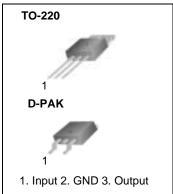
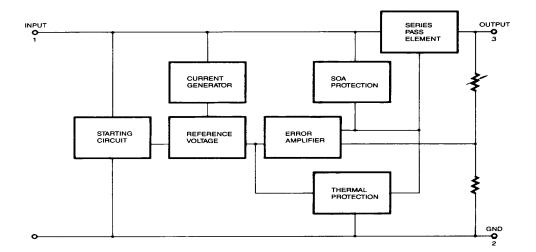


MC78XX/LM78XX/MC78XXA


3-Terminal 1A Positive Voltage Regulator

Features


- Output Current up to 1A
- Output Voltages of 5, 6, 8, 9, 10, 12, 15, 18, 24V
- Thermal Overload Protection
- Short Circuit Protection
- Output Transistor Safe Operating Area Protection

Description

The MC78XX/LM78XX/MC78XXA series of three terminal positive regulators are available in the TO-220/D-PAK package and with several fixed output voltages, making them useful in a wide range of applications. Each type employs internal current limiting, thermal shut down and safe operating area protection, making it essentially indestructible. If adequate heat sinking is provided, they can deliver over 1A output current. Although designed primarily as fixed voltage regulators, these devices can be used with external components to obtain adjustable voltages and currents.

Internal Block Digram

Absolute Maximum Ratings

Parameter	Symbol	Value	Unit
Input Voltage (for V _O = 5V to 18V) (for V _O = 24V)	V _I V _I	35 40	V V
Thermal Resistance Junction-Cases (TO-220)	R ₀ JC	5	°C/W
Thermal Resistance Junction-Air (TO-220)	RθJA	65	°C/W
Operating Temperature Range	TOPR	0 ~ +125	°C
Storage Temperature Range	TSTG	-65 ~ +150	°C

Electrical Characteristics (MC7805/LM7805)

(Refer to test circuit ,0°C < TJ < 125°C, IO = 500mA, VI = 10V, CI= 0.33 μ F, CO= 0.1 μ F, unless otherwise specified)

Parameter	Symbol	Ca	onditions	MC7	805/LM	7805	Unit
Parameter	Symbol		onditions	Min.	Тур.	Max.	Unit
		TJ =+25 °C		4.8	5.0	5.2	
Output Voltage	Vo	$5.0 \text{mA} \le \text{Io} \le 1.0 \text{A}, \text{PO} \le 15 \text{W}$ $\text{VI} = 7 \text{V to } 20 \text{V}$		4.75	5.0	5.25	V
Line Regulation (Note1)	Regline	T _{J=+25} °C	Vo = 7V to 25V	-	4.0	100	mV
Line Regulation (Note I)	Regilile	11=+23 C	VI = 8V to 12V	-	1.6	50	IIIV
			IO = 5.0mA to1.5A	-	9	100	
Load Regulation (Note1)	Regload	T _J =+25 °C	I _O =250mA to 750mA	-	4	50	mV
Quiescent Current	IQ	TJ =+25 °C		-	5.0	8.0	mA
Quiescent Current Change	Alo	IO = 5mA to 1.	0A	-	0.03	0.5	mA
Quiescent Current Change	ΔlQ	V _I = 7V to 25V		-	0.3	1.3	IIIA
Output Voltage Drift	ΔV0/ΔΤ	Io= 5mA		-	-0.8	-	mV/°C
Output Noise Voltage	VN	f = 10Hz to 100	OKHz, TA=+25 °C	-	42	-	μV/Vo
Ripple Rejection	RR	f = 120Hz Vo = 8V to 18V	f = 120Hz V _O = 8V to 18V		73	-	dB
Dropout Voltage	V _{Drop}	I _O = 1A, T _J =+25 °C		-	2	-	V
Output Resistance	rO	f = 1KHz		-	15	-	mΩ
Short Circuit Current	Isc	V _I = 35V, T _A =	+25 °C	-	230	-	mA
Peak Current	IPK	TJ =+25 °C		-	2.2	-	Α

^{1.} Load and line regulation are specified at constant junction temperature. Changes in V_0 due to heating effects must be taken into account separately. Pulse testing with low duty is used.

Electrical Characteristics (MC7806)

(Refer to test circuit $,0^{\circ}C < T_{J} < 125^{\circ}C, \ I_{O} = 500 \text{mA}, \ V_{I} = 11 \text{V}, \ C_{I} = 0.33 \mu\text{F}, \ C_{O} = 0.1 \mu\text{F}, \ unless otherwise specified})$

Parameter	Cymbal	Co	nditions	l	MC7806	;	Unit
Parameter	Symbol		maitions	Min.	Тур.	Max.	Onit
		T _J =+25 °C		5.75	6.0	6.25	
Output Voltage	Vo	$\begin{array}{l} \textrm{5.0mA} \leq \textrm{I}_{\textrm{O}} \leq \textrm{1.0A, P}_{\textrm{O}} \leq \textrm{15W} \\ \textrm{V}_{\textrm{I}} = \textrm{8.0V to 21V} \end{array}$		5.7	6.0	6.3	V
Line Regulation (Note1)	Poglino	T _J =+25 °C	V _I = 8V to 25V	-	5	120	mV
Line Regulation (Note I)	Regline	1J =+25 C	V _I = 9V to 13V	-	1.5	60	IIIV
Load Regulation (Note1)	Pagland	TJ =+25 °C	IO =5mA to 1.5A	-	9	120	mV
Load Regulation (Note I)	Regload	1J=+25 C	IO =250mA to750A	-	3	60	IIIV
Quiescent Current	IQ	T _J =+25 °C		-	5.0	8.0	mA
Quiescent Current Change	Ma	I _O = 5mA to 1A		-	-	0.5	mA
Quiescent Current Change	ΔlQ	V _I = 8V to 25V		-	-	1.3	IIIA
Output Voltage Drift	ΔV0/ΔΤ	IO = 5mA		-	-0.8	-	mV/°C
Output Noise Voltage	VN	f = 10Hz to 100K	Hz, TA =+25 °C	-	45	-	μV/Vo
Ripple Rejection	RR	f = 120Hz V _I = 9V to 19V		59	75	-	dB
Dropout Voltage	V _{Drop}	I _O = 1A, T _J =+25 °C		-	2	-	V
Output Resistance	ro	f = 1KHz		-	19	-	mΩ
Short Circuit Current	Isc	V _I = 35V, T _A =+2	25 °C	-	250	-	mA
Peak Current	IPK	TJ =+25 °C		-	2.2	-	Α

^{1.} Load and line regulation are specified at constant junction temperature. Changes in V_O due to heating effects must be taken into account separately. Pulse testing with low duty is used.

Electrical Characteristics (MC7808)

(Refer to test circuit ,0°C < T_J < 125°C, I_O = 500mA, V_I =14V, C_I= 0.33 μ F, C_O= 0.1 μ F, unless otherwise specified)

Devemeter	Cymphol	C	an dition o	N	/IC780	8	Unit
Parameter	Symbol		onditions	Min.	Тур.	Max.	Unit
		TJ =+25 °C		7.7	8.0	8.3	
Output Voltage	Vo	$5.0 \text{mA} \le I_0 \le 1$ V _I = 10.5V to 23		7.6	8.0	8.4	V
Line Demulation (Nated)	Danka	T05.00	V _I = 10.5V to 25V	-	5.0	160	\/
Line Regulation (Note1)	Regline	TJ =+25 °C	V _I = 11.5V to 17V	-	2.0	80	mV
Load Regulation (Note1)	Doglood	T25 °C	I _O = 5.0mA to 1.5A	-	10	160	m\/
Load Regulation (Note1)	Regload	TJ =+25 °C	Io= 250mA to 750mA	-	5.0	80	mV
Quiescent Current	IQ	T _J =+25 °C		-	5.0	8.0	mA
Quiagont Current Change	41-	I _O = 5mA to 1.0A	J	-	0.05	0.5	mA
Quiescent Current Change	ΔlQ	V _I = 10.5A to 25	V	-	0.5	1.0	mA
Output Voltage Drift	ΔV0/ΔΤ	IO = 5mA		-	-0.8	-	mV/°C
Output Noise Voltage	VN	f = 10Hz to 100KH	Hz, TA =+25 °C	-	52	-	μV/Vo
Ripple Rejection	RR	f = 120Hz, V _I = 1	1.5V to 21.5V	56	73	-	dB
Dropout Voltage	VDrop	IO = 1A, TJ=+25 °C		-	2	-	V
Output Resistance	rO	f = 1KHz		-	17	-	mΩ
Short Circuit Current	Isc	VI= 35V, TA =+2	5 °C	-	230	-	mA
Peak Current	IPK	T _J =+25 °C		-	2.2	-	Α

^{1.} Load and line regulation are specified at constant junction temperature. Changes in Vo due to heating effects must be taken into account separately. Pulse testing with low duty is used.

Electrical Characteristics (MC7809)

(Refer to test circuit ,0°C < T_J < 125°C, I_O = 500mA, V_I =15V, C_I= 0.33 μ F, C_O= 0.1 μ F, unless otherwise specified)

Parameter	Cymbal	Co	onditions	ı	MC7809)	Unit
Parameter	Symbol		onditions	Min.	Тур.	Max.	Unit
		TJ =+25°C		8.65	9	9.35	
Output Voltage	Vo	5.0mA≤ I _O ≤1.0A V _I = 11.5V to 24V	•	8.6	9	9.4	V
Line Degulation (Note1)	Dogling	T25°C	V _I = 11.5V to 25V	-	6	180	m\/
Line Regulation (Note1)	Regline	TJ=+25°C	VI = 12V to 17V	-	2	90	mV
Load Regulation (Note1)	Dogland	T25°C	I _O = 5mA to 1.5A	-	12	180	m\/
Load Regulation (Note1)	Regload	TJ=+25°C	IO = 250mA to 750mA	-	4	90	mV
Quiescent Current	IQ	T _J =+25°C		-	5.0	8.0	mA
Quiescent Current Change	Mo	$I_0 = 5 \text{mA to } 1.0 \text{A}$	1	-	-	0.5	mA
Quiescent Current Change	ΔlQ	V _I = 11.5V to 26	V	-	-	1.3	IIIA
Output Voltage Drift	ΔV0/ΔΤ	IO = 5mA		-	-1	-	mV/°C
Output Noise Voltage	VN	f = 10Hz to 100KH	lz, T _A =+25 °C	-	58	-	μV/Vo
Ripple Rejection	RR	f = 120Hz V _I = 13V to 23V			71	-	dB
Dropout Voltage	V _{Drop}	I _O = 1A, T _J =+25°C		-	2	-	V
Output Resistance	ro	f = 1KHz		-	17	-	mΩ
Short Circuit Current	Isc	V _I = 35V, T _A =+2	5°C	-	250	-	mA
Peak Current	IPK	TJ= +25°C		-	2.2	-	Α

^{1.} Load and line regulation are specified at constant junction temperature. Changes in V_O due to heating effects must be taken into account separately. Pulse testing with low duty is used.

Electrical Characteristics (MC7810)

(Refer to test circuit ,0°C< TJ < 125°C, IO = 500mA, VI =16V, CI= $0.33\mu F$, CO= $0.1\mu F$, unless otherwise specified)

Parameter	Symbol Conditions			MC7810)	Unit	
Parameter	Symbol		onations	Min.	Тур.	Max.	Unit
		TJ =+25 °C		9.6	10	10.4	
Output Voltage	Vo	5.0mA ≤ I _O ≤1.0A V _I = 12.5V to 25		9.5	10	10.5	V
Line Degulation (Noted)	Doglino	T 25°C	V _I = 12.5V to 25V	1	10	200	\/
Line Regulation (Note1)	Regline	TJ =+25°C	VI = 13V to 25V	•	3	100	- mV
Load Regulation (Note1)	Dogland	T25°C	I _O = 5mA to 1.5A	-	12	200	m\/
Load Regulation (Note1)	Regload	TJ =+25°C	IO = 250mA to 750mA	1	4	400	- mV
Quiescent Current	IQ	T _J =+25°C		1	5.1	8.0	mA
Quinagent Current Change	Mo	$I_0 = 5 \text{mA to } 1.0 \text{A}$	4	1	-	0.5	mA
Quiescent Current Change	ΔlQ	V _I = 12.5V to 29	V	-	-	1.0	IIIA
Output Voltage Drift	ΔV0/ΔΤ	IO = 5mA		-	-1	-	mV/°C
Output Noise Voltage	VN	f = 10Hz to 100KH	łz, TA =+25 °C	-	58	-	μV/Vo
Ripple Rejection	RR	f = 120Hz V _I = 13V to 23V			71	-	dB
Dropout Voltage	V _{Drop}	Io = 1A, T _J =+25 °C		-	2	-	V
Output Resistance	rO	f = 1KHz		-	17	-	mΩ
Short Circuit Current	Isc	V _I = 35V, T _A =+2	5 °C	-	250	-	mA
Peak Current	IPK	TJ =+25 °C		-	2.2	-	Α

Note

^{1.} Load and line regulation are specified at constant junction temperature. Changes in V_O due to heating effects must be taken into account separately. Pulse testing with low duty is used.

Electrical Characteristics (MC7812)

(Refer to test circuit ,0°C < TJ < 125°C, IO = 500mA, VI =19V, CI= 0.33 μ F, CO=0.1 μ F, unless otherwise specified)

Donomotor	Cymphol	Conditions		N	/IC781	2	Unit
Parameter	Symbol		onations	Min.	Тур.	Max.	Unit
		TJ =+25 °C		11.5	12	12.5	
Output Voltage	Vo	5.0mA ≤ I _O ≤1.0A V _I = 14.5V to 27\		11.4	12	12.6	V
Line Degulation (Noted)	Dogling	T25 90	V _I = 14.5V to 30V	-	10	240	mV
Line Regulation (Note1)	Regline	TJ =+25 °C	VI = 16V to 22V	-	3.0	120	IIIV
Load Regulation (Note1)	Regload	TJ =+25 °C	I _O = 5mA to 1.5A	-	11	240	mV
Load Regulation (Note1)	Regioad	1J=+25 C	IO = 250mA to 750mA	-	5.0	120	IIIV
Quiescent Current	IQ	TJ =+25 °C		-	5.1	8.0	mA
Quiescent Current Change	Alo	IO = 5mA to 1.0A	1	-	0.1	0.5	mA
Quiescent Current Change	ΔlQ	V _I = 14.5V to 30\	/	-	0.5	1.0	ША
Output Voltage Drift	ΔV0/ΔΤ	IO = 5mA		-	-1	-	mV/ °C
Output Noise Voltage	VN	f = 10Hz to 100KH	z, TA =+25 °C	-	76	-	μV/Vo
Ripple Rejection	RR	f = 120Hz V _I = 15V to 25V		55	71	-	dB
Dropout Voltage	V _{Drop}	I _O = 1A, T _J =+25 °C		-	2	-	V
Output Resistance	rO	f = 1KHz		-	18	-	mΩ
Short Circuit Current	Isc	V _I = 35V, T _A =+2	5°C	-	230	-	mA
Peak Current	IPK	TJ = +25 °C		-	2.2	-	Α

Note

^{1.} Load and line regulation are specified at constant junction temperature. Changes in V_O due to heating effects must be taken into account separately. Pulse testing with low duty is used.

Electrical Characteristics (MC7815)

(Refer to test circuit ,0°C < T_J < 125°C, I_O = 500mA, V_I =23V, C_I= 0.33 μ F, C_O=0.1 μ F, unless otherwise specified)

Parameter	Cumbal	Co	onditions		MC7815)	Unit
Parameter	Symbol		onanions	Min.	Тур.	Max.	Onit
		TJ =+25 °C		14.4	15	15.6	
Output Voltage	Vo	$5.0\text{mA} \le I_O \le 1.0\text{A}, P_O \le 15\text{W}$ VI = 17.5V to 30V		14.25	15	15.75	V
Line Regulation (Nete1)	Doglino	TJ =+25 °C	V _I = 17.5V to 30V	-	11	300	mV
Line Regulation (Note1)	Regline	1J=+25 C	V _I = 20V to 26V	-	3	150	IIIV
			I _O = 5mA to 1.5A	-	12	300	
Load Regulation (Note1)	Regload		IO = 250mA to 750mA	-	4	150	mV
Quiescent Current	IQ	TJ =+25 °C		-	5.2	8.0	mA
Quiagant Current Change	A.I.O.	I _O = 5mA to 1	.0A	-	-	0.5	mA
Quiescent Current Change	ΔlQ	V _I = 17.5V to 3	30V	-	-	1.0	
Output Voltage Drift	ΔV _O /ΔT	I _O = 5mA		-	-1	-	mV/°C
Output Noise Voltage	VN	f = 10Hz to 100	KHz, T _A =+25 °C	-	90	-	μV/Vo
Ripple Rejection	RR	f = 120Hz V _I = 18.5V to 2	f = 120Hz V _I = 18.5V to 28.5V		70	-	dB
Dropout Voltage	V _{Drop}	I _O = 1A, T _J =+25 °C		-	2	-	V
Output Resistance	rO	f = 1KHz		-	19	-	mΩ
Short Circuit Current	Isc	V _I = 35V, T _A =	+25 °C	-	250	-	mA
Peak Current	IPK	T _J =+25 °C		-	2.2	-	Α

^{1.} Load and line regulation are specified at constant junction temperature. Changes in V_O due to heating effects must be taken into account separately. Pulse testing with low duty is used.

Electrical Characteristics (MC7818)

(Refer to test circuit ,0°C < TJ < 125°C, IO = 500mA, VI =27V, CI= 0.33 μ F, CO=0.1 μ F, unless otherwise specified)

Parameter	Symbol	C	onditions	N	/IC7818	В	Unit
Parameter	Symbol		onations	Min.	Тур.	Max.	Onit
		TJ =+25 °C		17.3	18	18.7	
Output Voltage	Vo	5.0mA ≤ I _O ≤1.0A V _I = 21V to 33V	A, P _O ≤15W	17.1	18	18.9	V
Line Degulation (Note1)	Dogling	TJ =+25 °C	V _I = 21V to 33V	-	15	360	mV
Line Regulation (Note1)	Regline	1J=+25 C	VI = 24V to 30V	-	5	180	IIIV
Load Regulation (Note1)	Regload	TJ =+25 °C	I _O = 5mA to 1.5A	-	15	360	mV
Load Regulation (Note1)	Regioad	1J=+25 C	IO = 250mA to 750mA	-	5.0	180	IIIV
Quiescent Current	IQ	TJ =+25 °C		-	5.2	8.0	mA
Quiagant Current Change	ΔIO	IO = 5mA to 1.0A		-	-	0.5	mΛ
Quiescent Current Change	ΔlQ	V _I = 21V to 33V		-	-	1	mA
Output Voltage Drift	ΔV0/ΔΤ	IO = 5mA		-	-1	-	mV/°C
Output Noise Voltage	VN	f = 10Hz to 100KH	z, TA =+25 °C	-	110	-	μV/Vo
Ripple Rejection	RR	f = 120Hz V _I = 22V to 32V			69	-	dB
Dropout Voltage	V _{Drop}	I _O = 1A, T _J =+25 °C		-	2	-	V
Output Resistance	rO	f = 1KHz		-	22	-	mΩ
Short Circuit Current	Isc	VI = 35V, T _A =+25	5°C	-	250	-	mA
Peak Current	IPK	TJ =+25 °C		-	2.2	-	Α

^{1.} Load and line regulation are specified at constant junction temperature. Changes in V_O due to heating effects must be taken into account separately. Pulse testing with low duty is used.

Electrical Characteristics (MC7824)

(Refer to test circuit ,0°C < TJ < 125°C, IO = 500mA, VI =33V, CI= 0.33 μ F, CO=0.1 μ F, unless otherwise specified)

Parameter	Symbol	DI Conditions		N	MC7824		
Parameter	Symbol		Diamons	Min.	Тур.	Max.	Unit
		TJ =+25 °C		23	24	25	
Output Voltage	Vo	$5.0 \text{mA} \le I_0 \le 1.0$ VI = 27V to 38V	A, P _O ≤ 15W	22.8	24	25.25	V
Line Regulation (Note1)	Poglino	TJ =+25 °C	V _I = 27V to 38V	-	17	480	mV
Line Regulation (Note1)	Regline	1J =+25 C	VI = 30V to 36V	-	6	240	IIIV
Load Population (Note1)	Regload	TJ =+25 °C	I _O = 5mA to 1.5A	-	15	480	mV
Load Regulation (Note1)	Regioad	1J =+25 C	IO = 250mA to 750mA	-	5.0	240	IIIV
Quiescent Current	IQ	TJ =+25 °C		-	5.2	8.0	mA
Quiescent Current Change	Alo	I _O = 5mA to 1.0A		-	0.1	0.5	mΛ
Quiescent Current Change	ΔlQ	V _I = 27V to 38V		-	0.5	1	- mA
Output Voltage Drift	ΔV0/ΔΤ	IO = 5mA		-	-1.5	-	mV/°C
Output Noise Voltage	VN	f = 10Hz to 100KH	z, TA =+25 °C	-	60	-	μV/Vo
Ripple Rejection	RR	f = 120Hz V _I = 28V to 38V		50	67	-	dB
Dropout Voltage	V _{Drop}	I _O = 1A, T _J =+25 °C		-	2	-	V
Output Resistance	rO	f = 1KHz		-	28	-	mΩ
Short Circuit Current	Isc	V _I = 35V, T _A =+25	5 °C	-	230	-	mA
Peak Current	IPK	TJ =+25 °C		-	2.2	-	Α

^{1.} Load and line regulation are specified at constant junction temperature. Changes in V_O due to heating effects must be taken into account separately. Pulse testing with low duty is used.

Electrical Characteristics (MC7805A)

(Refer to the test circuits. 0° C < T_J < 125° C, I_0 =1A, V I = 10V, C I=0.33 μ F, C O=0.1 μ F, unless otherwise specified)

Parameter	Symbol	Co	onditions	Min.	Тур.	Max.	Unit
		T _J =+25 °C		4.9	5	5.1	
Output Voltage	Vo	IO = 5mA to 1 V _I = 7.5V to 2		4.8	5	5.2	V
		V _I = 7.5V to 2 I _O = 500mA	5V	-	5	50	
Line Regulation (Note1)	Regline	VI = 8V to 12	V	-	3	50	mV
		T _J =+25 °C	V _I = 7.3V to 20V	-	5	50	-
		1J=+25°C	V _I = 8V to 12V	-	1.5	25	1
Load Regulation (Note1)		T _J =+25 °C I _O = 5mA to 1	T _J =+25 °C I _O = 5mA to 1.5A		9	100	.,
, ,	Regload	IO = 5mA to 1A		-	9	100	mV
		IO = 250mA to	o 750mA	-	4	50	
Quiescent Current	IQ	T _J =+25 °C		-	5.0	6	mA
0: 10 1		IO = 5mA to 1A		-	-	0.5	mA
Quiescent Current Change	ΔlQ	V _I = 8 V to 25V, I _O = 500mA		-	-	0.8	
Onlango		V _I = 7.5V to 20V, T _J =+25 °C		-	-	0.8	
Output Voltage Drift	ΔV/ΔΤ	lo = 5mA		-	-0.8	-	mV/°C
Output Noise Voltage	VN	f = 10Hz to 10 T _A =+25 °C	00KHz	-	10	-	μV/Vo
Ripple Rejection	RR		f = 120Hz, I _O = 500mA V _I = 8V to 18V			-	dB
Dropout Voltage	VDrop	IO = 1A, TJ =	+25 °C	-	2	-	V
Output Resistance	rO	f = 1KHz		-	17	-	mΩ
Short Circuit Current	Isc	VI= 35V, TA =	=+25 °C	-	250	-	mA
Peak Current	IPK	T _J = +25 °C		-	2.2	-	А

^{1.} Load and line regulation are specified at constant junction temperature. Change in Vo due to heating effects must be taken into account separately. Pulse testing with low duty is used.

Electrical Characteristics (MC7806A)

(Refer to the test circuits. 0° C < T_J < 125° C, I_0 =1A, V I =11V, C I=0.33 μ F, C O=0.1 μ F, unless otherwise specified)

Parameter	Symbol	Co	onditions	Min.	Тур.	Max.	Unit
		T _J =+25 °C		5.58	6	6.12	
Output Voltage	Vo	IO = 5mA to 1 VI = 8.6V to 2	• -	5.76	6	6.24	V
		V _I = 8.6V to 25V I _O = 500mA		-	5	60	
Line Regulation (Note1)	Regline	V _I = 9V to 13V	1	-	3	60	mV
		T _J =+25 °C	V _I = 8.3V to 21V	-	5	60	
		1J=+25 °C	V _I = 9V to 13V	-	1.5	30	
Load Regulation (Note1)		T _J =+25 °C I _O = 5mA to 1	.5A	-	9	100	
Load (togalation (troto))	Regload	I _O = 5mA to 1	A	-	4	100	mV
		IO = 250mA to	o 750mA	-	5.0	50	
Quiescent Current	IQ	T _J =+25 °C		-	4.3	6	mA
		IO = 5mA to 1A		-	-	0.5	
Quiescent Current Change	ΔlQ	V _I = 9V to 25V, I _O = 500mA		-	-	8.0	mA
		VI= 8.5V to 21V, TJ =+25 °C		-	-	8.0	
Output Voltage Drift	ΔV/ΔΤ	IO = 5mA		-	-0.8	•	mV/°C
Output Noise Voltage	VN	f = 10Hz to 10 T _A =+25 °C	00KHz	-	10	-	μV/Vo
Ripple Rejection	RR	f = 120Hz, IO = 500mA VI = 9V to 19V		-	65	-	dB
Dropout Voltage	VDrop	IO = 1A, TJ =+25 °C		-	2	-	V
Output Resistance	rO	f = 1KHz		-	17	-	mΩ
Short Circuit Current	Isc	VI= 35V, TA =	-+25 °C	-	250	-	mA
Peak Current	IPK	T _{J=+25} °C		-	2.2	ı	Α

^{1.} Load and line regulation are specified at constant junction temperature. Change in Vo due to heating effects must be taken into account separately. Pulse testing with low duty is used.

Electrical Characteristics (MC7808A)

(Refer to the test circuits. 0° C < T_J < 125° C, I_{0} =1A, V I = 14V, C I=0.33 μ F, C I=0.1 μ F, unless otherwise specified)

Parameter	Symbol	Co	onditions	Min.	Тур.	Max.	Unit
		T _J =+25 °C		7.84	8	8.16	
Output Voltage	Vo	IO = 5mA to 1A, PO ≤15W VI = 10.6V to 23V		7.7	8	8.3	V
		V _I = 10.6V to 2 I _O = 500mA	VI= 10.6V to 25V IO = 500mA		6	80	
Line Regulation (Note1)	Regline	V _I = 11V to 17	7 V	-	3	80	mV
		T 05.00	V _I = 10.4V to 23V	-	6	80	
		TJ =+25 °C	V _I = 11V to 17V	-	2	40	
Load Regulation (Note1)		Regload $T_J = +25$ °C $I_O = 5mA$ to 1.5A $I_O = 5mA$ to 1A $I_O = 250mA$ to 750mA		-	12	100	
5 ()	Regload			-	12	100	
				-	5	50	
Quiescent Current	IQ	T _J =+25 °C		-	5.0	6	mA
		IO = 5mA to 1A		-	-	0.5	
Quiescent Current Change	ΔlQ	V _I = 11V to 25V, I _O = 500mA		-	-	0.8	mA
		V _I = 10.6V to 23V, T _J =+25 °C		-	-	0.8	
Output Voltage Drift	ΔV/ΔΤ	IO = 5mA		-	-0.8	-	mV/°C
Output Noise Voltage	VN	f = 10Hz to 10 T _A =+25 °C	00KHz	-	10	-	μV/Vο
Ripple Rejection	RR	f = 120Hz, I _O = 500mA V _I = 11.5V to 21.5V		-	62	-	dB
Dropout Voltage	V _{Drop}	I _O = 1A, T _J =+25 °C		-	2	-	V
Output Resistance	rO	f = 1KHz		-	18	-	mΩ
Short Circuit Current	Isc	V _I = 35V, T _A =	=+25 °C	-	250	-	mA
Peak Current	lрк	TJ=+25 °C		-	2.2	-	Α

^{1.} Load and line regulation are specified at constant junction temperature. Change in Vo due to heating effects must be taken into account separately. Pulse testing with low duty is used.

Electrical Characteristics (MC7809A)

(Refer to the test circuits. 0° C < T_J < 125° C, I_0 =1A, V I = 15V, C I=0.33 μ F, C I=0.1 μ F, unless otherwise specified)

Parameter	Symbol	Co	onditions	Min.	Тур.	Max.	Unit
	T _J =+25°C			8.82	9.0	9.18	
Output Voltage	Vo	IO = 5mA to 1 V _I = 11.2V to		8.65	9.0	9.35	V
		V _I = 11.7V to 2 I _O = 500mA	V _I = 11.7V to 25V I _O = 500mA		6	90	
Line Regulation (Note1)	Regline	V _I = 12.5V to	19V	-	4	45	mV
		T,j =+25°C	V _I = 11.5V to 24V	-	6	90	
		15 = +25 C	V _I = 12.5V to 19V	-	2	45	
Load Regulation (Note1)		T _J =+25°C I _O = 5mA to 1	.0A	-	12	100	.,
, ,	Regload	I _O = 5mA to 1.0A I _O = 250mA to 750mA		-	12	100	mV
				-	5	50	
Quiescent Current	IQ	T _J =+25 °C		-	5.0	6.0	mA
		V _I = 11.7V to 25V, T _J =+25 °C		-	-	0.8	
Quiescent Current Change	ΔlQ	V _I = 12V to 25V, I _O = 500mA		-	-	0.8	mA
		IO = 5mA to 1.0A		-	-	0.5	
Output Voltage Drift	ΔV/ΔΤ	IO = 5mA		-	-1.0	-	mV/ °C
Output Noise Voltage	VN	f = 10Hz to 10 T _A =+25 °C	00KHz	-	10	-	μV/Vο
Ripple Rejection	RR	f = 120Hz, IO = 500mA V _I = 12V to 22V		-	62	-	dB
Dropout Voltage	VDrop	IO = 1A, TJ =+25 °C		-	2.0	-	V
Output Resistance	ro	f = 1KHz		-	17	-	mΩ
Short Circuit Current	Isc	VI= 35V, TA =	=+25 °C	-	250	-	mA
Peak Current	IPK	T _{J=+25} °C		-	2.2	-	Α

^{1.} Load and line regulation are specified at constant, junction temperature. Change in Vo due to heating effects must be taken into account separately. Pulse testing with low duty is used.

Electrical Characteristics (MC7810A)

(Refer to the test circuits. 0° C < T_J < 125° C, I_0 =1A, V I = 16V, C I=0.33 μ F, C I=0.1 μ F, unless otherwise specified)

Parameter	Symbol	Co	onditions	Min.	Тур.	Max.	Unit
		T _J =+25°C		9.8	10	10.2	
Output Voltage	Vo	IO = 5mA to 7 V _I =12.8V to	1A, Po ≤ 15W 25V	9.6	10	10.4	V
		V _I = 12.8V to I _O = 500mA	V _I = 12.8V to 26V I _O = 500mA		8	100	
Line Regulation (Note1)	Regline	V _I = 13V to 20)V	-	4	50	mV
		T _J =+25 °C	V _I = 12.5V to 25V	-	8	100	
		1J =+25 C	V _I = 13V to 20V	-	3	50	
Load Regulation (Note1)		T _J =+25 °C I _O = 5mA to 1.5A		-	12	100	.,
	Regload I _O = 5mA to 1.		1.0A	-	12	100	mV
		IO = 250mA to 750mA		-	5	50	1
Quiescent Current	IQ	T _J =+25 °C		-	5.0	6.0	mA
		VI = 13V to 2	6V, TJ=+25 °C	-	-	0.5	
Quiescent Current Change	Δ lQ	V _I = 12.8V to 25V, I _O = 500mA		-	-	0.8	mA
		IO = 5mA to 1.0A		-	-	0.5	
Output Voltage Drift	ΔV/ΔΤ	IO = 5mA		-	-1.0	-	mV/ °C
Output Noise Voltage	VN	f = 10Hz to 1 T _A =+25 °C	00KHz	-	10	-	μV/Vo
Ripple Rejection	RR	f = 120Hz, IO = 500mA V _I = 14V to 24V		-	62	-	dB
Dropout Voltage	VDrop	IO = 1A, TJ =+25°C		-	2.0	-	V
Output Resistance	rO	f = 1KHz		-	17	-	mΩ
Short Circuit Current	Isc	VI= 35V, TA :	=+25 °C	-	250	-	mA
Peak Current	lpk	TJ=+25 °C		-	2.2	-	Α

^{1.} Load and line regulation are specified at constant junction temperature. Change in Vo due to heating effects must be taken into account separately. Pulse testing with low duty is used.

Electrical Characteristics (MC7812A)

(Refer to the test circuits. 0° C < T_J < 125° C, I_0 =1A, V I = 19V, C I=0.33 μ F, C I=0.1 μ F, unless otherwise specified)

Parameter	Symbol	Co	onditions	Min.	Тур.	Max.	Unit
		T _J =+25 °C		11.75	12	12.25	
Output Voltage	Vo	IO = 5mA to 7 V _I = 14.8V to	1A, Po ≤15W 27V	11.5	12	12.5	V
		V _I = 14.8V to I _O = 500mA	V _I = 14.8V to 30V I _O = 500mA		10	120	
Line Regulation (Note1)	Regline	V _I = 16V to 22	2V	-	4	120	mV
		T _J =+25 °C	V _I = 14.5V to 27V	-	10	120	
		1J=+25 C	V _I = 16V to 22V	-	3	60	-
Load Regulation (Note1)		$T_J = +25 \degree C$ IO = 5mA to ?	1.5A	-	12	100	.,
3 (,	Regload	I _O = 5mA to 1.0A		-	12	100	mV
		IO = 250mA to 750mA		-	5	50	
Quiescent Current	IQ	T _J =+25°C		-	5.1	6.0	mA
		V _I = 15V to 3	0V, TJ=+25 °C	-		0.8	
Quiescent Current Change	ΔlQ	V _I = 14V to 27V, I _O = 500mA		-		0.8	mA
		IO = 5mA to 1.0A		-		0.5	
Output Voltage Drift	ΔV/ΔΤ	I _O = 5mA		-	-1.0	-	mV/°C
Output Noise Voltage	VN	f = 10Hz to 10 T _A =+25°C	00KHz	-	10	-	μV/Vο
Ripple Rejection	RR	f = 120Hz, IO = 500mA VI = 14V to 24V		-	60	-	dB
Dropout Voltage	VDrop	IO = 1A, TJ =+25°C		-	2.0	-	V
Output Resistance	rO	f = 1KHz		-	18	-	mΩ
Short Circuit Current	Isc	VI= 35V, TA =	=+25 °C	-	250	-	mA
Peak Current	IPK	TJ=+25 °C		-	2.2	-	Α

^{1.} Load and line regulation are specified at constant junction temperature. Change in Vo due to heating effects must be taken into account separately. Pulse testing with low duty is used.

Electrical Characteristics (MC7815A)

(Refer to the test circuits. 0° C < T_J < 125° C, I_0 =1A, V I =23V, C I=0.33 μ F, C O=0.1 μ F, unless otherwise specified)

Parameter	Symbol		onditions	Min.	Тур.	Max.	Unit
		T _J =+25 °C		14.7	15	15.3	
Output Voltage	Vo	IO = 5mA to 1 V _I = 17.7V to	• -	14.4	15	15.6	V
		V _I = 17.9V to 1 I _O = 500mA	V _I = 17.9V to 30V I _O = 500mA		10	150	
Line Regulation (Note1)	Regline	V _I = 20V to 26	SV	-	5	150	mV
		T _J =+25°C	V _I = 17.5V to 30V	-	11	150	
		1J=+25 C	V _I = 20V to 26V	-	3	75	
Load Regulation (Note1)		$T_J = +25 \degree C$ IO = 5mA to 1	1.5A	-	12	100	.,
	Regload I _O = 5mA to 1.0A		-	12	100	mV	
		IO = 250mA to 750mA		-	5	50	
Quiescent Current	IQ	T _J =+25 °C		-	5.2	6.0	mA
		V _I = 17.5V to	30V, TJ =+25 °C	-	-	0.8	
Quiescent Current Change	Δ lQ	V _I = 17.5V to	30V, I _O = 500mA	-	-	0.8	mA
		IO = 5mA to 1	1.0A	-	-	0.5	-
Output Voltage Drift	ΔV/ΔΤ	IO = 5mA		-	-1.0	-	mV/°C
Output Noise Voltage	VN	f = 10Hz to 10 T _A =+25 °C	00KHz	-	10	-	μV/Vo
Ripple Rejection	RR	f = 120Hz, I _O = 500mA V _I = 18.5V to 28.5V		-	58	-	dB
Dropout Voltage	VDrop	IO = 1A, TJ =+25 °C		-	2.0	-	V
Output Resistance	ro	f = 1KHz		-	19	-	mΩ
Short Circuit Current	Isc	VI= 35V, TA =	=+25 °C	-	250	-	mA
Peak Current	IPK	T _{J=+25} °C		-	2.2	ı	Α

^{1.} Load and line regulation are specified at constant junction temperature. Change in Vo due to heating effects must be taken into account separately. Pulse testing with low duty is used.

Electrical Characteristics (MC7818A)

(Refer to the test circuits. 0° C < T_J < 125° C, I_0 =1A, V I = 27V, C I=0.33 μ F, C I=0.1 μ F, unless otherwise specified)

Parameter	Symbol	Co	onditions	Min.	Тур.	Max.	Unit
		T _J =+25 °C		17.64	18	18.36	
Output Voltage	Vo	IO = 5mA to 3		17.3	18	18.7	V
		V _I = 21V to 33V I _O = 500mA		-	15	180	
Line Regulation (Note1)	Regline	V _I = 21V to 33	BV	-	5	180	mV
		T _J =+25 °C	V _I = 20.6V to 33V	-	15	180	
		1J =+25 C	VI= 24V to 30V	-	5	90	
Load Regulation (Note1)		$T_J = +25^{\circ}C$ IO = 5mA to 2	T _J =+25°C I _O = 5mA to 1.5A		15	100	.,
	Regload	$I_O = 5mA \text{ to } 1$	1.0A	-	15	100	mV
		IO = 250mA to 750mA		-	7	50	-
Quiescent Current	IQ	T _J =+25 °C		-	5.2	6.0	mA
		V _I = 21V to 3	3V, TJ=+25 [°] C	-	-	0.8	
Quiescent Current Change	ΔlQ	$V_I = 21V \text{ to } 33V, I_O = 500\text{mA}$		-	-	0.8	mA
		IO = 5mA to 1.0A		-	-	0.5	
Output Voltage Drift	ΔV/ΔΤ	IO = 5mA		-	-1.0	-	mV/°C
Output Noise Voltage	VN	f = 10Hz to 10 T _A =+25°C	00KHz	-	10	-	μV/Vo
Ripple Rejection	RR	f = 120Hz, I _O = 500mA V _I = 22V to 32V		-	57	-	dB
Dropout Voltage	VDrop	IO = 1A, TJ =+25°C		-	2.0	-	V
Output Resistance	ro	f = 1KHz		-	19	-	mΩ
Short Circuit Current	Isc	VI= 35V, TA =	=+25 [°] C	-	250	-	mA
Peak Current	IPK	T _{J=+25} °C		-	2.2	-	Α

^{1.} Load and line regulation are specified at constant junction temperature. Change in Vo due to heating effects must be taken into account separately. Pulse testing with low duty is used.

Electrical Characteristics (MC7824A)

(Refer to the test circuits. 0° C < T_J < 125° C, I_0 =1A, V I = 33V, C I=0.33 μ F, C O=0.1 μ F, unless otherwise specified)

Parameter	Symbol	Co	onditions	Min.	Тур.	Max.	Unit
		T _J =+25 °C		23.5	24	24.5	
Output Voltage	/oltage		23	24	25	V	
		V _I = 27V to 38 I _O = 500mA	V _I = 27V to 38V I _O = 500mA		18	240	
Line Regulation (Note1)	Regline	V _I = 21V to 33	BV	-	6	240	mV
		T _J =+25 °C	V _I = 26.7V to 38V	-	18	240	
		1J =+25 C	VI= 30V to 36V	-	6	120	-
Load Regulation (Note1)		T _J =+25 °C I _O = 5mA to 1.5A		-	15	100	.,
- 3 ()	Regload	$I_O = 5mA \text{ to } 1$	$I_O = 5mA$ to 1.0A		15	100	mV
		IO = 250mA to 750mA		-	7	50	
Quiescent Current	IQ	T _J =+25 °C		-	5.2	6.0	mA
		V _I = 27.3V to	38V, TJ =+25 °C	-	-	0.8	
Quiescent Current Change	ΔlQ	V _I = 27.3V to	$V_I = 27.3V$ to 38V, $I_O = 500$ mA		-	0.8	mA
		IO = 5mA to 1.0A		-	-	0.5	
Output Voltage Drift	ΔV/ΔΤ	IO = 5mA		-	-1.5	-	mV/°C
Output Noise Voltage	VN	f = 10Hz to 10 T _A = 25 °C	00KHz	-	10	-	μV/Vo
Ripple Rejection	RR	f = 120Hz, IO = 500mA VI = 28V to 38V		-	54	-	dB
Dropout Voltage	VDrop	IO = 1A, TJ =+25 °C		-	2.0	-	V
Output Resistance	ro	f = 1KHz		-	20	-	mΩ
Short Circuit Current	Isc	VI= 35V, TA =	=+25 °C	-	250	-	mA
Peak Current	IPK	T _{J=+25} °C	-	-	2.2	-	Α

^{1.} Load and line regulation are specified at constant junction temperature. Change in VO due to heating effects must be taken into account separately. Pulse testing with low duty is used.

Typical Perfomance Characteristics

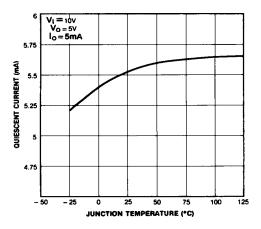


Figure 1. Quiescent Current

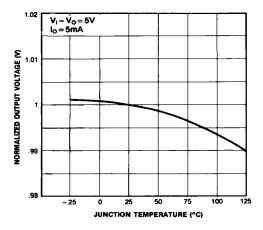


Figure 3. Output Voltage

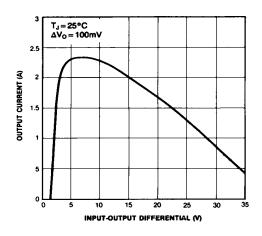


Figure 2. Peak Output Current

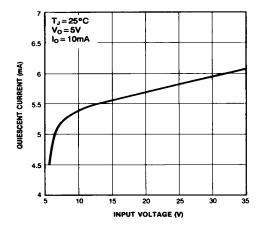


Figure 4. Quiescent Current

Typical Applications

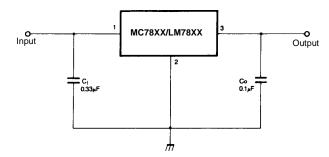


Figure 5. DC Parameters

Figure 6. Load Regulation

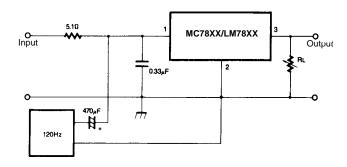
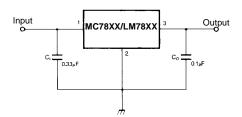


Figure 7. Ripple Rejection



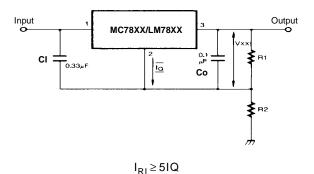
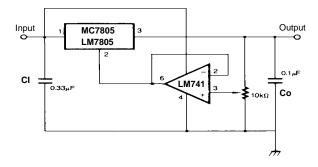

Figure 8. Fixed Output Regulator

Figure 9. Constant Current Regulator


Notes:

- (1) To specify an output voltage. substitute voltage value for "XX." A common ground is required between the input and the Output voltage. The input voltage must remain typically 2.0V above the output voltage even during the low point on the input ripple voltage.
- (2) C_I is required if regulator is located an appreciable distance from power Supply filter.
- (3) Co improves stability and transient response.

 $VO = VXX(1+R_2/R_1)+IQR_2$

Figure 10. Circuit for Increasing Output Voltage

 $I_{RI} \ge 5 I_{Q}$ $V_{O} = V_{XX}(1+R_{2}/R_{1})+I_{Q}R_{2}$

Figure 11. Adjustable Output Regulator (7 to 30V)

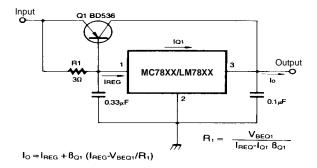


Figure 12. High Current Voltage Regulator

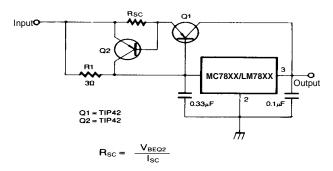


Figure 13. High Output Current with Short Circuit Protection

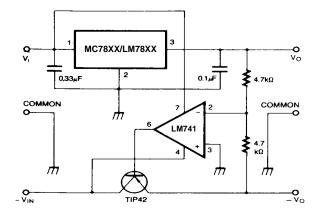


Figure 14. Tracking Voltage Regulator

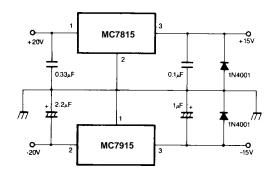


Figure 15. Split Power Supply (±15V-1A)

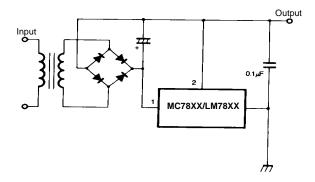
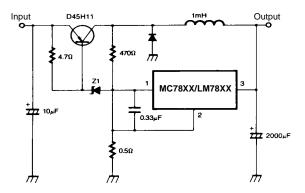
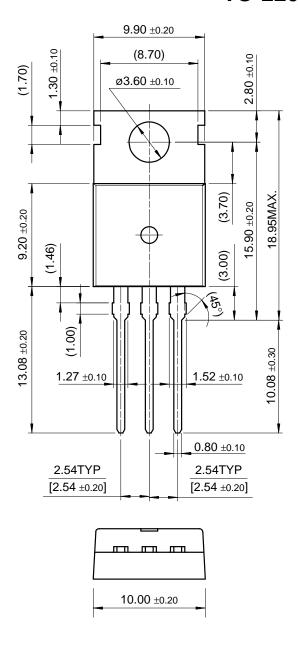
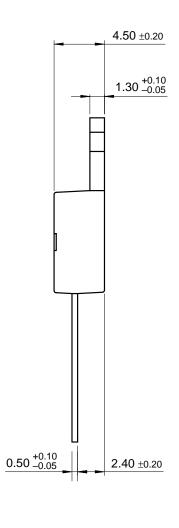


Figure 16. Negative Output Voltage Circuit

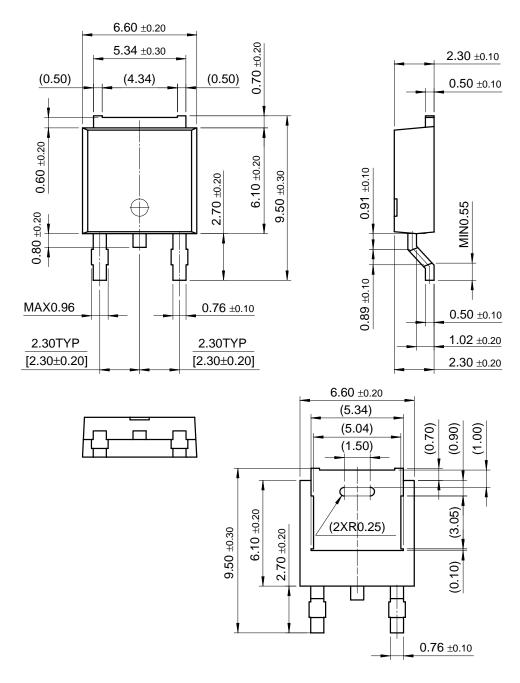




Figure 17. Switching Regulator

Mechanical Dimensions

Package

TO-220



Mechancal Dimensions (Continued)

Package

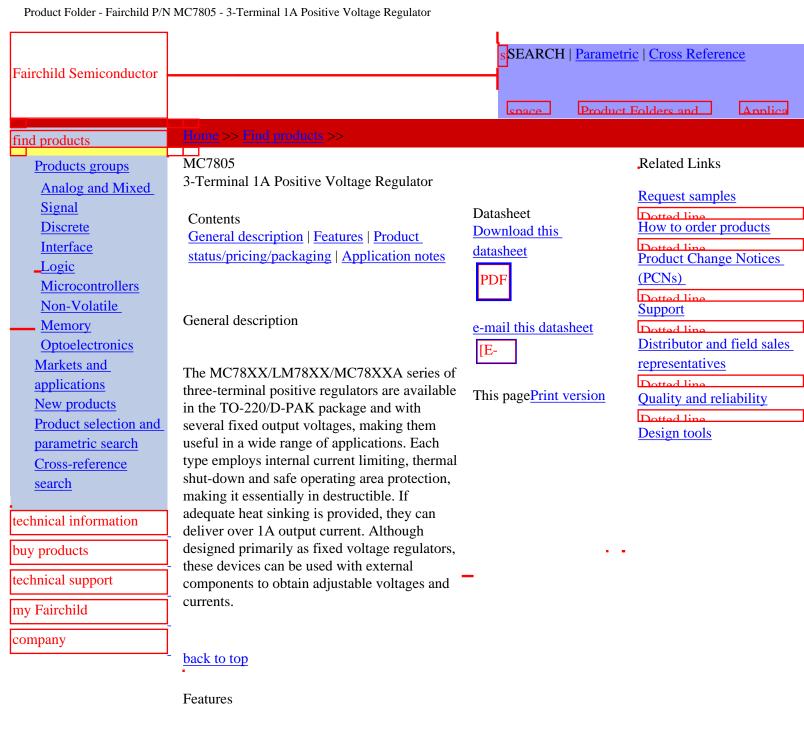
D-PAK

Ordering Information

Product Number	Output Voltage Tolerance	Package	Operating Temperature
LM7805CT	±4%	TO-220	0 ~ + 125°C

Product Number	Output Voltage Tolerance	Package	Operating Temperature			
MC7805CT						
MC7806CT						
MC7808CT						
MC7809CT						
MC7810CT		TO-220				
MC7812CT						
MC7815CT						
MC7818CT	±4%					
MC7824CT						
MC7805CDT						
MC7806CDT		D-PAK				
MC7808CDT			0 ~ + 125°C			
MC7809CDT		D-I AIX	0~+1250			
MC7810CDT						
MC7812CDT						
MC7805ACT						
MC7806ACT						
MC7808ACT						
MC7809ACT						
MC7810ACT	±2%	TO-220				
MC7812ACT						
MC7815ACT						
MC7818ACT						
MC7824ACT						

DISCLAIMER


FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION OR DESIGN. FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS.

LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF FAIRCHILD SEMICONDUCTOR CORPORATION. As used herein:

- Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury of the user.
- A critical component in any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

www.fairchildsemi.com

- Output Current up to 1A
- Output Voltages of 5, 6, 8, 9, 10, 12, 15, 18, 24V
- Thermal Overload Protection
- Short Circuit Protection
- Output Transistor Safe Operating Area Protection

back to top

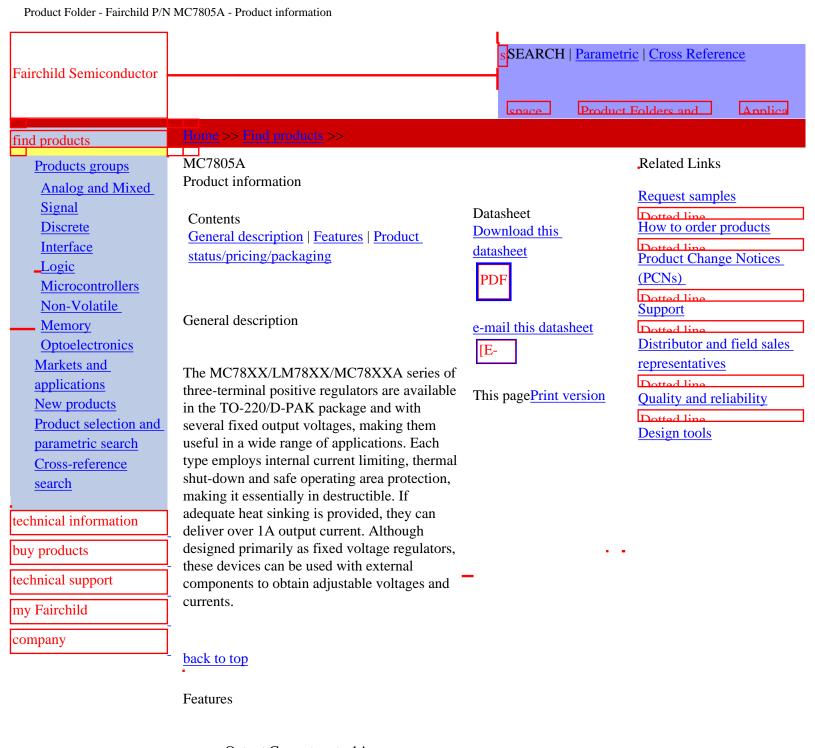
Product status/pricing/packaging

Product	Product status	Package type	Leads	Packing method
		g, F		

Product Folder - Fairchild P/N MC7805 - 3-Terminal 1A Positive Voltage Regulator

MC7805CT	Full Production	TO-220	3	RAIL
MC7805CDTX	Full Production	TO-252(DPAK)	2	TAPE REEL
MC7805CDTXM	Full Production	TO-252(DPAK)	2	TAPE REEL

back to top


Application notes

AN-4108: AN-4108 A Fairchild Power Switch based on Switched Mode Power Supply for CRT Monitor Use (256 K) Jul 19, 2002

back to top

<u>Home</u> | <u>Find products</u> | <u>Technical information</u> | <u>Buy products</u> | <u>Support</u> | <u>Company</u> | <u>Contact us</u> | <u>Site index</u> | <u>Privacy policy</u>

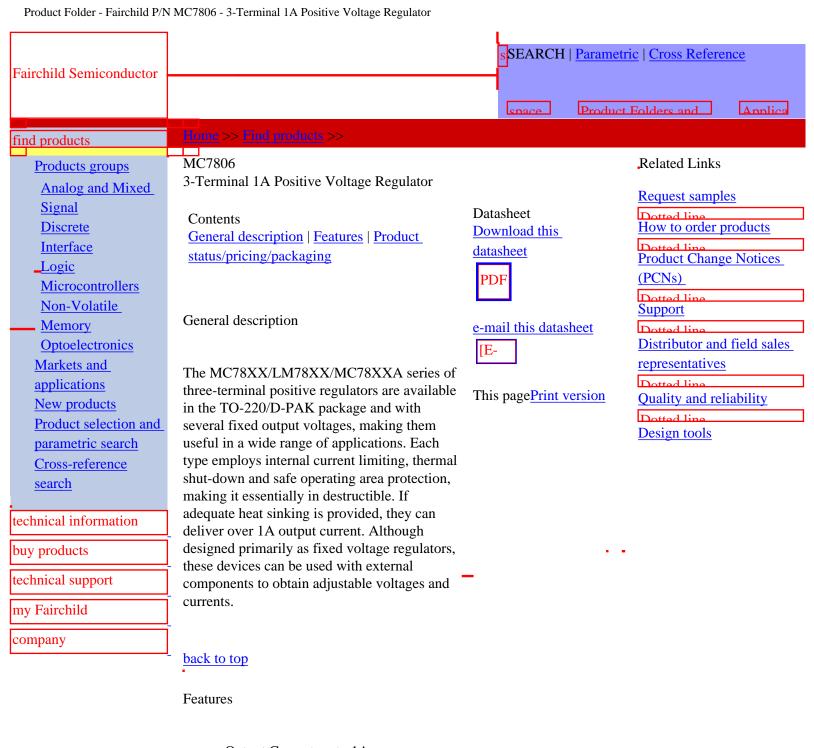
© Copyright 2002 Fairchild Semiconductor

- Output Current up to 1A
- Output Voltages of 5, 6, 8, 9, 10, 12, 15, 18, 24V
- Thermal Overload Protection
- Short Circuit Protection
- Output Transistor Safe Operating Area Protection

back to top

Product status/pricing/packaging

Product	Product status	Package type	Leads	Packing method


Product Folder - Fairchild P/N MC7805A - Product information

MC7805ACT	Full Production	TO-220	3	RAIL
MC7805ACTBU	Full Production	TO-220	3	BULK

back to top

<u>Home</u> | <u>Find products</u> | <u>Technical information</u> | <u>Buy products</u> | <u>Support</u> | <u>Company</u> | <u>Contact us</u> | <u>Site index</u> | <u>Privacy policy</u>

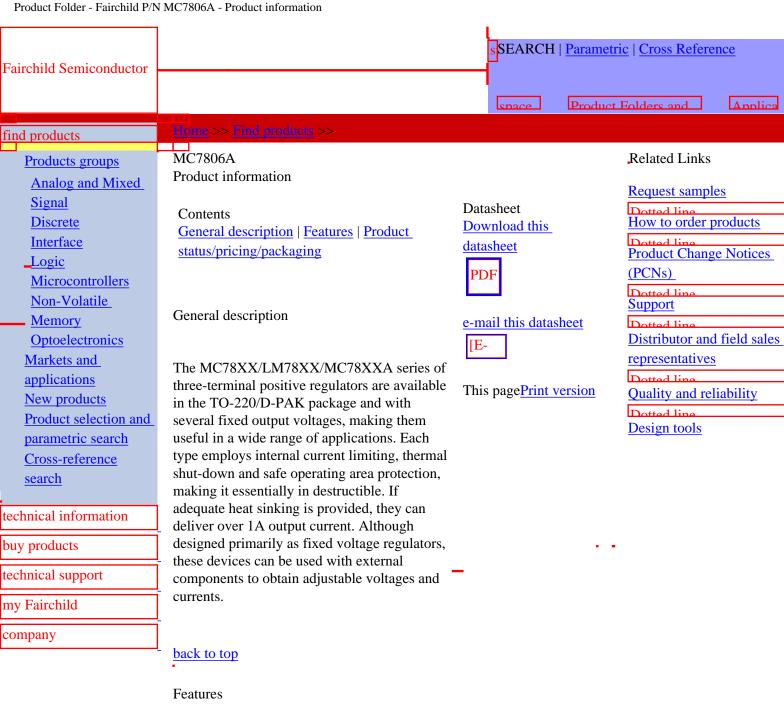
© Copyright 2002 Fairchild Semiconductor

- Output Current up to 1A
- Output Voltages of 5, 6, 8, 9, 10, 12, 15, 18, 24V
- Thermal Overload Protection
- Short Circuit Protection
- Output Transistor Safe Operating Area Protection

back to top

Product status/pricing/packaging

Product	Product status	Package type	Leads	Packing method


Product Folder - Fairchild P/N MC7806 - 3-Terminal 1A Positive Voltage Regulator

MC7806CDTXM	Full Production	TO-252(DPAK)	2	TAPE REEL
MC7806CDTX	Full Production	TO-252(DPAK)	2	TAPE REEL
MC7806CT	Full Production	TO-220	3	RAIL

back to top

<u>Home</u> | <u>Find products</u> | <u>Technical information</u> | <u>Buy products</u> | <u>Support</u> | <u>Company</u> | <u>Contact us</u> | <u>Site index</u> | <u>Privacy policy</u>

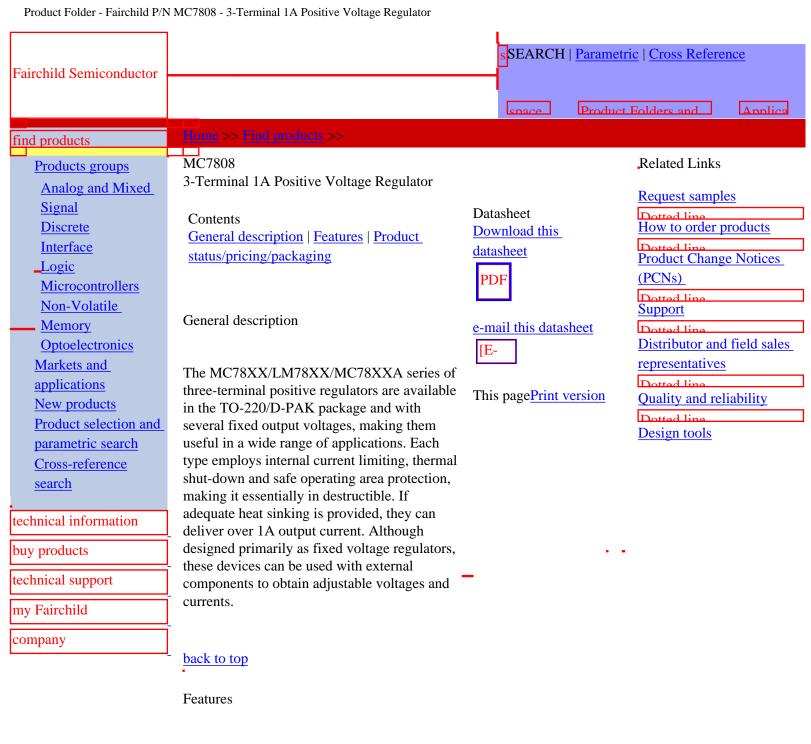
© Copyright 2002 Fairchild Semiconductor

- Output Current up to 1A
- Output Voltages of 5, 6, 8, 9, 10, 12, 15, 18, 24V
- Thermal Overload Protection
- Short Circuit Protection
- Output Transistor Safe Operating Area Protection

back to top

Product status/pricing/packaging

Product	Product status	Package type	Leads	Packing method
Trouder	110ddct status	r ackage type	Deads	T deking memod


Product Folder - Fairchild P/N MC7806A - Product information

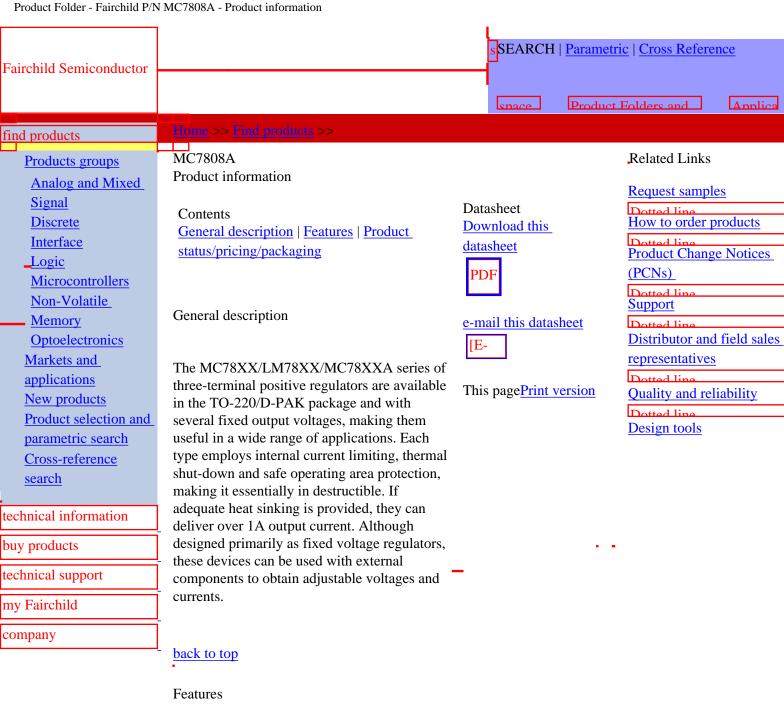
MC7806ACTBU	Full Production	TO-220	3	BULK
MC7806ACT	Full Production	TO-220	3	RAIL

back to top

<u>Home</u> | <u>Find products</u> | <u>Technical information</u> | <u>Buy products</u> | <u>Support</u> | <u>Company</u> | <u>Contact us</u> | <u>Site index</u> | <u>Privacy policy</u>

© Copyright 2002 Fairchild Semiconductor

- Output Current up to 1A
- Output Voltages of 5, 6, 8, 9, 10, 12, 15, 18, 24V
- Thermal Overload Protection
- Short Circuit Protection
- Output Transistor Safe Operating Area Protection


Product	Product status	Package type	Leads	Packing method
		g, F		

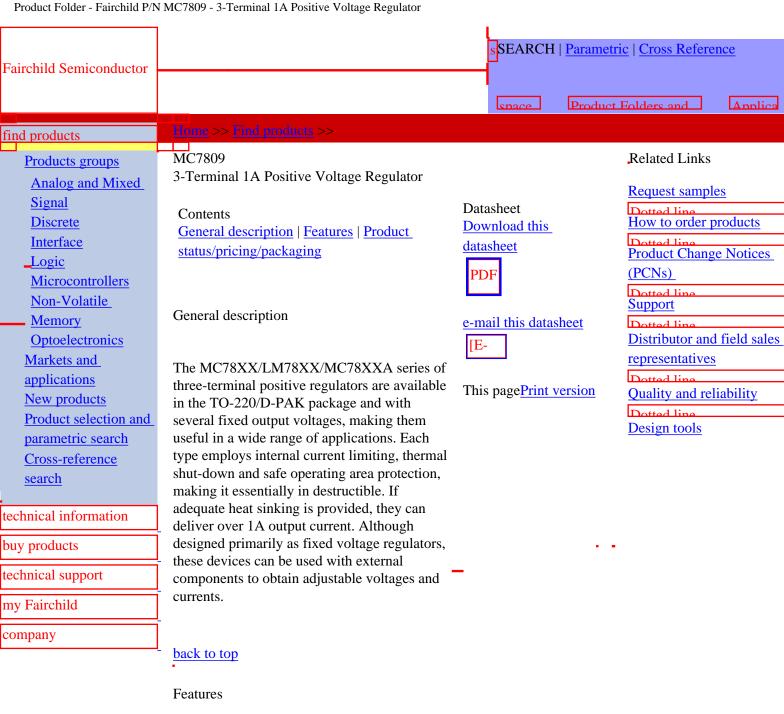
Product Folder - Fairchild P/N MC7808 - 3-Terminal 1A Positive Voltage Regulator

MC7808CDTXM	Full Production	TO-252(DPAK)	2	TAPE REEL
MC7808CT	Full Production	TO-220	3	RAIL
MC7808CDTX	Full Production	TO-252(DPAK)	2	TAPE REEL

back to top

<u>Home</u> | <u>Find products</u> | <u>Technical information</u> | <u>Buy products</u> | <u>Support</u> | <u>Company</u> | <u>Contact us</u> | <u>Site index</u> | <u>Privacy policy</u>

- Output Current up to 1A
- Output Voltages of 5, 6, 8, 9, 10, 12, 15, 18, 24V
- Thermal Overload Protection
- Short Circuit Protection
- Output Transistor Safe Operating Area Protection


Product	Product status	Package type	Leads	Packing method

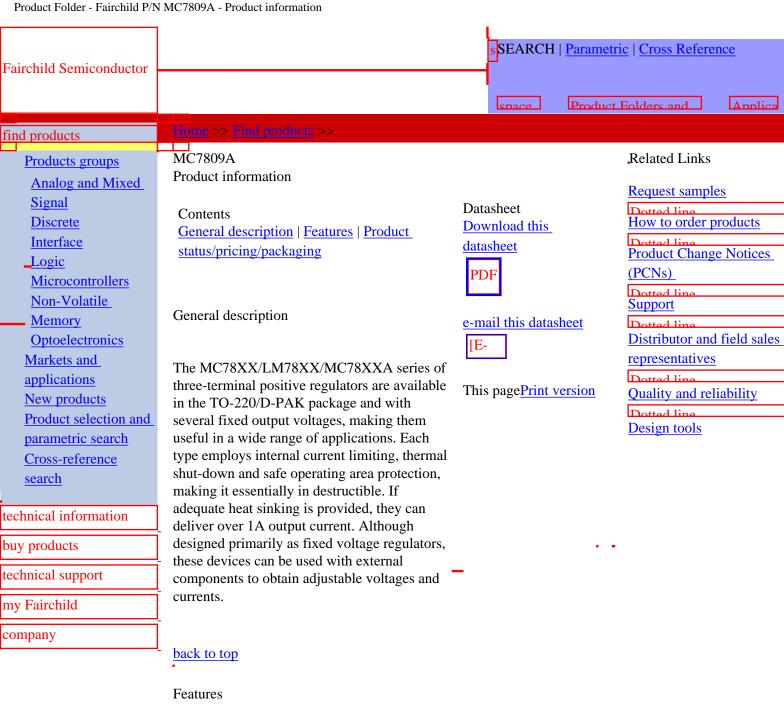
Product Folder - Fairchild P/N MC7808A - Product information

MC7808ACT	Full Production	TO-220	3	RAIL
MC7808ACTBU	Full Production	TO-220	3	BULK

back to top

<u>Home</u> | <u>Find products</u> | <u>Technical information</u> | <u>Buy products</u> | <u>Support</u> | <u>Company</u> | <u>Contact us</u> | <u>Site index</u> | <u>Privacy policy</u>

- Output Current up to 1A
- Output Voltages of 5, 6, 8, 9, 10, 12, 15, 18, 24V
- Thermal Overload Protection
- Short Circuit Protection
- Output Transistor Safe Operating Area Protection


Product	Product status	Package type	Leads	Packing method
		g, F		

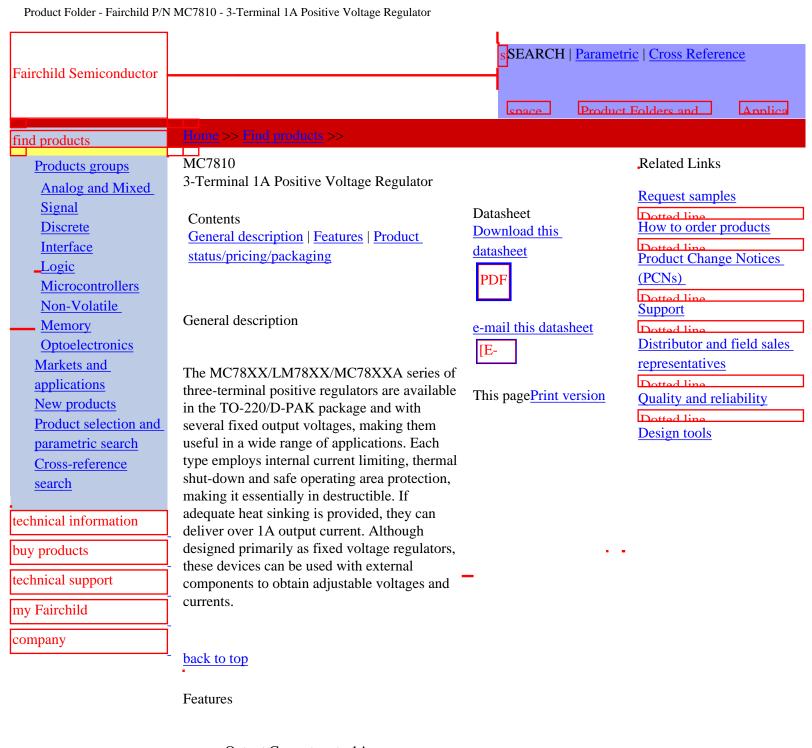
Product Folder - Fairchild P/N MC7809 - 3-Terminal 1A Positive Voltage Regulator

MC7809CDTXM	Full Production	TO-252(DPAK)	2	TAPE REEL
MC7809CDTX	Full Production	TO-252(DPAK)	2	TAPE REEL
MC7809CT	Full Production	TO-220	3	RAIL

back to top

<u>Home</u> | <u>Find products</u> | <u>Technical information</u> | <u>Buy products</u> | <u>Support</u> | <u>Company</u> | <u>Contact us</u> | <u>Site index</u> | <u>Privacy policy</u>

- Output Current up to 1A
- Output Voltages of 5, 6, 8, 9, 10, 12, 15, 18, 24V
- Thermal Overload Protection
- Short Circuit Protection
- Output Transistor Safe Operating Area Protection


Product	Product status	Package type	Leads	Packing method

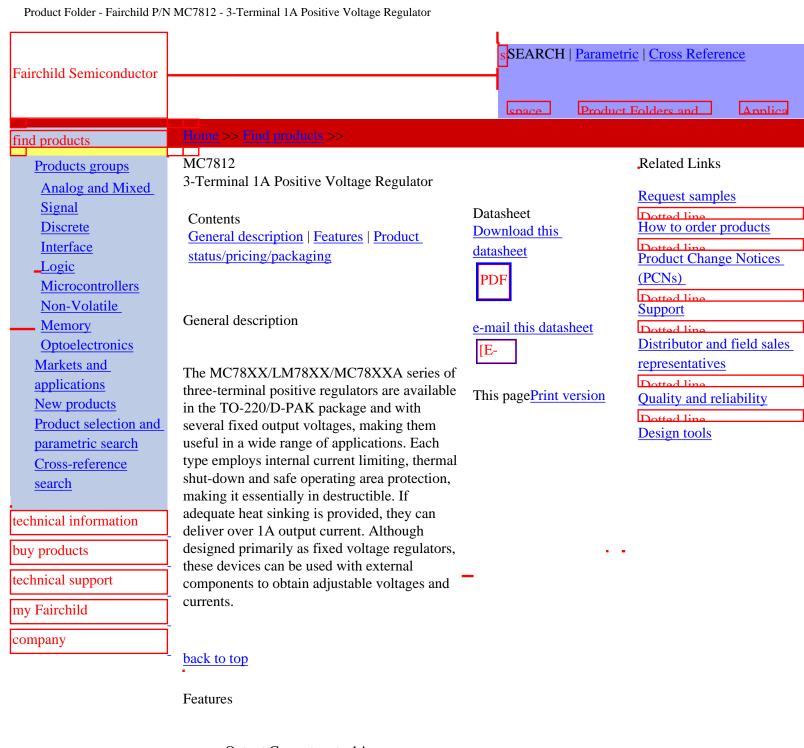
Product Folder - Fairchild P/N MC7809A - Product information

MC7809ACT	Full Production	TO-220	3	RAIL
MC7809ACTBU	Full Production	TO-220	3	BULK

back to top

<u>Home</u> | <u>Find products</u> | <u>Technical information</u> | <u>Buy products</u> | <u>Support</u> | <u>Company</u> | <u>Contact us</u> | <u>Site index</u> | <u>Privacy policy</u>

- Output Current up to 1A
- Output Voltages of 5, 6, 8, 9, 10, 12, 15, 18, 24V
- Thermal Overload Protection
- Short Circuit Protection
- Output Transistor Safe Operating Area Protection


Product	Product status	Package type	Leads	Packing method

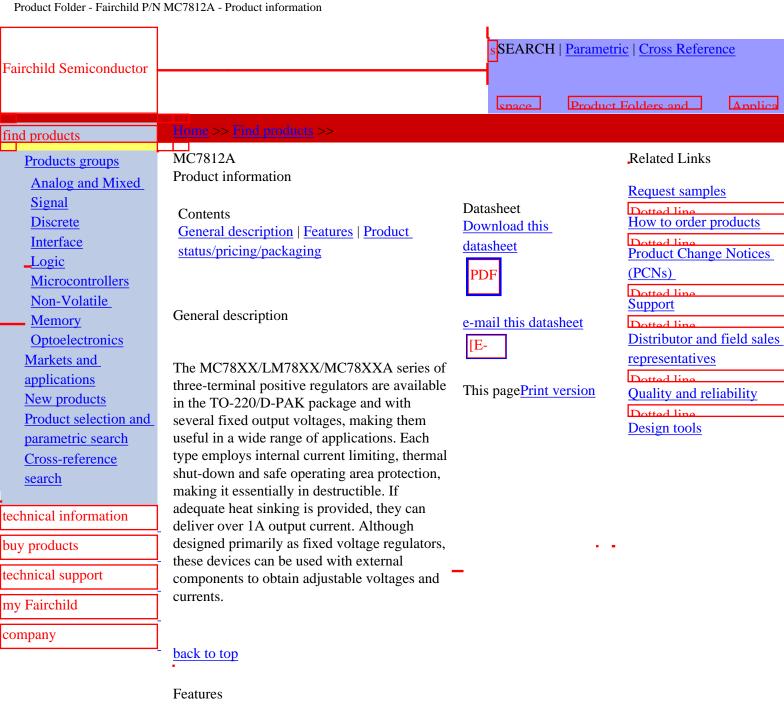
Product Folder - Fairchild P/N MC7810 - 3-Terminal 1A Positive Voltage Regulator

MC7810CDTX	Full Production	TO-252(DPAK)	2	TAPE REEL
MC7810CDTXM	Full Production	TO-252(DPAK)	2	TAPE REEL

back to top

<u>Home</u> | <u>Find products</u> | <u>Technical information</u> | <u>Buy products</u> | <u>Support</u> | <u>Company</u> | <u>Contact us</u> | <u>Site index</u> | <u>Privacy policy</u>

- Output Current up to 1A
- Output Voltages of 5, 6, 8, 9, 10, 12, 15, 18, 24V
- Thermal Overload Protection
- Short Circuit Protection
- Output Transistor Safe Operating Area Protection


Product	Product status	Package type	Leads	Packing method
Trouder	1 Todact Status	I denage type	Deads	r deking method

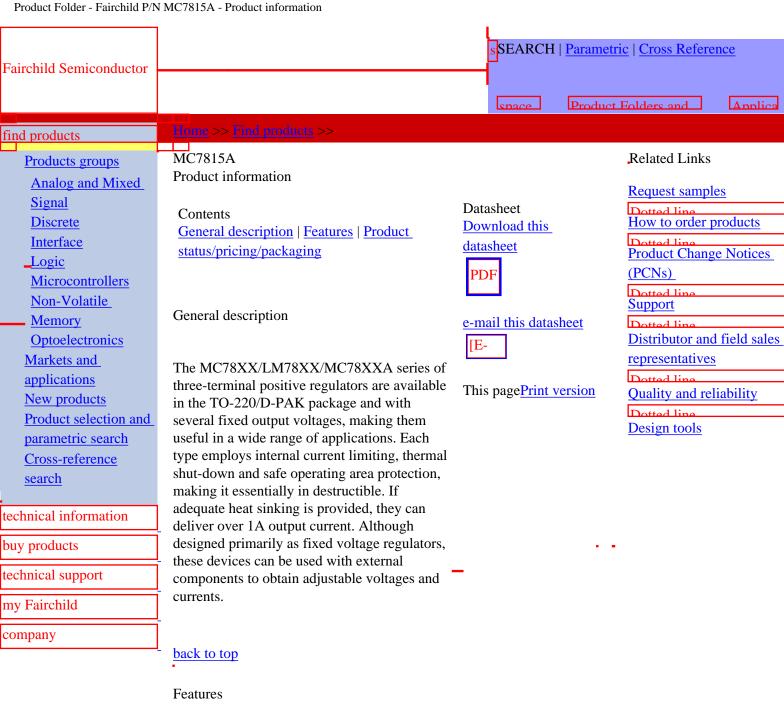
Product Folder - Fairchild P/N MC7812 - 3-Terminal 1A Positive Voltage Regulator

MC7812CDTXM	Full Production	TO-252(DPAK)	2	TAPE REEL
MC7812CDTX	Full Production	TO-252(DPAK)	2	TAPE REEL
MC7812CT	Full Production	TO-220	3	RAIL

back to top

<u>Home</u> | <u>Find products</u> | <u>Technical information</u> | <u>Buy products</u> | <u>Support</u> | <u>Company</u> | <u>Contact us</u> | <u>Site index</u> | <u>Privacy policy</u>

- Output Current up to 1A
- Output Voltages of 5, 6, 8, 9, 10, 12, 15, 18, 24V
- Thermal Overload Protection
- Short Circuit Protection
- Output Transistor Safe Operating Area Protection


Product	Product status	Package type	Leads	Packing method
Troudet	1 Todact Status	I dekage type	Leads	r acking memou

Product Folder - Fairchild P/N MC7812A - Product information

MC7812ACT	Full Production	TO-220	3	RAIL
MC7812ACTBU	Full Production	TO-220	3	BULK

back to top

<u>Home</u> | <u>Find products</u> | <u>Technical information</u> | <u>Buy products</u> | <u>Support</u> | <u>Company</u> | <u>Contact us</u> | <u>Site index</u> | <u>Privacy policy</u>

- Output Current up to 1A
- Output Voltages of 5, 6, 8, 9, 10, 12, 15, 18, 24V
- Thermal Overload Protection
- Short Circuit Protection
- Output Transistor Safe Operating Area Protection

Product	Product status	Package type	Leads	Packing method
Trouder	110ddct status	r ackage type	Deads	T deking memod

Product Folder - Fairchild P/N MC7815A - Product information

MC7815ACT	Full Production	TO-220	3	RAIL
MC7815ACTBU	Full Production	TO-220	3	BULK

back to top

<u>Home</u> | <u>Find products</u> | <u>Technical information</u> | <u>Buy products</u> | <u>Support</u> | <u>Company</u> | <u>Contact us</u> | <u>Site index</u> | <u>Privacy policy</u>