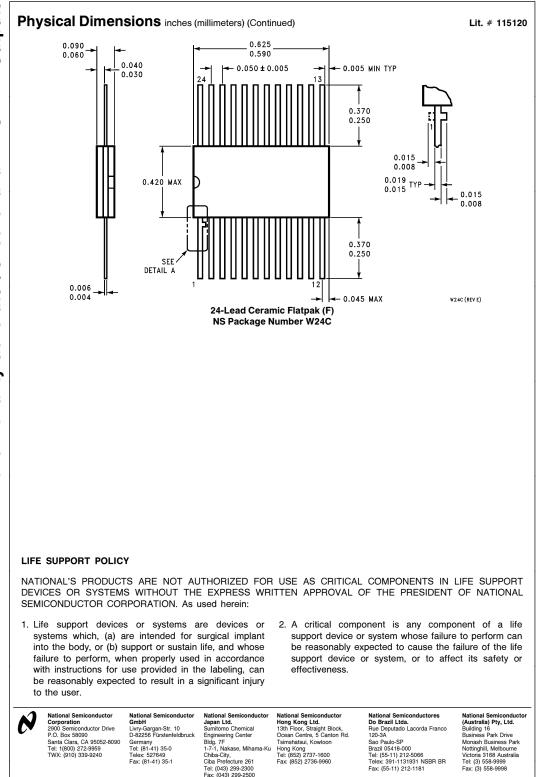
FIGURE 1. Quiet Output Noise Voltage Waveforms

Note A. V_{OHV} and V_{OLP} are measured with respect to ground reference. Note B. Input pulses have the following characteristics: f=1 MHz, $t_r=3$ ns, $t_f=3$ ns, skew <150 ps. 4. Set V_{CC} to 5.0V.


- Set the word generator to toggle all but one output at a frequency of 1 MHz. Greater frequencies will increase DUT heating and affect the results of the measurement.
- Set the word generator input levels at 0V LOW and 3V HIGH for ACT devices and 0V LOW and 5V HIGH for AC devices. Verify levels with a digital volt meter.


 V_{OLP}/V_{OLV} and V_{OHP}/V_{OHV} :


- Determine the quiet output pin that demonstrates the greatest noise levels. The worst case pin will usually be the furthest from the ground pin. Monitor the output voltages using a 50Ω coaxial cable plugged into a standard SMB type connector on the test fixture. Do not use an active FET probe.
- Measure V_{OLP} and V_{OLV} on the quiet output during the HL transition. Measure V_{OHP} and V_{OHV} on the quiet output during the LH transition.
- Verify that the GND reference recorded on the oscilloscope has not drifted to ensure the accuracy and repeatability of the measurements.


VILD and VIHD:

- Monitor one of the switching outputs using a 50Ω coaxial cable plugged into a standard SMB type connector on the test fixture. Do not use an active FET probe.
- First increase the input LOW voltage level, V_{IL}, until the output begins to oscillate. Oscillation is defined as noise on the output LOW level that exceeds V_{IL} limits, or on output HIGH levels that exceed V_{IH} limits. The input LOW voltage level at which oscillation occurs is defined as V_{ILD}.
- Next increase the input HIGH voltage level on the word generator, V_{IH} until the output begins to oscillate. Oscillation is defined as noise on the output LOW level that exceeds V_{IL} limits, or on output HIGH levels that exceed V_{IH} limits. The input HIGH voltage level at which oscillation occurs is defined as V_{IHD}.
- Verify that the GND reference recorded on the oscilloscope has not drifted to ensure the accuracy and repeatability of the measurements.

National does not assume any responsibility for use of any circuitry described, no circuit patent licenses are implied and National reserves the right at any time without notice to change said circuitry and specifications.