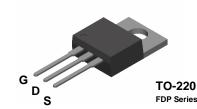
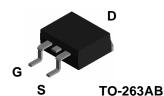


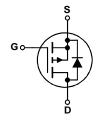
FDP6021P/FDB6021P

20V P-Channel 1.8V Specified PowerTrench® MOSFET

General Description


This P-Channel power MOSFET uses Fairchild's low voltage PowerTrench process. It has been optimized for power management applications.


Applications


- Battery management
- Load switch
- Voltage regulator

Features

- -28 A, -20 V. $R_{DS(ON)} = 30 \text{ m}\Omega$ @ $V_{GS} = 4.5 \text{ V}$ $R_{DS(ON)} = 40 \text{ m}\Omega$ @ $V_{GS} = 2.5 \text{ V}$ $R_{DS(ON)} = 65 \text{ m}\Omega$ @ $V_{GS} = 1.8 \text{ V}$
- Critical DC electrical parameters specified at elevated temperature
- High performance trench technology for extremely low R_{DS(ON)}
- 175°C maximum junction temperature rating

Absolute Maximum Ratings T_A=25°C unless otherwise noted

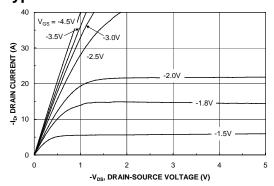
Symbol	Parameter		Ratings	Units
V_{DSS}	Drain-Source Voltage	-20	V	
V _{GSS}	Gate-Source Voltage	± 8	V	
I _D	Drain Current - Continuous	(Note 1)	-28	Α
	- Pulsed	(Note 1)	-80	
P _D	Total Power Dissipation @ T _C = 25°C		37	W
	Derate ab	ove 25°C	0.25	W°C
T _J , T _{STG}	Operating and Storage Junction Temper	-65 to +175	°C	

FDB Series

Thermal Characteristics

R _{θJC}	Thermal Resistance, Junction-to-Case	4	°C/W
$R_{\theta JA}$	Thermal Resistance, Junction-to-Ambient	62.5	°C/W

Package Marking and Ordering Information


Device Marking	Device	Reel Size	Tape width	Quantity
FDP6021P	FDP6021P	Tube	n/a	45
FDB6021P	FDB6021P	13"	24mm	800 units

Symbol	Parameter	Test Conditions	Min	Тур	Max	Units
Off Char	acteristics	1	I		I	I
BV _{DSS}	Drain-Source Breakdown Voltage	$V_{GS} = 0 \text{ V}, I_{D} = -250 \mu\text{A}$	-20			V
ΔBV _{DSS} ΔT, _J	Breakdown Voltage Temperature Coefficient	$I_D = -250 \mu A$, Referenced to $25^{\circ}C$		-16		mV/°C
I _{DSS}	Zero Gate Voltage Drain Current	$V_{DS} = -16 \text{ V}, V_{GS} = 0 \text{ V}$			-1	μΑ
I _{GSSF}	Gate-Body Leakage, Forward	$V_{GS} = 8 \text{ V}, \qquad V_{DS} = 0 \text{ V}$			100	nA
I _{GSSR}	Gate-Body Leakage, Reverse	$V_{GS} = -8 \text{ V}$ $V_{DS} = 0 \text{ V}$			-100	nA
On Char	acteristics (Note 2)			•		•
V _{GS(th)}	Gate Threshold Voltage	$V_{DS} = V_{GS}, I_{D} = -250 \mu A$	-0.4	-0.7	-1.5	V
$\frac{\Delta V_{GS(th)}}{\Delta T_J}$	Gate Threshold Voltage Temperature Coefficient	$I_D = -250 \mu A$, Referenced to $25^{\circ}C$		3		mV/°C
R _{DS(on)}	Static Drain–Source On–Resistance	$\begin{array}{cccccccccccccccccccccccccccccccccccc$		24 31 50 30	30 40 65 42	mΩ
I _{D(on)}	On-State Drain Current	$V_{GS} = -4.5 \text{ V}, V_{DS} = -5 \text{ V}$	-40			Α
g FS	Forward Transconductance	$V_{DS} = -5 \text{ V}, \qquad I_{D} = -14 \text{ A}$		33		S
Dynamic	Characteristics					
C _{iss}	Input Capacitance	$V_{DS} = -10 \text{ V}, \qquad V_{GS} = 0 \text{ V},$		1890		pF
C _{oss}	Output Capacitance	f = 1.0 MHz		302		pF
C _{rss}	Reverse Transfer Capacitance			124		pF
Switchir	ng Characteristics (Note 2)					
t _{d(on)}	Turn-On Delay Time	$V_{DD} = -10 \text{ V}, \qquad I_{D} = -1 \text{ A},$		13	23	ns
t _r	Turn-On Rise Time	$V_{GS} = -4.5 \text{ V}, \qquad R_{GEN} = 6 \Omega$		10	20	ns
t _{d(off)}	Turn-Off Delay Time	7		80	128	ns
t _f	Turn-Off Fall Time	1		50	80	ns
Q _g	Total Gate Charge	$V_{DS} = -10 \text{ V}, \qquad I_{D} = -14 \text{ A},$		20	28	nC
Q _{gs}	Gate-Source Charge	$V_{GS} = -4.5 \text{ V}$		4		nC
Q_{gd}	Gate-Drain Charge	1		7		nC
Drain-S	ource Diode Characteristics	and Maximum Ratings		•	•	
Is	Maximum Continuous Drain-Source				-28	Α
V _{SD}	Drain–Source Diode Forward Voltage	$V_{GS} = 0 \text{ V}, I_{S} = -14 \text{ A}$		-0.9	-1.3	V

Notes

- 1. Pulse Test: Pulse Width < $300\mu s$, Duty Cycle < 2.0%
- 2. TO-220 package is supplied in tube / rail @ 45 pieces per rail.
- 3. Calculated continuous current based on maximum allowable junction temperature. Actual maximum continuous current limited by package constraints to 75A

Typical Characteristics

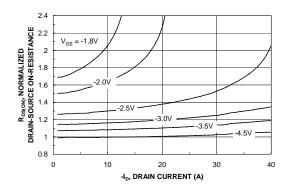
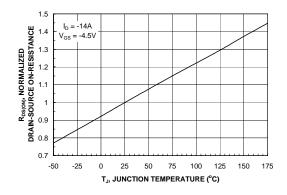



Figure 1. On-Region Characteristics.

Figure 2. On-Resistance Variation with Drain Current and Gate Voltage.

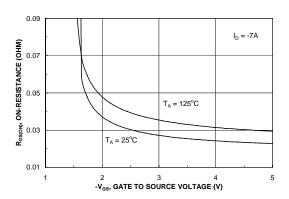
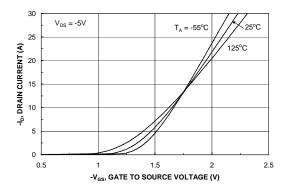



Figure 3. On-Resistance Variation withTemperature.

Figure 4. On-Resistance Variation with Gate-to-Source Voltage.

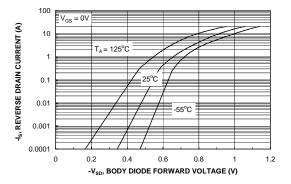
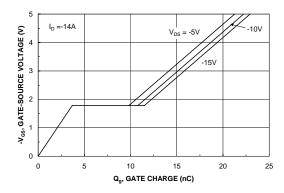


Figure 5. Transfer Characteristics.

Figure 6. Body Diode Forward Voltage Variation with Source Current and Temperature.


Typical Characteristics

-ID, DRAIN CURRENT (A)

10

V_{GS} = -4.5V SINGLE PULSE

 $R_{\theta JC} = 4^{\circ}C/W$ $T_A = 25^{\circ}C$

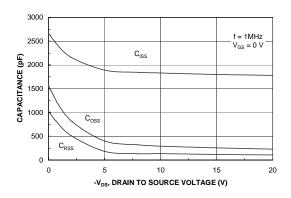


Figure 7. Gate Charge Characteristics.

10ms

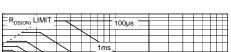


Figure 8. Capacitance Characteristics.

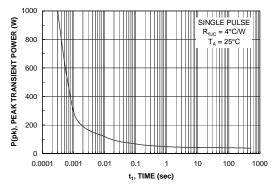
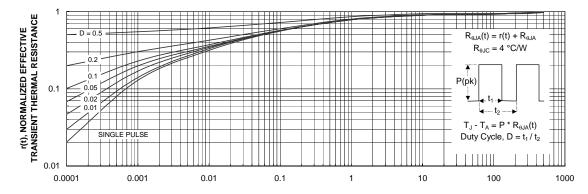
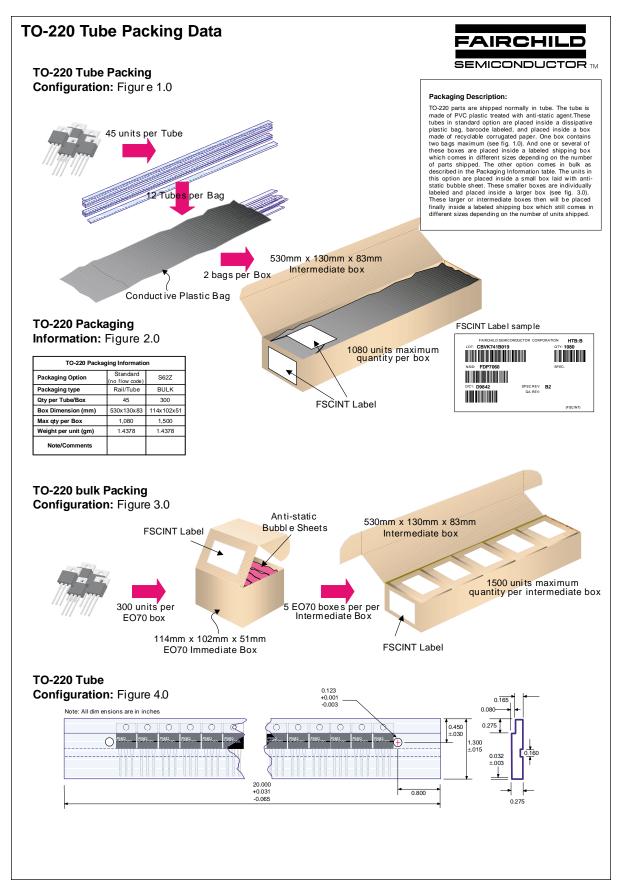
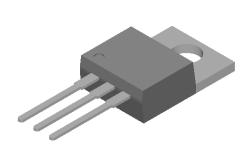
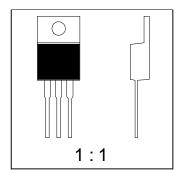


Figure 9. Maximum Safe Operating Area.

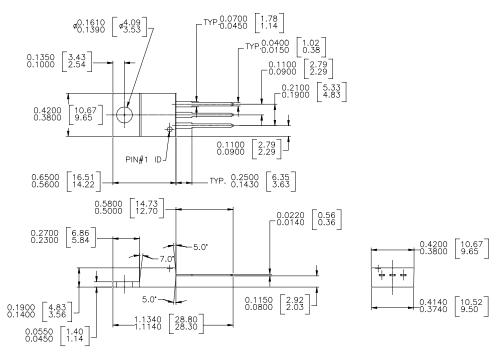
-V_{DS}, DRAIN-SOURCE VOLTAGE (V)


Figure 11. Transient Thermal Response Curve.

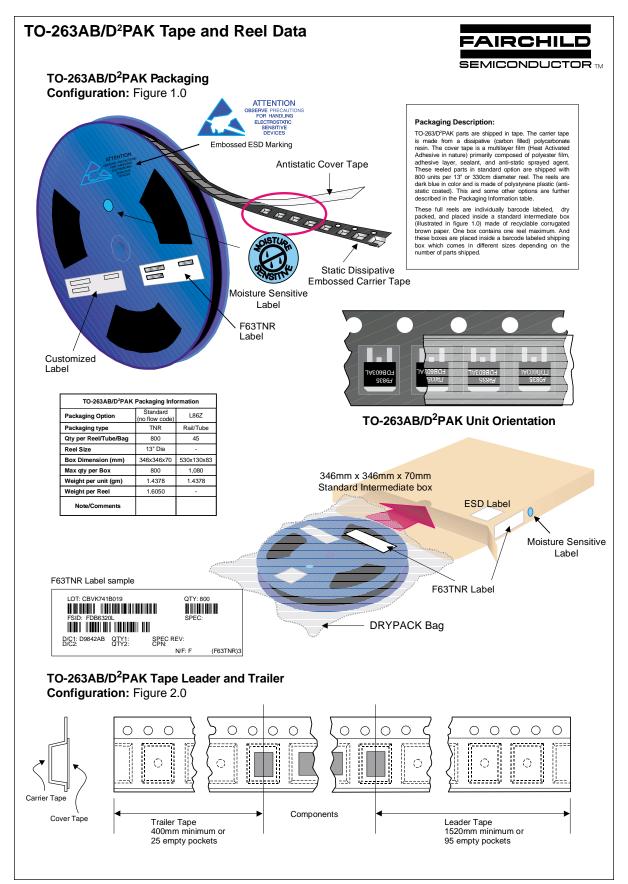


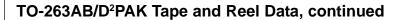
TO-220 Package Dimensions


TO-220 (FS PKG Code 37)

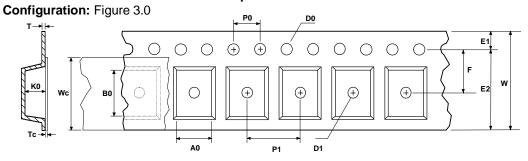
Scale 1:1 on letter size paper
Dimensions shown below are in:
inches [millimeters]

Part Weight per unit (gram): 1.4378



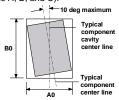

NOTE : UNLESS OTHERWISE SPECIFIED

1. STANDARD LEAD FINISH: 200 MICROINCHES / 5.08 MICRON MINIMUM LEAD / TIN 15/85 ON OLIN 194 COPPER OR EQUIVALENT


2. DIMENSION BASED ON JEDEC STANDARD TO-220 VARIATION AB, ISSUE J, DATED 3/24/87

TO 220 3 LEAD

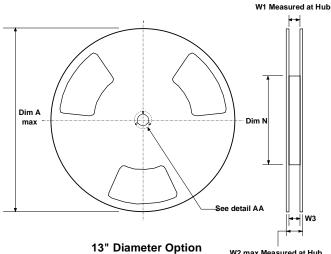
TO-263AB/D²PAK Embossed Carrier Tape

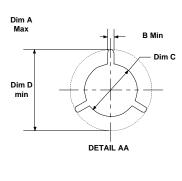

User Direction of Feed

	Dimensions are in millimeter													
Pkg type	Α0	В0	w	D0	D1	E1	E2	F	P1	P0	K0	т	Wc	Тс
TO263AB/ D²PAK (24mm)	10.60 +/-0.10	16.70 +/-0.20	24.0 +/-0.3	1.55 +/-0.05	1.60 +/-0.10	1.75 +/-0.10	22.25 min	11.50 +/-0.10	16.0 +/-0.1	4.0 +/-0.1	4.90 +/-0.10	0.450 +/-0.150	21.0 +/-0.3	0.06 +/-0.02

Notes: A0, B0, and K0 dimensions are determined with respect to the EIA/Jedec RS-481 rotational and lateral movement requirements (see sketches A, B, and C).

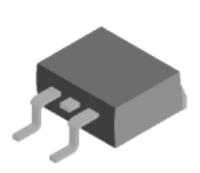
Sketch A (Side or Front Sectional View)
Component Rotation

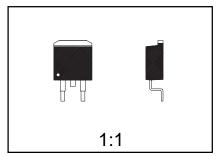



Sketch B (Top View)
Component Rotation

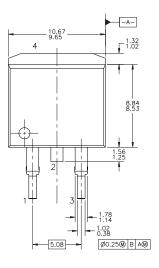
Sketch C (Top View)
Component lateral movement

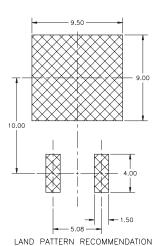
TO-263AB/D²PAK Reel Configuration: Figure 4.0

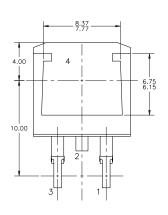

W2 max Measured at Hub

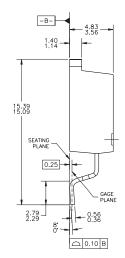

Dimensions are in inches and millimeters									
Tape Size	Reel Option	Dim A	Dim B	Dim C	Dim D	Dim N	Dim W1	Dim W2	Dim W3 (LSL-USL)
24mm	13" Dia	13.00 330	0.059 1.5	512 +0.020/-0.008 13 +0.5/-0.2	0.795 20.2	4.00 100	0.961 +0.078/-0.000 24.4 +2/0	1.197 30.4	0.941 - 0.1.079 23.9 - 27.4

TO-263AB/D²PAK Package Dimensions


TO-263AB/D²PAK (FS PKG Code 45)






Scale 1:1 on letter size paper Dimensions shown below are in: inches [millimeters]

Part Weight per unit (gram): 1.4378

- NOTES: UNLESS OTHERWISE SPECIFIED

 A) ALL DIMENSIONS ARE IN MILLIMETERS.
 B) STANDARD LEAD FINISH:
 200 MICROINCHES / 5.08 MICROMETERS MIN.
 LEAD/TIN 15/85 ON OLIN 194 COPPER OR
 EQUIVALENT.
 C) MAXIMUM YERTICAL BURR ON HEATSINK NOT
 TO EXCEED 0.003 INCH / 0.05mm.
 D) NO PACKAGE CHIPS, CRACKS OR SURFACE
 IDENTIFICATION ALLOWED AFTER FORMING.
 E) REFERENCE JEDEC, TO—265, ISSUE C,
 VARIATION AB, DATED 2/92.

TRADEMARKS

The following are registered and unregistered trademarks Fairchild Semiconductor owns or is authorized to use and is not intended to be an exhaustive list of all such trademarks.

FAST® ACEx™ OPTOPLANAR™ SuperSOT™-3 FASTr™ PACMAN™ SuperSOT™-6 Bottomless™ POPTM CoolFET™ FRFET™ SuperSOT™-8 CROSSVOLT™ GlobalOptoisolator™ SyncFET™ PowerTrench ® GTO^TM TinyLogic™ DenseTrench™ QFET™ UHC™ $HiSeC^{TM}$ QS^{TM} DOME™ EcoSPARK™ ISOPLANAR™ QT Optoelectronics™ UltraFET® VCX^{TM} E²CMOSTM LittleFET™ Quiet Series™

EnSigna™ MicroFET™ SILENT SWITCHER® FACT™ MICROWIRE™ SMART START™

FACT Quiet Series™ OPTOLOGIC™ Stealth™

DISCLAIMER

FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION OR DESIGN. FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS.

LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF FAIRCHILD SEMICONDUCTOR CORPORATION. As used herein:

- 1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, or (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in significant injury to the user.
- A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

PRODUCT STATUS DEFINITIONS

Definition of Terms

Datasheet Identification	Product Status	Definition			
Advance Information	Formative or In Design	This datasheet contains the design specifications for product development. Specifications may change in any manner without notice.			
Preliminary	First Production	This datasheet contains preliminary data, and supplementary data will be published at a later date. Fairchild Semiconductor reserves the right to make changes at any time without notice in order to improve design.			
No Identification Needed	Full Production	This datasheet contains final specifications. Fairchild Semiconductor reserves the right to make changes at any time without notice in order to improve design.			
Obsolete	Not In Production	This datasheet contains specifications on a product that has been discontinued by Fairchild semiconductor. The datasheet is printed for reference information only.			