

4096 x 1 Static Random Access Memory

Features

- 35 ns Maximum Access Time
- No Clocks or Strobes Required
- Automatic CE Power Down
- Identical Cycle and Access Times
- Single +5V Supply (±10%)
- Pinout and Function Compatible to SY2147

- Direct Performance Upgrade For SY2147
- Totally TTL Compatible All Inputs and Outputs
- Separate Data Input and Output
- High Density 18-Pin Package
- Three-State Output

Description

The Synertek SY2147H is a 4096-Bit Static Random Access Memory organized 4096 words by 1-bit and is fabricated using Synertek's new scaled n-channel silicon gate technology. It is designed using fully static circuitry, therefore requiring no clock or refreshing to operate. Address set-up times are not required and the data is read out non-destructively with the same polarity as the input data. Separate data input and output pins provide maximum design flexibility. The three-state output facilitates memory expansion by allowing the outputs to be OR-tied to other devices.

The SY2147H offers an automatic power down feature. Power down is controlled by the Chip Enable input. When Chip Enable ($\overline{\text{CE}}$) goes high, thus deselecting the SY2147H, the device will automatically power down and remain in a standby power mode as long as $\overline{\text{CE}}$ remain high. This unique feature provides system level power savings as much as 80%.

The SY2147H is packaged in an 18-pin DIP for the highest possible density. The device is fully TTL compatible and has a single +5V power supply.

Pin Configuration

Block Diagram

Absolute Maximum Ratings

Temperature Under Bias -10°C to 85°C Storage Temperature -65°C to 150°C Voltage on Any Pin with

Respect to Ground -3.5V to +7V
Power Dissipation 1.2W

Comment*

Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied.

D.C. Characteristics

 $T_A = 0^{\circ} C \text{ to } +70^{\circ} C$, $V_{CC} = 5V \pm 10\%$ (Unless otherwise specified) (Note 8)

		2147	2147HL/L-3		2147H/-1/-2/-3				
Symbol	Parameter	Min.	Min. Max.		Min, Max.		Conditions		
[†] LI	Input Load Current (All input pins)		10		10	μА	V _{CC} = Max,	V _{IN} = Gnd to V _{CC}	
LO	Output Leakage Current		50		50	μА	CE = V _{IH} , V _{CC} = Max V _{OUT} = Gnd to 4. 5V		
1cc	Power Supply Current		115		150	mA		V _{CC} = Max, \overline{CE} = V _{IL}	
.00			125		160	mΑ	T _A = 0°C	Outputs Open	
1 _{SB}	Standby Current		10		20	mA	V _{CC} = Min to Max, CE = V _{IH}		
l _{PO}	Peak Power-on Current (Note 9)		30		50	mA	V _{CC} = Gnd to V _{CC} Min CE = Lower of V _{CC} or V _{IH} Min		
VIL	Input Low Voltage	-3.0	0.8	-3.0	0.8	٧			
VIH	Input High Voltage	2.0	6.0	2.0	6.0	V			
VOL	Output Low Voltage		0.4		0.4	٧	1 _{OL} = 8mA		
Voн	Output High Voltage	2.4		2.4		٧	I _{OH} = -4.0mA		

Capacitance T_A = 25°C, f = 1.0 MHz

Symbol	Test	Тур.	Max.	Unit
COUT	Output Capacitance		6	pF
CIN	Input Capacitance		5	pF

NOTE: This parameter is periodically sampled and not 100% tested.

A.C. Characteristics READ CYCLE

 $T_A = 0^{\circ}C$ to +70°C, $V_{CC} = 5V \pm 10\%$ (Unless otherwise specified) (Notes 8, 10)

Symbol		2147H-1		2147H-2		2147H-3/HL-3		2147H/HL			
	Parameter	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	Unit	Notes
^t RC	Read Cycle Time	35		45	1	55		70		ns	
tAA	Address Access Time		35		45		55		70	ns	
tACE1	Chip Enable Access Time	-	35		45		55		70	ns	1
tACE2	Chip Enable Access Time	—	35		45		65		80	ns	2
tон	Output Hold from Address Change	5		5		5		5		ns	
tLZ	Chip Selection to Output in Low Z	5		5		10		10		ns	7
tHZ	Chip Deselection to Output in High Z	0	30	0	30	0	30	0	40	ns	7
tPU	Chip Selection to Power Up Time	0		0		0		0		ns	
tPD	Chip Deselection to Power Down Time		20		20		20		30	ns	

WRITE CYCLE

e 1	ne 35 45	55		70		ns	
ed	o End of Write 35 45	45	_	55		ns	
alic	to End of Write 35 45	45		55		ns	
tu	Time 0 0	0		0		ns	
۷ ب	ith 20 25	25		40		ns	
ove	Time 0 0	10		15		ns	
to	end of Write 20 25	25		30		ns	
Ti	e 10 10	10		10		ns	
ole	to Output in High Z 0 20 0 25	0	25	0	35	ns	7
tiv	from End of Write 0 0	0		0		ns	7
tiv	from End of Write 0 0						0 0 ns

^{**}Test Condition: MIL-STD-883B Method 3015.1.

A.C. Testing Input, Output Waveform

A.C. TESTING: INPUTS ARE DRIVEN AT 3.0V FOR A LOGIC "1" AND 0.0V FOR A LOGIC "0". TIMING MEASUREMENTS ARE MADE AT 2.0V FOR A LOGIC "1" AND 0.8V FOR A LOGIC "0" AT THE OUTPUTS. THE INPUTS ARE MEASURED AT 1.5V. INPUT RISE AND FALL TIMES ARE 5 ns.

A.C. Testing Load Circuit

Package Availibility

- 18 Pin Cerdip
- 18 Pin Ceramic
- 18 Pin Plastic

Ordering Information

Order Number	Access Operating Time Current (Max) (Max)		Standby Package (Max)	*Package Type		
SYC2147H-1	35ns	180mA	30mA	Ceramic		
SYD2147H-1	35ns	180mA	30mA	Cerdip		
SYC2147H-2	45ns	180mA	30mA	Ceramic		
SYD2147H-2	45ns	180mA	30mA	Cerdip		
SYC2147H-3	55ns	180mA	30mA	Ceramic		
SYD2147H-3	55ns	180mA	30mA	Cerdip		
SYC2147HL-3	55ns	125mA	15mA	Ceramic		
SYD2147HL-3	55ns	125mA	15mA	Cerdip		
SYC2147H	70ns	160mA	20mA	Ceramic		
SYD2147H	70ns	160mA	20mA	Cerdip		
SYC2147HL	70ns	140mA	10mA	Ceramic		
SYD2147HL	70ns	140mA	10mA	Cerdip		

*Also available in plastic