
PRELIMINARY INFORMATION

Low Power EMI Reduction IC

Features

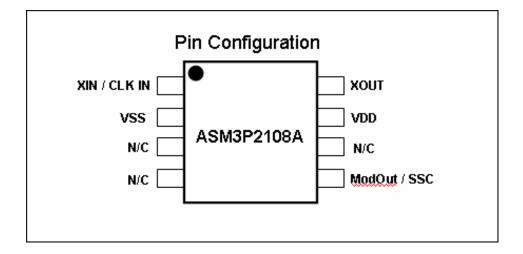
- FCC approved method of EMI attenuation.
- Provides up to 15dB EMI reduction.
- Generates a 4X REF EMI spread output
- Spectrum clock of the input frequency.
- Optimized for input frequency range from 10 to 20MHz.
- Internal Loop Filter minimizes external components and PC board space.
- Down Spread of 1.75%
- Very Low Cycle-to-Cycle Jitter.
- 3.3V operating Range
- CMOS / TTL compatible inputs and outputs
- Available in 8-pin SOIC and 8-pin TSSOP packages.

Product Description

The ASM3P2108 device is a versatile spread spectrum Frequency Synthesizer / Modulator designed specifically for a wide Range of input clock frequencies from 10MHZ to 20MHz with a 4X multiplier for output clock frequencies from 40MHz to 80 MHZ. The ASM3P2108A generates an EMI reduced clock signal from a crystal, ceramic resonator, or system clock. The ASM3P2108A generates a Down Spread of -1.75% deviation from Center Frequency using a nonlinear modulation profile.

The ASM3P2108A reduces Electro Magnetic Interference (EMI), at the Clock Source, allowing system wide reduction of EMI on downstream clock and data dependant signals.

The resulting EMI reduction provides for significant cost savings by reducing the number of circuit board layers and shielding that are traditionally associated with designs in order to achieve EMI regulatory compliance.


The ASM3P2108A modulates the output of a single PLL in order to "spread" the bandwidth of a synthesized clock, thereby decreasing the Peak Amplitudes of its associated harmonics. This results in significantly lower radiated EMI compared to the narrow band signal produced by standard oscillators and most clock synthesizers & generators. This technique of lowering EMI by increasing the signals bandwidth is called Spread Spectrum Clocking (SSC). The ASM3P2108A utilizes the most efficient and optimized modulation profile approved by the FCC, and is implemented using a proprietary, All-Digital Method.

Applications

The ASM3P2108A is targeted towards the Consumer and PC/Data Processing, or Computation markets. Entertainment devices, LCD displays, Notebook computers, PC peripheral devices, embedded systems, PDA's, and hand held devices provide a platform to take full advantage of the feature set of the ASM3P2108A.

PRELIMINARY INFORMATION

Pin Description

Pin#	Pin Name	Pin Type	Description
	XIN / CLKIN	Input	Crystal Connection or external frequency input. This pin has dual functions - it may be connected
1			to an external XTAL or driven by an external
			LVCMOS REF clock.
2	VSS	Power	Power Supply - 3.3V -
3	N/C	No Connect	no connection
4	N/C	No Connect	no connection
5	ModOut / SSC	Output	Spread Spectrum Clock Signal Output
6	N/C	No Connect	no connection
7	VDD	Power	Ground / Return
8	хоит	Input	Crystal connection. If using an external REFerence, this pin MUST be left open

Spread Spectrum Clock	
-1.75% Down Spread	Non linear modulation profile
<u> </u>	

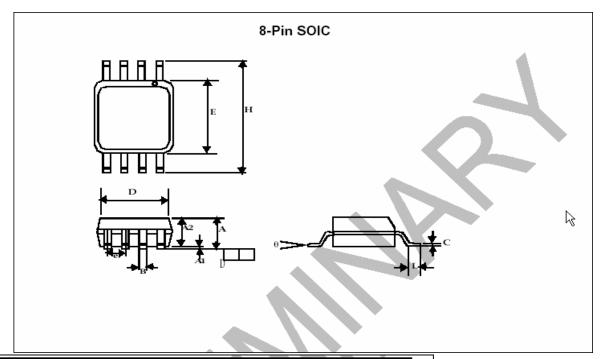
PRELIMINARY INFORMATION

Absolute Maximum Ratings

Symbol	Parameter	Rating	Units
VDD, Vin	Voltage on any pin with respect to ground	-0.5 to 7.0	Volts
Tstg	Storage Temperature	-65 to + 125	Degrees C
TA	OperatingTemperature	0 to 70	Degrees C

Note: These are Stress ratings Only, and functional operation is not implied. Exposure to absolute maximum ratings for extended periods may affect device reliability...

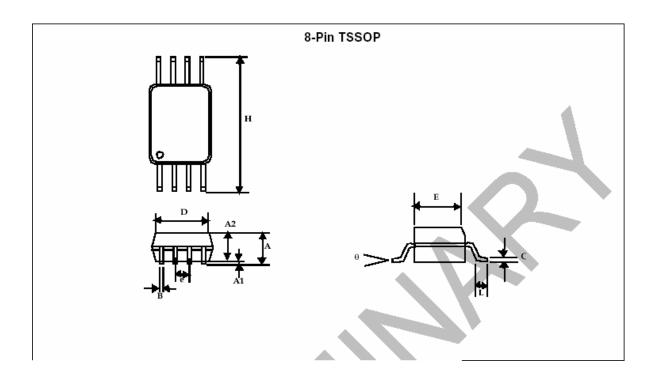
DC Electrical Characteristics (VDD= 3.3V Temp - 25 degrees C)


Symbol	Parameter	Min	Тур	Max	Units
VIL	Input Low Voltage	VSS - 0.3V	-	0.8	٧
ViH	Input High Voltage	-	-	VDD + 0.3	٧
lıL	Input Low Current	-60.0		-20.0	μΑ
lih	Input High Current	•		1.0	μΑ
IXOL	XOUT Output Low Current (@0.4V, VDD = 3.3V)	2.0	-	12.0	mA
Іхон	XOUT Output High Current (@2.5V, VDD = 3.3V)	-	-	12.0	mA
Vol	Output Low Voltage	-	-	0.4	٧
lcc	Dynamic Supply Current	2.8	-	-	mΑ
loo	Static Supply Current	-	4.5	-	mΑ
Voo	Operating Voltage	-	3.3	-	٧
Ton	Power up time to Lock (first locked clock cycle after power on)	-	0.18	-	mS
Zout	ModOut Clock Driver impedence	-	50.0	-	Ω

AC Electrical Characteristics (VDD = 3.3V Temp = 25 degrees C)

Symbol	Parameter	Min	Тур	Max	Units
FIN	Input Frequency	10		20	MHz
Fout	Output Frequency	40		80	MHz
	Time for Output Propagation Lo to Hi (TR)				
TLH	(measured @ 0.8V to 2.0V)	-	0.69	-	ns
	Time for Output Propagation Hi to Lo (TF)				
THL	(measured @ 0.8V to 2.0V)	-	0.68	-	ns
TJC	Jitter (Cycle-to-Cycle)	-200	-	200	ps
To	Output Duty Cycle	45	50	55	%

PRELIMINARY INFORMATION


Package Dimensions

Symbol	Dimension	s in inches	Dimensions in millimeters		
	Min	Max	Min	Max	
Α	0.057	0.071	1.45	1.80	
A1	0.004	0.010	0.10	0.25	
A2	0.053	0.069	1.35	1.75	
В	0.012	0.020	0.31	0.51	
С	0.004	0.01	0.10	0.25	
D	0.186	0.202	4.72	5.12	
E	0.148	0.164	3.75	4.15	
E	0.050 BSC		1.27 BSC		
Н	0.224	0.248	5.70	6.30	
L	0.012	0.028	0.30	0.70	
θ	0°	8°	0°	8°	

Note: Controlling dimensions are millimeters. SOIC: 0.074 grams unit weight.

PRELIMINARY INFORMATION

	Dimension	s in inches	Dimensions in millimeters		
Symbol	Min	Max	Min	Max	
А	0.047			1.10	
A1	0.002	0.006	0.05	0.15	
A2	0.031	0.041	0.80	1.05	
В	0.007	0.012	0.19	0.30	
С	0.004	0.008	0.09	0.20	
D	0.114	0.122	2.90	3.10	
Е	0.169	0.177	4.30	4.50	
Е	0.026	BSC	0.65 BSC		
Н	0.244	0.260	6.20	6.60	
Ĺ	0.018	0.030	0.45	0.75	
θ	0°	8°	0°	8°	

Note: Controlling dimensions are millimeters. TSSOP: 0.034 grams unit weight.

PRELIMINARY INFORMATION

Alliance Semiconductor Corporation 2595, Augustine Drive, Santa Clara, CA 95054 Tel# 408-855-4900 Fax: 408-855-4999 www.alsc.com Copyright © Alliance Semiconductor

All Rights Reserved Preliminary Information

Part Numbers: ASM3P2811A/B

ASM3P2812A/B

ASM3P2814A/B

Document Version: v1.0

© Copyright 2003 Alliance Semiconductor Corporation. All rights reserved. Our three-point logo, our name and Intelliwatt are trademarks or registered trademarks of Alliance. All other brand and product names may be the trademarks of their respective companies. Alliance reserves the right to make changes to this document and its products at any time without notice. Alliance assumes no responsibility for any errors that may appear in this document. The data contained herein represents Alliance's best data and/or estimates at the time of issuance. Alliance reserves the right to change or correct this data at any time, without notice. If the product described herein is under development, significant changes to these specifications are possible. The information in this product data sheet is intended to be general descriptive information for potential customers and users, and is not intended to operate as, or provide, any guarantee or warrantee to any user or customer. Alliance does not assume any responsibility or liability arising out of the application or use of any product described herein, and disclaims any express or implied warranties related to the sale and/or use of Alliance products including liability or warranties related to fitness for a particular purpose, merchantability, or infringement of any intellectual property rights, except as express agreed to in Alliance's Terms and Conditions of Sale (which are available from Alliance). All sales of Alliance products are made exclusively according to Alliance's Terms and Conditions of Sale. The purchase of products from Alliance does not convey a license under any patent rights, copyrights; mask works rights, trademarks, or any other intellectual property rights of Alliance or third parties. Alliance does not authorize its products for use as critical components in life-supporting systems where a malfunction or failure may reasonably be expected to result in significant injury to the user, and the inclusion of Alliance products in such life-supporting systems implies that the manufacturer assumes all risk of such use and agrees to indemnify Alliance against all daims arising from such use.